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Leveling up fun: learning progress,
expectations, and success influence
enjoyment in video games

Franziska Brandle'™, Charley M. Wu23*5 & Eric Schulz3¢>

What factors influence how much fun people have when engaging in inherently enjoyable tasks?
Several theories predict that people will have the most fun in environments of intermediate difficulty
because these environments usually offer the most progress in learning about the world. Past studies
have frequently focused on simple experimental paradigms in which learning was still instrumental
for later tasks. Here, we put these theories to a test in three large and realistic video game data sets:
a puzzle game (with 7,994 levels and 376,341 votes), a racing game (138,662 levels and 614,770
votes), and a platformer game (115,032 levels and 795,313 votes). As predicted, people preferred
levels of intermediate difficulty in all games. Yet, additional factors influencing people’s enjoyment
also emerged: players preferred levels that matched closely with their prior expectations of difficulty
and were also motivated by success. We further confirmed these factors in two precisely controlled
experiments. Taken together, these results advance our understanding of the dynamics of fun in
realistic environments and emphasize the importance of using both realistic, game-like environments
and highly controlled experiments to refine theories of human learning and decision-making.
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People engage in many activities not only for material rewards or instrumental benefits but simply for the fun
and enjoyment they offer. From playing a game, or taking in a movie, to making music, there are countless
activities where behavior appears to be intrinsically motivated absent of instrumental benefits. With the high
number of enjoyable options available at any time, it becomes crucial to understand which activities people
prefer and continue to participate in purely for fun. What are the features influencing whether or not an ongoing
activity is experienced as intrinsically rewarding and thus predicting continued engagement, especially in rich
and realistic scenarios?

Intrinsic motivation has often been linked to an optimal level of task difficulty. Multiple theories — based
on factors such as novelty!, achievement?, or challenge®> — propose that intrinsic motivation peaks with tasks
of intermediate difficulty (or knowledge), resulting in an inverted-U relationship between the two variables®.
This phenomenon has been observed across various research domains, including curiosity5‘7, boredom?, flow®,
development!'? and game design!!. Although these theories are grounded in different conceptual frameworks,
recent work has argued that many of them can be unified under the principle of resource-efficient knowledge
maximization*: in many natural environments, preferring tasks of intermediate difficulty constitutes an optimal
strategy for acquiring knowledge about the world. When a task is too easy, people will not learn much, since
they will have already possessed the necessary knowledge or skills to master it: for example, teaching an adult
how to tie their shoes, or a skilled chess player how to move their pawns. On the other hand, when a task is too
difficult, people might struggle to achieve any degree of traction, since they may fail miserably without any real
lessons being learned: for example, teaching a 1-year-old to tie their shoes or a novice chess player how to play
the Ruy Lopez opening.

One of these theories that formally described “fun” — or more generally intrinsic reward — is consequently
based on an informational goal of learning progress!>*. A common technique used in robotics and machine
learning is to assign intrinsic rewards to the active creation or discovery of surprising experiences, which allow
intelligent agents to improve the predictions of their model of the world!2. According to this approach, a subjective
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measure of “fun” or intrinsic reward can be defined as the degree to which the world model improves!'>1°. This
again produces an inverted U-shaped relationship between difficulty and intrinsic reward, with intrinsic reward
being the highest in situations of intermediate difficulty (i.e. not too easy and not too hard) where learning
progress is maximal (Fig. la). From a normative perspective, robots learn faster when maximizing learning
progress'”!® and machine learning models using stochastic gradient-descent learn best when they are correct
roughly 85% of the time'®. Descriptively, learning progress has been linked to influential accounts of curiosity?**!
and development!, with distinct neural responses encoding the anticipation of obtaining information compared
to anticipations of reward??~24,

However, empirical evidence for human engagement being driven by learning progress has only recently
emerged, often using free choice paradigms where task difficulty is related to learning outcomes?’, engagement?*%’,
and subjective ratings®®. A recent pre-registered study? provided additional support that learning progress
rather than difficulty is a main driver of enjoyment. Using a “dynamic difficulty adjustment” system, learning
progress was deliberately suppressed, with the outcome that the researchers failed to find a relationship between
the difficulty-skill balance and enjoyment®.

In his seminal paper, Schmidhuber argues that making learning progress results in “fun”*. However, “fun”
lacks a consistent definition in psychological literature and refers to a complex and subjective phenomenon®"32.
Here, we will use the broader term “enjoyment” to describe the positive affect people experience when engaging
in inherently “fun” tasks, such as games. While we believe that our paradigms capture the essence of fun and
enjoyment, we adopt the term “intrinsic reward” to describe participants’ positive experience elicited by learning
progress — as proposed by Oudeyer et al.'® — to avoid unwarranted generalization. The term originates from
the intrinsic motivation literature, which defines intrinsically motivated activities as those “for which there is
no apparent reward except the activity itself” (REF’, p. 23). Traditionally, intrinsic motivation and rewards
have been measured through behavioral measures, such as engagement® and choice behavior?, or through self-
report measures’. In our work, we use both engagement and players’ level ratings to gain a more comprehensive
understanding of learning progress.

While past studies have focused on simple experimental paradigms in which learning was still instrumental
for later tasks, here we are interested in settings such as video games or other enjoyable diversions, where people
play purely for fun or pleasure and can decide to quit at any moment?. In these settings, people can still gather
knowledge about the structure or difficulty of the task, but instrumental learning is not the main focus of the
activity®!>%*, In these inherently enjoyable scenarios, optimizing knowledge accumulation may not be the only
motivational driver, since the link to a normative basis for improving future outcomes is made more tenuous.
Thus, it is an open question whether inverted-U theories can provide a good description of behavior in more
real-world and inherently fun contexts.

Goals and scope
To answer this question, we used multiple large-scale game data sets, as well as two online experiments. Within
three large-scale video game data sets (“Robozzle”, “Trackmania’, and “Super Mario Maker”; Fig. 1b), we used
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Fig. 1. Visualization of the tested theory and experimental setup. (A) The learning progress theory.

