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A B S T R A C T

Bayesian models of cognition assume that people compute probability distributions over hypotheses. However,
the required computations are frequently intractable or prohibitively expensive. Since people often encounter
many closely related distributions, selective reuse of computations (amortized inference) is a computationally
efficient use of the brain’s limited resources. We present three experiments that provide evidence for amorti-
zation in human probabilistic reasoning. When sequentially answering two related queries about natural scenes,
participants’ responses to the second query systematically depend on the structure of the first query. This in-
fluence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive
load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than
storing the entire distribution. These findings support the view that the brain trades off accuracy and compu-
tational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference.

“Cognition is recognition.”
Hofstadter (1995)

1. Introduction

Many theories of probabilistic reasoning assume that human brains
are equipped with a general-purpose inference engine that can be used
to answer arbitrary queries for a wide variety of probabilistic models
(Griffiths, Vul, & Sanborn, 2012; Oaksford & Chater, 2007). For ex-
ample, given a joint distribution over objects in a scene, the inference
engine can be queried with arbitrary conditional distributions, such as:

• What is the probability of a microwave given that I’ve observed a
sink?

• What is the probability of a toaster given that I’ve observed a sink
and a microwave?

• What is the probability of a toaster and a microwave given that I’ve
observed a sink?

The nature of the inference engine that answers such queries is still
an open research question, though many theories posit some form of

approximate inference using Monte Carlo sampling (e.g., Dasgupta,
Schulz, & Gershman, 2017; Denison, Bonawitz, Gopnik, & Griffiths,
2013; Gershman, Vul, & Tenenbaum, 2012; Sanborn & Chater, 2016;
Thaker, Tenenbaum, & Gershman, 2017; Vul, Goodman, Griffiths, &
Tenenbaum, 2014; Ullman, Goodman, & Tenenbaum, 2012). According
to these theories, probability distributions are mentally represented
with a set of samples, which are generated using a general-purpose
inference engine that can operate on arbitrary probability distributions.

The flexibility and power of such a general-purpose inference en-
gine trades off against its computational efficiency: by treating each
query distribution independently, an inference engine forgoes the op-
portunity to reuse computations across queries, thus reducing time
complexity (but possibly increasing space complexity). Every time a
distribution is queried, past computations are ignored and answers are
produced anew—the inference engine is memoryless, a property that
makes it statistically accurate but inefficient in environments with
overlapping queries.

Continuing the scene inference example, answering the third query
should be easily computable once the first two queries have been
computed. Mathematically, the answer can be expressed as:
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∧ =P P P(toaster microwave|sink) (toaster|sink,microwave) (microwave|sink).

(1)

Even though this is a trivial example, standard inference engines do not
exploit these kinds of regularities because they are memoryless—they
have no access to traces of past computations.

An inference engine may gain efficiency by incurring some amount
of bias due to reuse of past computations—a strategy we will refer to as
amortized inference (Gershman & Goodman, 2014; Stuhlmüller, Taylor,
& Goodman, 2013). For example, if the inference engine stores its an-
swers to the “toaster” and “microwave” queries, then it can efficiently
compute the answer to the “toaster or microwave” query without re-
running inference from scratch. More generally, the posterior can be
approximated as a parametrized function, or recognition model, that
maps data in a bottom-up fashion to a distribution over hypotheses,
with the parameters trained to minimize the divergence between the
approximate and true posterior.1 By sharing the same recognition
model across multiple queries, the recognition model can support rapid
inference, but is susceptible to “interference” across different queries, a
property that we explore below.

One way to construct a recognition model is using Monte Carlo
sampling: the recognition model can be viewed as a kind of data-driven
sampler whose parameters are optimized so that the samples resemble
the true posterior. In an amortized architecture, these parameters are
shared across different inputs (i.e., data) and hence the samples will be
correlated, introducing a systematic bias. If the sampling process cor-
responds to a Markov chain Monte Carlo algorithm (see below), this
bias will disappear with a sufficiently large number of samples, but
since humans appear to take a relatively small number of samples
(Dasgupta et al., 2017; Vul et al., 2014), we expect this bias to be
measurable.