According to the theory, enjoyment increases with model improvement. As shown in multiple studies and our
simulations, model improvement is highest in environments of intermediate difficulty. Therefore, enjoyment

is predicted to be highest in environments of intermediate difficulty. (B) Details on the three game data sets.
We chose three pre-existing games of different genres, all including a large set of levels and player votes. (C)
Overview of our additional experimental setups. First, we investigated the additional component of difficulty-
expectation disparity in a guessing game, where people had to guess numbers generated by different machines
(for an enlarged version of the paradigm, refer to Fig. 3a). Second, we investigated the additional component of
success in a grid exploration game, where people could open numerical tiles on a large grid.
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subjective ratings as an indicator of intrinsic reward, finding an inverted U-shaped relationship between difficulty
and people’s enjoyment (Fig. 2). However, other important factors also emerged. In particular, the Super Mario
Maker data set revealed that players’ ratings were also influenced by i) a “difficulty-expectation disparity” based
on the mismatch between prior expectations about the difficulty of a level and our calculations of the underlying
difficulty and ii) “success” from completing levels with low difficulty.

Having established that the inverted U-shape relationship between difficulty and intrinsic motivation, along
with the difficulty-expectation disparity and success, influences player’s ratings in complex and realistic video
games, we conducted two controlled experiments (Fig. 1c) to further corroborate our findings — measured
through player engagement. Here, we test the theory of intrinsic reward as learning progress'>'3>3¢ to inform
our simulations and to compare them with human behaviour. In Experiment 1 (Fig. 3), we used a simple guessing
game, where participants guessed numbers from Gaussian distributions with different levels of variance defining
the difficulty. In both simulations and participant data, we found that learning progress and the difficulty-
expectation disparity stemming from a mismatch between expectations about difficulty and true difficulty
influenced players’ engagement with each machine. In Experiment 2 (Fig. 4), we developed an open-ended
exploration paradigm, in which participants explored different grids containing hidden points with varying
degrees of spatial correlation. Through both simulations and participant data, we found that in tandem with
increased engagement in levels with higher learning progress, participants also engaged more with landscapes
with higher underlying point values. Taken together, these results advance our understanding of higher-order
concepts in human motivation and intrinsic reward, by showing that multiple factors influence people’s ratings
and engagement behavior in inherently enjoyable, realistic, and rich environments.

Game datasets
To investigate the relationship between intrinsic motivation and difficulty in inherently non-instrumental and
enjoyable settings, we decided to use video games as a testbed. Games have a long history in psychology®’. Video
games bring the additional benefit that they provide a lot of data, as they are by design enjoyable and therefore
attract more participants and generate more data per participant®. Video games are also more complex than
traditional psychological paradigms, which brings them closer to the complexity of real-world environments®.
In our analyses, we focused on three large-scale data sets of the popular video games Robozzle, Trackmania,
and Super Mario Maker. All three games have in common that players can create and contribute levels, which
other players can subsequently play and rate. These games, therefore, offer a great diversity in the complexity
and difficulty of many different levels. We compared the influence of different levels of difficulty on enjoyment
within each game. We expected to see an inverted U-shape between difficulty and enjoyment for each game
— as predicted by multiple theories of intrinsic motivation. As the three data sets did not share the same data
structures, we approximated enjoyment and difficulty measures for each game individually, based on the
available data.

Robozzle — Results

Robozzle is a puzzle game in which players need to write small, often recursive, programs with the help of
building blocks to steer a spaceship to its goal. The data set consisted (after cleaning, see SI) of 7,994 levels
and 376,341 votes. Players could rate the difficulty of each level between 1 and 5. For our analysis, we used the
average rating for each level, which was displayed on the website as a value between 1 (very easy) and 5 (very
hard) in steps of 0.01. Players could also up- and downvote levels, which we transformed into an enjoyment
measure by dividing the upvotes by the total number of votes to get a like-ratio. Analyzing votes, we found that
players seemed to prefer intermediate difficult levels over very easy or hard levels (see Fig. 2a). Additionally, we
ran a regression analysis and found a significant negative quadratic effect of difficulty, indicating an inverted
U-shape as predicted by the learning progress theory (linear: 5 = 0.09, z = 44.37, p < .001, quadratic:
B =—0.04, z = —22.98,p < .001). Due to the size of the data set, standard model comparison methods were
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Fig. 2. Rating behavior in game data sets. (a) People’s ratings of different levels of Robozzle. (b) People’s ratings
of different levels of Trackmania. (c) People’s ratings of different levels of Super Mario Maker. The orange part
indicates that players also liked simple levels, on top of levels with intermediate difficulty. (d) People’s ratings
of levels in relation to their expectations of difficulty and our difficulty calculation (success ratio). We plot

the difference between the difficulty calculation — based on attempts and clears of the levels — and expected
difficulty — given by categories assigned by the creators — in Super Mario Maker. Error bars indicate the
standard error of the mean.
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Fig. 3. Overview of guessing game experiment. (a) Game design. Participants interacted with machines
producing numbers from Gaussian distributions by adjusting a slider to guess the number the machine would
produce next. After each guess, they could decide whether to stay with the current machine or move on to

the next one. (b) Simulated learning progress with a Kalman filter. The trajectory of the update of the mean
depends on the true underlying variance of the Gaussian distribution. The smaller variances make large
updates only during the first step, while the high variances make only small updates directly from the first

step onwards. Only intermediate variances continue to make larger updates. (c) Simulated engagement. The
simulation samples from the current distribution until the update of the mean lies below a threshold — here
set to 0.5 (for other values, see SI). The peak of the inverted-U shapes — the true variance the simulation is
interacting with the longest — depends on the prior variance. (d) Behavioral results. Data from 98 participants
showed that they liked to interact most with machines with variance 1. (e) Mixed-effects regression analysis.
The significant negative squared effect of the variance accounts for the inverted U-shape seen in the human
engagement behavior. (f) Influence of the difficulty-expectation disparity on human behavior. The difference
between the estimated variance — calculated based on the samples participants have seen in the current
distribution — and the estimated expected variance — calculated based on the machines participants have seen
so far — shows an inverted-U relationship to the number of guesses with a peak close to 0. This indicates that
participants preferred to interact with variances that lie close to their expected variance. The inset plot displays
a zoomed-in version of the data. Error bars (in d and e) indicate the standard error of the mean.

not appropriate. Instead, we looked at the model fit of different polynomial regression models. We observed that
adding a quadratic term improved the model fit meaningfully, while adding a cubic term did not. For details on
model comparison, refer to the SI. However, it is important to note that a difficulty measure based on players’
ratings instead of their performance might lead to a tautological situation in which players rate the levels they
enjoyed the most as intermediate difficult?®. We avoid this confounding factor in the two upcoming datasets.