Amortization has a long history in machine learning; the locus
classicus is the Helmholtz machine (Dayan, Hinton, Neal, & Zemel,
1995; Hinton, Dayan, Frey, & Neal, 1995), which uses samples from the
generative model to train a recognition model. More recent extensions
and applications of this approach (e.g., Kingma & Welling, 2013; Paige
& Wood, 2016; Rezende, Mohamed, & Wierstra, 2014; Ritchie, Thomas,
Hanrahan, & Goodman, 2016) have ushered in a new era of scalable
Bayesian computation in machine learning. We propose that amorti-
zation is also employed by the brain (see Yildirim, Kulkarni, Freiwald, &
Tenenbaum, 2015, for a related proposal), flexibly reusing past in-
ferences in order to efficiently answer new but related queries. The key
behavioral prediction of amortized inference is that people will show
correlations in their judgments across related queries.

We report 3 experiments that test this prediction using a variant of
the probabilistic reasoning task previously studied by Dasgupta et al.
(2017). In this task, participants answer queries about objects in scenes,
much like in the examples given above. Crucially, the hypothesis space
is combinatorial because participants have to answer questions about
sets of objects (e.g., “All objects starting with the letter S”). This renders
exact inference intractable: the hypothesis space cannot be efficiently
enumerated. In our previous work (Dasgupta et al., 2017), we argued
that people approximate inference in this domain using a form of Monte
Carlo sampling. Although this algorithm is asymptotically exact, only a
small number of samples can be generated due to cognitive limitations,
thereby revealing systematic cognitive biases such as anchoring and
adjustment, subadditivity, and superadditivity (see also Lieder,
Griffiths, Huys, & Goodman, 2017b, 2017a; Vul et al., 2014).

We show that the same algorithm can be generalized to reuse in-
ferential computations in a manner consistent with human behavior.

First we describe how amortization might be used by the mind. We
consider two crucial questions about how this might be implemented:
what parts of previous calculations do people reuse—all previous
memories or summaries of the calculations— and when do they choose
to reuse their amortized calculations. Next we test these questions
empirically. In Experiment 1, we demonstrate that people do use
amortization by showing that there is a lingering influence of one query
on participants’ answers to a second, related query. In Experiment 2, we
explore what is reused, and find that people use summary statistics of
their previously generated hypotheses, rather than the hypotheses
themselves. Finally, in Experiment 3, we show that people are more
likely to reuse previous computations when those computations are
most likely to be relevant: when a second cue is similar to a previously
evaluated one.

2. Hypothesis generation and amortization

Before describing the experiments, we provide an overview of our
theoretical framework. First, we describe how Monte Carlo sampling
can be used to approximate Bayesian inference, and summarize the
psychological evidence for such an approximation. We then introduce
amortized inference as a generalization of this framework.

2.1. Monte Carlo sampling

Bayes’ rule stipulates that the posterior distribution is obtained as a
normalized product of the likelihood P d h( | ) and the prior P h( ):

H

=
∑ ′ ′′∈

P h d P d h P h
P d h P h

( | ) ( | ) ( )
( | ) ( )

,
h (2)

where H is the hypothesis space. Unfortunately, Bayes’ rule is com-
putationally intractable for all but the smallest hypothesis spaces, be-
cause the denominator requires summing over all possible hypotheses.
This intractability is especially prevalent in combinatorial space, where
hypothesis spaces are exponentially large. In the scene inference ex-
ample,H H H H= × × ⋯ K1 2 is the product space of latent objects, so
if there are K latent objects and M possible objects, H = M| | K . If we
imagine there are =M 1000 kinds of objects, then it only takes =K 26
latent objects for the number of hypotheses to exceed the number of
atoms in the universe.