Trackmania — Results

Trackmania is a car racing game, in which players steer a racing car through different artificial-looking tracks.
The data set consisted of 138,662 levels and 614,770 votes (here called awards). The difficulty of each level was
given by the website as one of four categories: Beginner, Intermediate, Expert, and Lunatic. These difficulties
were assigned by the creators of the levels. We mapped these difficulty categories to the values 1 - 4. Players
could give awards to levels, of which we used the absolute number per level as an enjoyment approximation.
Again, players seemed to like intermediate difficult levels more than very easy or hard levels (see Fig. 2b). In
an additional regression analysis similar to the previous one, we again found a significant negative quadratic
effect of difficulty as expected (linear: 8 = 1.10, z = 16.62, p < .001, quadratic: 8 = —0.47, z = —10.63,
p < .001). We again observed that adding a quadratic term meaningfully improved the model fit, while adding
a cubic term did not (see SI).
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Fig. 4. Overview grid exploration game. (a) Game design: Participants explored tiles of a grid produced by
an underlying Gaussian Process. We manipulated the smoothness and the point values of the grids. After

each sample, participants could decide to open another tile or go on to the next grid. (b) Simulated error over
time with a Gaussian Process. The trajectory of the error — calculated as the mean squared error between

the true values and the predicted values of the grid — is dependent on the smoothness of the grid, defined

by the underlying lengthscale parameter (). Smaller values plateau quickly, while larger values quickly reach
an error of 0. Only intermediate values continue reducing their error over a longer time frame. (c) Simulated
engagement. The simulation samples new tiles until the error lies below a threshold — here set to 0.5 (for other
values, see SI). We see an inverted U-shape relationship between the smoothness — defined by the lengthscale
parameter (A\) — and the number of samples. (d) Behavioral results based on smoothness. We gathered data
from 44 participants. They interacted the most with grids with a A value of 8. (e) Behavioral results based

on the magnitude of point values. Values are summarized in bins of 5. Participants interacted the most with
grids that had high point values. (f) Mixed-effects regression analysis. The significant negative squared effect
of smoothness accounts for the inverted U-shape seen in the behavioral plot. The linear effect of magnitude
showed that participants engaged most in environments with higher point values. Error bars indicate the
standard error of the mean.

Super Mario Maker — Results

Super Mario is a platformer video game series, in which players have to move the main character to a goal by
mainly jumping, running, and avoiding enemies. In Super Mario Maker, players can create their own Super
Mario-style levels and then upload their levels for other players to play and rate them. We analyzed the data
of 115,032 player-designed levels and 795,313 votes, which were based on a total of 32,665,615 attempts. As
we had more detailed data per level, we did not have to rely on players’ or creator’s difficulty ratings. Instead,
we approximated the difficulty of each level as 1 minus the ratio of how many players who attempted a level
were able to finish it. Players could rate levels with stars. We defined our enjoyment measure as the proportion
of players attempting a level, who also gave a star to this particular level. As in our previous experiments,
we found an inverted U-shaped relation between our difficulty and our enjoyment measure (Fig. 2c). Again,
players seemed to like intermediate difficult levels the most. As in our previous regression analyses, we found a
significant negative quadratic effect of difficulty, as predicted (linear: 8 = 0.001, z = 3.62, p < .001, quadratic:
B = —0.002, z = —8.63, p < .001). However, a closer look at the data suggests that it does not follow a
quadratic function and is better described by a third-degree polynomial (see Fig. 2c). Indeed, we found that
adding a cubic term improved the model fit (see SI). Therefore, while we found an inverted-U shape relationship
in all three data sets, the Super Mario Maker data set appeared to involve more than just a preference for stimuli
with intermediate difficulty. When only looking at the lower difficulties, it looked like players preferred simpler
levels over more difficult ones. There are multiple possible explanations for this phenomenon:

First, players might have been influenced by their prior expectations about the difficulty of a level and how
well it matched the actual difficulty. In the Super Mario Maker data set, each level was placed into one of four
difficulty categories by the creator. These categories did not always match our difficulty calculations — defined
by the number of players managing to clear the level (see SI). We looked at the discrepancy between these two
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difficulty assessments, by relating the difference between the calculated difficulty and the expected difficulty —
defined by the difficulty category — to the average like rate (for more details, see SI). We observed an inverted-U
shape with the peak at around 0 (see Fig. 2d). Players preferred levels in which their expectations matched our
calculated difficulty measure. To assess this in more detail, we ran an additional regression analysis, including the
difference between the two difficulty measures, and found a significant negative quadratic effect of the difference
(linear: 8 = 0.00, z = —8.29, p < .001, quadratic: 8 = —0.06, z = —40.12, p < .001). As the linear effect
is close to 0, the regression analysis confirmed that the peak of the inverted U-shape lies at a difference of 0 —
where the expected difficulty matches the calculated difficulty measure.

A second possibility for the negative trend in the first half of the Super Mario Maker data set might be that
players simply enjoy the feeling of success (e.g. solving a level or receiving higher rewards) on top of making
progress in learning — thereby preferring the very easy over the slightly more difficult levels. The influence of
rewards in video games on motivation has been shown in previous work®®. However, with the data from the
game data sets, we are not able to tease difficulty and a preference for success apart.

All of the above-mentioned data originated from three large-scale data sets of popular existing games. While
this provided us with a large amount of data per level, we only had limited access to data per player. We were
therefore not able to further study the additional hypotheses — i.e. the influence of the difficulty-expectation
disparity or the influence of success. Instead, we decided to design two controlled and gamified experiments, in
which we can collect all the necessary data, run more detailed analyses and precisely simulate learning progress.
With the first experiment — a guessing game — we assessed the influence of difficulty on people’s engagement,
including the relation of prior expectations of difficulty to the true difficulty. With the second experiment — a
grid exploration game — we looked at the additional influence of success by letting players explore point values
in grids.

Experiment 1: A guessing game

To test the influence of learning progress on engagement in a simple setting, we developed a guessing game in
which players guessed numbers from Gaussian distributions with different variances. This simple task has two
main advantages over the above-analyzed game data sets: First, it allows us to implement a rational model and
thereby derive more concrete predictions. Second, it minimizes the effect of the prior skill level of players, as
the difficulty is defined by the randomness of the environment. While the task resembled classical psychological
paradigms, we maintained the idea of using games as a research platform by giving players only a base pay
and not compensating for performance. Additionally, we gave players the option to not engage with the task
while still receiving their base compensation. Thereby, we still assessed enjoyment, rather than instrumental
information gathering.

Paradigm

This experiment was inspired by the work of Geana et al.® In one of their experiments, participants guessed
numbers generated by a virtual machine in one of three conditions — “Certain’, “Gaussian” and “Random” —
while regularly reporting their boredom levels. Consistent with the learning progress theory, people’s boredom
levels were lowest in the Gaussian condition, in which learning was actually possible.

We adapted the experiment by introducing five Gaussian conditions with different underlying variances,
which manipulate the difficulty of correctly guessing a number. Participants interacted with the distributions
by guessing which number the machine would produce next (see Fig. 3a). After submitting the number, we
displayed the number the machine produced, as well as the difference between their guess and the machine’s
number. After each guess (after a minimum of three guesses), people could either continue guessing with the
current distribution or stop and go on to a new distribution (with a new mean and variance), until the experiment
automatically ended after a certain time (for more details, refer to the methods section). Importantly, players
knew that they would not receive any performance-dependent bonus and did not need to interact with the game,
so everything they engaged in during the time was purely for their entertainment. Thereby, we strongly focused
on the enjoyment aspect of the game. We measured how many guesses participants played with each machine as
an approximation of how much they enjoyed interacting with it.

We predicted that, in this controlled environment, participants would act according to the theory of learning
progress. Consistent with other inverted-U shaped theories, this would result in them spending most time
with machines with intermediate variances, as they offer the most potential for learning. Machines with small
variances would produce the same number repeatedly, while machines with big variances create numbers almost
randomly. In both cases, participants would not make learning progress over a longer time which should prevent
their enjoyment and consequently lead to participants changing to the next machine.

Simulation

To model this behavior, we used a Kalman filter, which is a Bayesian agent that integrates observations optimally
to generate an estimate of the current mean. Initially, we assumed a prior variance of 10 and a prior mean of 50.
With each sample, the Kalman filter updates the estimates of the mean and variance according to the Kalman
Gain, which depends on the relationship between the estimated variance and the true underlying variance (for
more details, see SI). We believe that participants try to track the mean of the distribution, as choosing the mean
would give them the best chance to be close to the next generated number. Here, we therefore define learning
progress as the update of the mean at each time step. As can be seen in Figure 3b, the trajectory of learning
progress differs based on the underlying variance. When simulating distributions with small variances (i.e. 0.1
or 1), the initial update at step 0 was large but is approaching 0 fast over the next few steps. When simulating
distributions with high variances (i.e. 1000), there was almost no learning progress from the beginning onwards.
When looking at intermediate variances (i.e. 10 or 100), the agent took an intermediate-sized step in the
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beginning but kept on making learning progress in the following steps. Which variances qualify as “small’, “big”
or “intermediate” is, of course, dependent on the assumed prior variance, which, in this case, was set to 10.

We assumed that people engage with a machine as long as their learning progress per step lies above a
certain threshold. To simulate the amount of engagement — the number of guesses until they turn to the next
machine — we stop the simulations when the update of the mean lies below this threshold, here set to 0.5 for
simplicity (for other threshold values, see SI). We force the simulation to guess at least three times, similar to the
experiment. We compared the different points of stopping based on the true and the prior variance. Each setup
displayed an inverted U-shape when plotting the true variance on the x-axis and the number of guesses on the
y-axis. Furthermore, the peak of the inverted U-shape was determined by the prior variance — the lower the
prior, the lower the peak of the curve (see Fig. 3c). This indicated that participants might like to interact with
distributions with variances that are close to what they expect as prior variances.

Results

We used the data of 98 participants collected via Amazon Mechanical Turk. Participants played on average with
14 machines (mean 13.68, SD 8.55), made on average 77 guesses in total (mean 77.35, SD 27.65) and 8 guesses
per machine (mean 8.42, SD 7.74).

First, we checked whether the manipulation of the variance indeed manipulated the difficulty of guessing
correctly. We found that, with increasing variance, the average difference between the guesses and the numbers
produced by the machine increased (8 = 5.79, ¢t = 33.03, p < .001), while the number of correct guesses
decreased (r = —0.94), as expected (for more details, see SI).

We examined whether participants’ guess updates diminished over time, signifying convergence in their
guesses. This would indicate progress in guessing the numbers generated by the machines. We performed a
regression analysis, using the scaled update — the absolute difference between the current and last guess — and
included a random intercept for each participant. We found that the number of the current trial had a significant
negative effect on the size of the current update (5 = —0.63, z = —5.80, p < .001): players’ updates got smaller
over time for each machine, indicating that they converged on a number to guess.