Monte Carlo methods approximate probability distributions with
samples = …θ h h{ , , }N1 from the posterior distribution over the hypoth-
esis space. We can understand Monte Carlo methods as producing a
recognition model Q h d( | )θ parametrized by θ (see Saeedi, Kulkarni,
Mansinghka, & Gershman, 2017, for a systematic treatment). In the
idealized case, each hypothesis is sampled from P h d( | ). The approx-
imation is then given by:

�∑≈ = =
=

P h d Q h d
N

h h( | ) ( | ) 1 [ ],θ
n

N

n
1 (3)

where � =[·] 1 if its argument is true (and 0 otherwise). The accuracy of
this approximation improves with N, but from a decision-theoretic
perspective even small N may be serviceable (Vul et al., 2014; Lieder,
Griffiths, Huys, & Goodman, 2017a; Gershman, Horvitz, & Tenenbaum,
2015).

The key challenge in applying Monte Carlo methods is that gen-
erally we do not have access to samples from the posterior. Most
practical methods are based on sampling from a more convenient dis-
tribution, weighting or selecting the samples in a way that preserves the
asymptotic correctness of the approximation (MacKay, 2003). We focus
on Markov chain Monte Carlo (MCMC) methods, the most widely used
class of approximations, which are based on simulating a Markov chain
whose stationary distribution is the posterior. In other words, if one
samples from the Markov chain for long enough, eventually h will be
sampled with frequency proportional to its posterior probability.

1 Formally, this is known as variational inference (Jordan, Ghahramani, Jaakkola, &
Saul, 1999), where the divergence is typically the Kullback-Leibler divergence between
the approximate and true posterior. Although this divergence cannot be minimized di-
rectly (since it requires knowledge of the true posterior), a bound (variational free en-
ergy) can be tractably optimized for some classes of approximations.
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A number of findings suggest that MCMC is a psychologically
plausible inference algorithm. First, MCMC does not require knowledge
of normalized probabilities at any stage and relies solely on an ability to
compare the relative probabilities of two hypotheses. This is consistent
with evidence that humans represent probabilities on a relative scale
(Stewart, Chater, & Brown, 2006). Second, MCMC allows for feedback
between the generation and evaluation processes. The evaluated
probability of already-generated hypotheses influences if and how
many new hypotheses will be generated, consistent with experimental
observations (Hamrick, Smith, Griffiths, & Vul, 2015). Finally, Markov
chains also generate autocorrelated samples. This is consistent with
autocorrelation in hypothesis generation (Bonawitz, Denison, Gopnik,
& Griffiths, 2014; Gershman et al., 2012; Lieder et al., 2017a; Vul &
Pashler, 2008).

Many implementations use a form of local stochastic search, pro-
posing and then accepting or rejecting hypotheses. For example, the
classic Metropolis-Hastings algorithm first samples a new hypothesis ′h
from a proposal distribution ′ϕ h h( | )n and then accepts this proposal
with probability

= ′ = ⎡
⎣⎢

′ ′ ′
′

⎤
⎦⎥

+P h h h
P d h P h ϕ h h
P d h P h ϕ h h

( | ) min 1,
( | ) ( ) ( | )
( | ) ( ) ( | )

.n n
n

n n n
1

(4)

Intuitively, this Markov chain will tend to move from lower to higher
probability hypotheses, but will also sometimes “explore” low prob-
ability hypotheses. In order to ensure that a relatively high proportion
of proposals are accepted, ′ϕ h h( | )n is usually constructed to sample
proposals from a local region around hn. This combination of locality
and stochasticity leads to a characteristic pattern of small inferential
steps punctuated by occasional leaps, much like the processes of con-
ceptual discovery in childhood (Ullman et al., 2012) and creative in-
sight in adulthood (Suchow, Bourgin, & Griffiths, 2017). Even low-level
visual phenomena like perceptual multistability can be described in
these terms (Gershman et al., 2012; Moreno-Bote, Knill, & Pouget,
2011).