We assessed whether players acted as predicted by the learning progress hypothesis — and other inverted-U
shaped theories — in this controlled environment by investigating the relationship between variance and
engagement, measured by the number of guesses participants made with each machine. According to our
simulations and the original theory, players should engage most with environments with intermediate variance.
We first plotted the average number of interactions over variances and participants (see Fig. 3d). We saw that
people showed an inverted U-shape relationship and engaged most with machines of variance 1. To confirm
this result, we performed a negative binomial mixed-effects regression analysis including the variance and the
squared variance as components while adding a random intercept for each participant. We found that the linear
component had a significant positive effect (8 = 0.07, z = 2.99, p = .003), while the squared component had
a significant negative effect (8 = —0.03, z = —3.40, p < .001), which indicated an inverse U-shape (see Fig.
3e). Hence, participants engaged most with intermediate variances.

Additionally, we wanted to test whether participants’ difficulty-expectation disparity — the mismatch
between prior expectations of the current variance and the true variance — influenced their playing behavior,
similar to what we had observed in the Super Mario Maker data set. We approximated players’ prior difficulty
by considering the machines participants had encountered thus far in the experiment. To calculate the current
expectation, we took the average of the observed estimated variances up to this point, weighted by the number of
guesses for that round. Additionally, we calculated the estimated variance of the current machine based on all the
samples the machine produced before stopping. We then looked at whether the difference between the estimated
variance and the estimated expected variance influenced participants’ engagement (for details and different
versions, see SI). Again, we found an inverted U-shape relationship between the difference and the number of
guesses (see Fig. 3f). A negative binomial mixed-effects analysis supported this finding. While controlling for the
number of machines played so far and including a random intercept for each participant, we found a significant
negative effect of the scaled difference squared (8 = —0.06, z = —4.16, p < .001), but no significant effect of
the scaled linear component (8 = 0.02, z = 1.33, p = .185), indicating that the peak of the inverted U-shape
was not significantly different from 0. This indicates that participants engaged most with distributions with a
variance close to their prior expected variance.

Experiment 2: an exploration game

People seem to take learning progress and the difficulty-expectation disparity into account when deciding how
long to engage with each distribution in the guessing game. However, as we saw in the Super Mario Maker data
set, players might also be motivated by simply having a preference for success. We believe that players prefer
to interact with environments that offer higher reward values, even if these are not cumulative and players are
not instructed or compensated to do so. Ideally, we wanted to test the influence of this additional component
in a second experiment, in which we could discriminate between the influence of difficulty and the influence
of uncompensated rewards on players’ behavior. Moreover, we wanted to expand our initial observations on to
another setting in which learning progress could be directly manipulated. Thus, we decided to use an additional
paradigm for our second experiment — a grid exploration game. In this game — based on the grid search
paradigm developed by Wu et al.**2 — we could not only manipulate the difficulty of the environment but
also its point values, independent of each other. Additionally, this setting was somewhat richer than the original
guessing game, thereby further closing the gap between lab experiments and games.
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Paradigm

In this game, participants interacted with multiple grids by iteratively opening tiles and observing their point
values (see Fig. 4a). At each time step (after a minimum of five tiles), they could decide whether they wanted to
open another tile or if they wanted to go to a new grid until the experiment automatically ended. They were only
instructed to explore the grids, and no specific goal was given. As before, players knew that they would not get
any performance-dependent bonus, and did not need to interact with the task: they again were free to use the
time as they liked. We approximated engagement by measuring how many tiles participants opened in each grid.

We manipulated the structure of the grids across two dimensions. We manipulated the difficulty of predicting
the value of a tile by changing the smoothness (the spatial correlation) of the underlying landscape of values,
defined by a lengthscale parameter ). The smaller the lengthscale parameter, the rougher the landscape — the
value of a tile gives almost no information about the values of its neighbouring tiles. The bigger the lengthscale,
the smoother the landscape — the value of a tile gives a lot of information about the values of its neighbouring
tiles. The second dimension is the value of points — some grids constituted of higher point values, some of lower
point values.

We assumed that participants would prefer to interact with intermediate difficult environments, which
corresponded to intermediate lengthscales in this paradigm, as these lead to the biggest potential for learning
progress. We, therefore, expected to see an inverted U-shape relationship between the lengthscale parameter A
and the engagement of participants. Additionally, we predicted that participants would engage more with grids
that had a higher point value range. We assumed that participants enjoy the feeling of success, which we believe
occurs when sampling high-value tiles. Thus, we expected to see a linear relationship between the maximum
point values and participants’ engagement.

Simulation

We first tested the learning progress hypothesis by conducting several simulations with a Bayesian learning
model using Gaussian Processes. The learning curves of the Gaussian Process model can be calculated, providing
insight into the predictability of each function®’. Schulz et al. showed that these learning curves match human
behavior. Additionally, manipulating the smoothness (defined by the lengthscale parameter \) influences
people’s perceived predictability of the functions*. For this simulation, we generated 1000 grids per lengthscale
parameter. In each grid, we iteratively randomly sampled and opened tiles. After each tile, we let the model
update its predictions of the values of all other tiles in the grid, based on the samples so far. We then compared
this prediction to the ground truth of the grid to calculate the mean squared error. We took the mean over all
grids for each lengthscale parameter and plotted the development of the error over time (see Fig. 4b) to assess the
learning progress of the model for the different lengthscale values (). We found that for small A values (i.e. 0.25,
0.5, and 1), the model reduced the error very fast in the beginning, but then quickly plateaued. For large values
(i.e. 8 and 16), the model also reduced the error fast but approached 0 very quickly. In both cases, the model did
not show learning progress over a longer time. However, for intermediate values (2 and 4), the model learned
over a longer period, which supports our hypothesis.

We simulated how long the model would engage with each grid. We set a threshold to the learning progress —
the lower limit of what the model would consider as worth for continued engagement. In the current simulation,
we again set the threshold to 0.5 for simplicity. However, the qualitative results — an inverted U-shape
relationship between the lengthscale and number of samples — stay the same when changing the threshold
(for examples of different thresholds, see SI). We then measured how many tiles the model would open before
the absolute difference of the error between two steps trailed below the threshold while forcing the simulation
to also open at least five tiles of each grid. We saw that, indeed, there exists an inverted U-shape relationship as
expected (see Fig. 4c).

For the magnitude of uncompensated points, we did not run any simulations, as we expected a simple linear
relationship between engagement and the point values of a grid.

Results

To test whether people were influenced by the smoothness and the point values of the grids, we ran an
experiment on Amazon Mechanical Turk with 44 participants. Participants interacted on average with 40 grids
(mean 39.57, SD 37.16) and opened on average 36 tiles per grid (mean 36.09, SD 28.99). We assessed how much
they engaged with each grid as a function of the lengthscale () (see Fig. 4d) and magnitude of point values (see
Fig. 4e). Participants liked to interact most with a lengthscale value of 8 confirming our hypothesis about the
smoothness of the environment influencing engagement. While the downward trend of the second half of the
inverted U-shape is driven by only one data point (\ = 16), we believe that testing higher lengthscale values will
not lead to any further insights, as the grids will become increasingly non-differentiable*. Participants also liked
to interact most with the highest point values, confirming our hypothesis about the magnitude. We saw that
especially environments with high point values positively influenced the number of tiles participants opened,
similar to what we observed in the Super Mario Maker data set — players exhibited a linear relationship in the
easier environments.

Additionally, we ran a negative binomial mixed-effects regression analysis using the scaled value of the
lengthscale and the scaled value of the magnitude, including a random intercept for each participant, and found
that the lengthscale had a significant positive linear effect (8 = 0.12, z = 4.90, p < .001) and a significant
negative squared effect (8 = —0.06, z = —3.41, p < .001). Together, they accounted for the inverse U-shape.
The magnitude of point values had a significant positive effect on engagement (5 = 0.08, z = 6.05, p < .001),
as was predicted (see Fig. 4f).
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Discussion

We studied the influence of difficulty on intrinsic motivation — with a particular focus on the learning progress
theory — in inherently enjoyable environments, based on three large-scale game data sets and two controlled
experiments. Across three video games (a puzzle, a racing, and a platformer game, see Fig. 2), we found that
player’s ratings depended on the difficulty of the level, as predicted by a range of inverted-U shape theories.
From a normative perspective, intermediate difficulty led to the most learning progress, which in turn led to
higher ratings (indicating increased fun), which we were able to test in naturally enjoyable and engaging game
settings. In the Super Mario Maker data set, we observed two additional factors that also influenced ratings:
i) the difficulty-expectation disparity between prior expectations of difficulty and our difficulty calculations
based on the success ratio of the task and ii) the effect of success in easy levels. Through two precisely controlled
experiments — a guessing game (see Fig. 3) and a grid exploration game (see Fig. 4) — we confirmed that both
of these additional components influenced player’s engagement beyond the influence of learning progress.

As a first factor, we found an influence of a difficulty-expectations disparity: Players’ engagement was
maximized in environments with a difficulty that matched their prior expectations of difficulty — indicating
that they like to reduce their prediction error as fast as they predicted. This is in contrast to previous theories
of fun and enjoyment, which state that fun is maximal when players reduce their prediction error faster than
expected*®?” — indicating that players should most enjoy acting in environments that are less difficult than
expected.

As a second factor, we found an influence of success: Players’ engagement was maximized in environments
with higher underlying point values. This aligns with findings from earlier studies that showed that different
kinds of game rewards can influence enjoyment®. Previous work already suggested that players enjoy a feeling
of performing well, which we believe occurred by finding high point values*.

These results emphasize the benefits of combining naturalistic large-scale data sets with controlled
experiments. Through this usage of a diverse set of paradigms and measurements, we were not only able to
confirm the influence of difficulty on intrinsic motivation, but also discover additional factors relevant for
players” experience.

Limitations and future directions

We start this paper by arguing that we want to understand people’s experience of “fun” or “enjoyment”. However,
the exact nature of these concepts has been debated!*2. For example, Blythe and Hassenzahl*? define “fun” as
a subset of enjoyment and contrast it with “pleasure”. They argue that fun is more trivial and short-lived, while
pleasure is concerned with relevance and identity. Other work in psychology use the term pleasure more generally
for enjoyable experiences*’, while other work describe similar concepts as “momentary subjective well-being” or
“momentary happiness”. In their work on learning progress, Oudeyer et al. use the term “intrinsic reward”!¢
as the dependent variable in their theory. This is linked to the literature on intrinsic motivation, which suggests
that certain properties of environments, such as novelty or surprise, can be intrinsically rewarding for agents'®>!.
In our work, we aim to describe and understand the positive affect associated with intrinsically motivating
paradigms, such as games. To do so, we use the terms “enjoyment” or “intrinsic reward” as appropriate. Thus,
while Schmidhuber uses the expression “fun’, we do not claim this to be the only appropriate term to refer to the
researched concept.

In Experiment 2, we showed that participants were motivated by the magnitude of point values. Whether these
point values can be categorized as intrinsic rewards is debatable. On the one side, the concept of “more points
are better” is learned by the participants in many natural environments, which speaks for the categorization as
extrinsic reward. However, in many computer games the points do not have any direct consequences on the
gameplay. In our experiment, we even went a step further and did not accumulate the points and additionally
instructed players that they would not be compensated for them. This speaks in favor of a categorization as
intrinsic reward. Because of similar difficulties in other environments, it has been argued that rewards might lie
on a spectrum between extrinsic and intrinsic®>*?. In this framework, our instantiation of point values might
lie between the two extremes of purely intrinsic and extrinsic rewards. Other researchers even argue whether
categorizing rewards into the dimension of intrinsic-extrinsic is sensible at all and propose to instead look at the
specific properties of the different rewards®*.

While the influence of task difficulty on intrinsic motivation — as assessed in our game datasets — is
consistent with multiple theories predicting an inverted-U relationship?, our experiments specifically focus on
the theory of learning progress. As previously noted, many of these theories converge on similar predictions
regarding difficulty and can be integrated into a broader framework of knowledge maximization!. Among them,
the theory of learning progress offers a normative account of intrinsically motivated behavior. We believe that
— even in activities pursued purely for fun — people are motivated by the desire to make learning progress and
tend to seek out environments that maximize it.