Another implication of MCMC, under the assumption that a small
number of hypotheses are sampled, is that inferences will tend to show
anchoring effects (i.e., a systematic bias towards the initial hypotheses
in the Markov chain). Lieder and colleagues have shown how this idea
can account for a wide variety of anchoring effects observed in human
cognition (Lieder, Griffiths, & Goodman, 2012; Lieder et al., 2017b).
For example, priming someone with an arbitrary number (e.g., the last
4 digits of their social security number) will bias a subsequent judgment
(e.g., about the birth date of Gandhi), because the arbitrary number
influences the initialization of the Markov chain.

In previous research (Dasgupta et al., 2017), we have shown that
MCMC can account for many other probabilistic reasoning “fallacies,”
suggesting that they arise not from a fundamental misunderstanding of
probability, but rather from the inevitable need to approximate in-
ference with limited cognitive resources. We explored this idea using
the scene inference task introduced in the previous section. The task
facing subjects in our experiments was to judge the probability of a
particular set of latent objects (the hypothesis, h) in a scene conditional
on observing one object (the cue, d). By manipulating the framing of the
query, we showed that subjects gave different answers to formally

equivalent queries (see Table 1). In particular, by partially unpacking
the queried object set (where fully unpacking an object set means to
present it explicitly as a union of each of its member objects) into a
small set of exemplars and a “catch-all” hypothesis (e.g., “what is the
probability that there is a chair, a computer, or any other object be-
ginning with C?”), we found that subjects judged the probability to be
higher when the unpacked exemplars were typical (a “subadditivity”
effect; cf. Tversky & Koehler, 1994) and lower when the unpacked
exemplars were atypical (a “superadditivity” effect; cf. Sloman,
Rottenstreich, Wisniewski, Hadjichristidis, & Fox, 2004) compared to
when the query was presented without any unpacking (see Fig. 1).

To provide a concrete example, in the presence of the cue “table,”
the typically unpacked query “what is the probability that there is also a
chair, a computer, or any other object beginning with C?” generates
higher probability estimates relative to the packed query “what is the
probability that there is another object beginning with C?”, whereas the
atypically unpacked query “what is the probability that there is also a
cow, a canoe, or any other object beginning with C?” generates lower
probability estimates compared to the packed query.

The generative model for this scene inference task is approximated
by fitting the database of natural scenes with hand-labeled objects,
provided in Greene (2013), to a latent Dirichlet allocation (LDA) model
(Blei, Ng, & Jordan, 2003). Specifically, the database consists of object
co-occurrence statistics in natural scenes, which we model with a set of
underlying “topics” (probability distributions over objects). This model
allows us to analytically compute the joint probability of any combi-
nation of different objects. Finding the exact normalized conditional
probabilities is still intractable due to the combinatorially large number
of possible hypotheses to normalize over, but Monte Carlo sampling
methods like MCMC can approximate these probabilities.

We were also able to account for the sub- and super-additivity ef-
fects using MCMC under the assumption that the unpacked exemplars
initialize the Markov chain that generates the sample set of query ob-
jects conditioned on the given cue object (Dasgupta et al., 2017). Be-
cause the initialization of the Markov chain transiently determines its
future trajectory, initializing with typical examples causes the chain to
tarry in the high probability region of the queried object set, thereby
increasing its judged probability (subadditivity). In contrast, initializing
with atypical examples causes the chain to get more easily derailed into
regions outside the queried object set. This decreases the judged
probability of the queried object set (superadditivity). The strength of
these effects theoretically diminishes with the number of samples, as
the chain approaches its stationary distribution. Accordingly, experi-
mental manipulations that putatively reduce the number of samples,
such as response deadlines and cognitive load, moderate this effect
(Dasgupta et al., 2017). The experiments reported in this paper build on
these findings, using subadditivity and superadditivity in the scene
inference paradigm to detect behavioral signatures of amortized in-
ference.