In this current work, we were only able to examine learning progress through simulations since it could not
be directly assessed in our real-world games dataset, as we do not have access to the individual histories of each
player. It has been shown that people can monitor their learning progress accurately?, but it is still an open
question for which specific tasks this is possible. For instance, it might be the case that monitoring learning
progress in tasks characterized by slow scales of learning such as in motor-skill learning poses a challenge for
humans?, and different heuristics are available in different settings®.

However, we still believe that the higher ratings and increased engagement with intermediate difficult stimuli
in our data stems from learning progress, since the qualitative results of the learning progress simulations point
to similar preferences. In our guessing game, we simulated learning progress using a Kalman filter, which stopped
sampling when the estimated mean of the distribution converged and subsequent updates become negligible.
The results of the simulation revealed a similar pattern to participants’ preferences. Likewise, in our grid
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exploration task, simulating player behavior by iteratively updating a model of the grid’s underlying structure
produced qualitatively similar results to those observed in the human data. Furthermore, it has been shown that
a preference for intermediately difficult stimuli disappears if the sense of learning progress is suppressed?. Thus,
the preference for intermediately difficult environments might not stem from a conscious decision to maximize
learning progress, but rather an intrinsic feeling of enjoyment as we have investigated here.

And although the theory of learning progress offers a normative account of intrinsic motivation, the
underlying cognitive mechanisms still remain unclear?. Ten et al.* argue that learning progress is just one
of several theoretical perspectives, each highlighting different factors — such as progress'®, uncertainty?",
expectancy? or familiarity®” — that may drive intrinsically motivated behaviour. To disentangle these influences
and better understand the origins of people’s preferences, new experimental paradigms capable of distinguishing
between these factors are required.

While our results and previous theories suggest that people enjoy interacting with environments in which
they can maximize knowledge, people can find enjoyment in situations where this is not the case. On the one
hand, people sometimes enjoy tasks where no learning progress is possible, such as repeatedly solving a Rubik’s
Cube when already knowing how to do it, or interacting with nearly impossible tasks*®. On the other hand,
people might make progress in learning, but still not enjoy the activity, such as studying for a boring exam.
Instead of trying to accommodate every situation in which learning progress could matter, the goal of the current
work was to closely investigate the inverted U-shape theories like learning progress in realistic settings to capture
the main aspects of fun while identifying additional concepts influencing enjoyment.

Arguably, the main motivation for playing computer games is that they are fun and provide an enjoyable
experience. While different levels of a game can be considered more or less enjoyable, they all represent potentially
fun tasks. In our controlled experiments, we aimed to cover a broader range of experiences, including rather
boring conditions. However, we ensured that participants interacted with the task only if they were motivated, by
instructing them that compensation was entirely independent of their performance or level of engagement. We
therefore assume that, despite the simplicity of our paradigms, participants’ engagement is at least partly driven
by intrinsic motivation. In the future, we plan to develop more complex paradigms that are inherently more
enjoyable while still allowing for a high level of experimental control.

In our work, we approximated the positive affect of “enjoyment” using two measures: the amount of
engagement with the experiment and players’ ratings. We believe that using a diverse set of measurements is
beneficial for a comprehensive understanding of human experiences. However, these two measures capture
distinct theoretical constructs. While engagement reflects persistence and effort (“wanting”), level ratings
represent a retrospective evaluation of the experience (“liking”)*. These constructs can lead to different
predictions about human behavior. Though traditionally considered two sides of the same coin, the distinction
between “liking” and “wanting” is now well established in neuroscience, referring to distinct psychological and
neurological processes®. In our work, we adopt a multimodal approach to studying the higher-level concept
of enjoyment in paradigms aimed at intrinsic motivation. Both engagement and subjective ratings have been
widely used in intrinsic motivation research (e.g.>’) and, more specifically, in studies on learning progress?>°!.
By integrating these two sources of evidence — both encompassed by the broader concept of “enjoyment” —
we aim to deepen our understanding of this phenomenon. In the future, the influence of different intrinsically
motivating components on distinct psychological constructs, such as “liking” vs. “wanting” should be further
disentangled. This can be achieved by incorporating multiple measurements within the same paradigm?, and by
capturing enjoyment more explicitly — such as through direct self-reports or psychophysiological measures like
facial expressions and heart rate variability®>63.

We simulated players as passively confronted with tasks of unknown difficulty. However, in video games, as
well as in real life, people can often decide on the difficulty of the next task, or follow a predefined curriculum
with increasing difficulty. While previous studies have demonstrated that learning progress plays a role in
actively choosing difficulties®>*”1, there exist situations in both video gaming and real life where people may not
know how difficult a task is going to be or may only have vague prior intuitions. With many unexplored options
available, instead of actively choosing the next task based on an estimate of difficulty, people often encounter
new tasks about which they do not know anything: For example, when attempting to write a paper or trying out
a new sport, one might not necessarily know how difficult it will be, yet can still experience enjoyment. However,
people nonetheless need to assess whether and how long to engage in these tasks. Therefore, we think that our
experiments capture important aspects of everyday activities, as participants also do not know the difficulty of a
task beforehand, but still need to decide whether to continue engaging in it.

In addition to the difficulty level, players in the three game datasets have access to various pieces of information
about each level before deciding which one to engage with next. As a result, their choices may be influenced by a
range of other psychological factors — for example, individual differences in preferences and the extent to which
they are affected by social cues®, such as how much other players liked a particular level®>. While participants
could not choose the levels they were confronted with in our experiments, thereby remedying this potential
confound, future research should aim to disentangle the different factors that people consider when selecting
between multiple intrinsically motivated activities in richer settings.

While it is important to identify the set of possible strategies used by humans in non-instrumental settings,
future research should further explore when and where people rely on which factor influencing their enjoyment,
and how different factors might interact?%%¢”. For example, work by Dubey and Griffiths® reconciled novelty-
based and complexity-theories, by showing that their usefulness depends on the structure of the environment
and that people use them accordingly. Although the rich environments here allowed us to uncover two factors
influencing enjoyment beyond the inverted-U relationship, we can currently not examine the combined
influence of the difficulty-expectation disparity and the feeling of success (induced by point values), as well as
how much people might rely on one or the other. Thus, a more detailed analysis of how different factors interact
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will require the development of new games that provide access to individual skill levels and preferences, a
thorough manipulation of prior expectations of difficulty, and a careful control of point values. Further research
focusing on the interaction between these factors will be key to advancing our theory of human behavior in
non-instrumental settings.

Conclusion

We investigated the relationship between difficulty and intrinsic reward in three richly structured, large-scale
game data sets and two simple experiments, which focus on enjoyment, rather than learning. We found that — as
predicted by multiple inverted U-shape theories, such as learning progress — players preferred environments of
intermediate difficulty. On top of that, we found in one of the game data sets, as well as in two highly-controlled
experiments and detailed simulations, that a difficulty-expectation disparity, as well as a sense of success had
additionally influenced enjoyment. These results enrich our understanding of the dynamics of fun in realistic
environments and emphasize the importance of using both realistic, game-like environments and highly
controlled experiments together with detailed simulations to advance theories of human learning and decision-
making.

Materials and methods

The guessing game experiment was approved by the ethics committee of the medical faculty at the University
of Tiibingen (number 701/2020BO). The grid exploration game was approved by University College London
Ethics Board. Both experiments were carried out in accordance with the relevant guidelines and regulations
and informed consent was obtained from all subjects before participation. Both experiments were created with
standard JavaScript. The simulations and data analyses were conducted in R and Python.

Game data sets

The Robozzle data set was created from the information on the official website of the game (http://robozzle.co
m/js/index.aspx®®), which lists all generated levels. The data set includes all data from the “puzzle list” available
in October 2020.

The Trackmania data set was created from information available on the webpage “Trackmania Exchange”
(https://tmnf.exchange/®). We included all generated race tracks available in November 2020.

The Super Mario Maker data set was provided on kaggle (https://www.kaggle.com/datasets/leomauro/sm
mnet/data’®). Its data originates from SMM Bookmark, the official website of Super Mario Maker, which was
discontinued in March 2021. The data from all three data sets is publicly available and does not include any
identifiable information.

Guessing Game

Players of the guessing game were told that they were scientists on an intergalactic mission, who stopped on
an alien planet to get their spaceship fueled. They needed to pass ten minutes on an alien playground until
the spaceship would be ready. On this playground, they found machines that produced numbers according
to different Gaussian distributions. Each machine sampled from a Gaussian distribution with a fixed mean —
uniformly sampled between 20 and 80 — and a fixed variance — uniformly sampled out of the following five
values: 0.1, 1, 10, 100, 1000. Players always interacted with one machine at a time. They could guess the next
number (between 0 and 100), the current machine would produce — if the machine would generate a number
that lies below 1 or above 100 it would resample. After participants submitted their current guess through
interacting with a slider, the machine displayed the number it produced, as well as the difference between this
number and the participant’s guess. After each guess, players could decide whether they wanted to make another
guess or go on to the next machine, which would have a new fixed mean and variance (with the constraint
of having to guess at least three times per machine before going on). The order of the machines participants
encountered was randomized. Participants were not able to visit a machine again, once they advanced to the next
one. Players were instructed that the compensation consists of 3$, with no option for additional compensation.
The instructions also made clear that the study would end after 10 minutes independent of their engagement
— with how many machines they played or how many guesses they made — or of their performance. The
experiment automatically ended when the participant pressed a button once the time was up. Therefore, some
participants did not encounter all 5 different variances, as they only visited a few machines.

We recruited 103 participants on Amazon’s Mechanical Turk (30 females, mean age 33.26, SD 9.65). We
excluded 4 participants, as they needed at least 10 retries on our comprehension check, consisting of four
multiple-choice questions. Additionally, we removed the data on the last machine of every participant, as we
could not assess how long they would have liked to interact with that machine. Therefore, we removed one
additional participant, who played with only one machine. In the end, we used the data of 98 participants for our
analyses. Participants played on average with 14 machines (mean 13.68, SD 8.55), made on average 77 guesses in
total (mean 77.35, SD 27.65) and 8 guesses per machine (mean 8.42, SD 7.74).

Grid exploration game

Players of the grid exploration game were told that they would explore different grids with 30x30 tiles, with
values from 5 to 75. They encountered one grid at a time, iteratively opened its tiles and observed their point
values together with a corresponding color. At each time point, players could decide which new tile they want
to open or to go on to the next grid (with the constraint of having to open at least 5 tiles per grid). When
encountering a new grid, only one tile was revealed. They were not able to go to a previously encountered grid.
Participants did not receive any specific goal, instead they were told to explore the grids. They were instructed
that the experiment would automatically end after 10 minutes, no matter how many grids they interacted with or
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how many tiles they opened. Once participants left a grid after 10 minutes were over, the task ended. They also
were instructed that they are compensated with 3$ independent of their performance or engagement in the task.

The grids were generated using a Gaussian process with a radial basis function kernel. We manipulated the
smoothness of the grids, by uniformly sampling the length-scale parameter (\) of the kernel from the following
values: 0.25, 0.5, 1, 2, 4, 8, 16. The tile values of each grid spanned a range of 40 values. For each grid, we
uniformly sampled a value between 5 and 35, as the lowest value a tile would display, thereby setting the highest
value between 45 and 75. The value of each tile was visualized by a shade of red. Low values had a lighter shade,
while high values had a darker shade. Every time a participant clicked on the button “Next’, they encountered
a new grid with a new smoothness and new range of values. Each grid was randomly sampled at the time of
advancing, therefore the order of grids was different between subjects. Therefore, some participants did not
experience all length-scale values (dependent on the number of grids they visited).

We recruited 44 participants on Amazon Mechanical Turk (18 females, mean age 31.1, SD 6.84). In this
experiment, we did not exclude any participant from our analysis. Participants interacted on average with 40
grids (mean 39.57, SD 37.16) and opened on average 36 tiles per grid (mean 36.09, SD 28.99).

Data availability
Anonymized participant and player data, as well as the code used for the experiments, simulations, and analyses
are available at https://github.com/franziskabraendle/fun_learning progress..
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