2.2. Amortized inference

As defined in the previous section, Monte Carlo sampling is mem-
oryless, approximating P h d( | ) without reference to other conditional

Table 1
Unpacking induced biases in human hypothesis generation and evaluation.

Name Description References

Subadditivity Perceived probability of a hypothesis is higher when the hypothesis is described as a disjunction of typical component
hypotheses (unpacked to typical examples).

∪ < +P P P(A B) (A ) (B)typical typical Fox and Tversky (1998), Tversky and Koehler (1994)

Superadditivity Perceived probability of a hypothesis is lower when the hypothesis is described as a disjunction of atypical component
hypotheses (unpacked to atypical examples).

∪ > +P P P(A B) (A ) (B)atypical atypical Sloman et al. (2004), Hadjichristidis et al. (1999)
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distributions that have been computed in the past; all the hypothesis
samples are specific to a particular query, and thus there can be no
cumulative improvement in approximation accuracy across multiple
queries. However, a moment’s reflection suggests that people are cap-
able of such improvement. Every time you look out your window, you
see a slightly different scene, but it would be wasteful to recompute a
posterior over objects from scratch each time; if you did, you would be
no faster at recognizing and locating objects the millionth time com-
pared to the first time. Indeed, experimental research has found con-
siderable speed-ups in object recognition and visual search when sta-
tistical regularities can be exploited (Oliva & Torralba, 2007).

Amortized inference is a generalization of the standard memoryless
framework. We will formulate it in the most general possible terms, and
later explore more specific variants. Fig. 2 illustrates the basic idea. In the

standard, memoryless framework, an inference engine inverts a generative
model P d h( , ) over hypothesis h and data d to compute a recognition model
Q h d( | )θ parametrized by θ. For example, Monte Carlo methods use a set of
samples to parameterize the recognition model. Importantly, the answer to
each query is approximated using a different set of parameters (e.g., in-
dependent samples)—Q h d Q h d( | ), ( | )θ θ1 21 2 , etc. In the amortized framework,
parameters are shared across queries. The parameters are selected to ac-
curately approximate not just a single query, but a distribution of queries. If
cognitive resources are unbounded, then the optimal solution is to para-
meterize each query separately, thereby recovering the memoryless fra-
mework. Under bounded resources, a finite number of parameters must be
shared between multiple queries, leading to memory effects: the answer to
one query affects the answer to other, similar queries.

While reuse increases computational efficiency, it can cause errors

Fig. 1. Demonstration of how MCMC sampling can give rise to sub- and super-additivity for different unpacked versions of the question: “In the presence of a table,
what is the probability that there is also another object starting with C?”. The color gradient indicates probability density. (a) The chain initialized with a typical
unpacking starts at ‘chair’, a high probability hypothesis, denoted by a darker shading, while the chain initialized with an atypical unpacking starts at ‘canoe’, a low
probability hypothesis, denoted by a lighter shading. (b) For the purposes of illustration we show the same new intermediate probability proposal of ‘toothbrush’
being made to both chains. In the model, this proposal is randomly generated for each chain. (c) Since the probability of ‘toothbrush’ is significantly higher than
‘canoe’ the proposal is accepted by the atypically unpacked chain. But conversely since it is significantly less probable than ‘chair’, is likely rejected by the typically
unpacked chain. (d) The tendency for the typically unpacked chain to tarry in the high probability region of the queried object set, gives rise to sub-additivity,
whereas the tendency for the atypically unpacked to get easily derailed into regions outside the queried object set gives rise to super-additivity.

Fig. 2. Theory schematic. (Left) Standard, memoryless framework in which a recognition model Q h d( | )θ approximates the posterior over hypothesis h given data d.
The recognition model is parametrized by θ (e.g., a set of samples in the case of Monte Carlo methods). Memoryless inference builds a separate recognition model for
each query. (Right) Amortized framework, in which the recognition model shares parameters across queries. After each new query, the recognition model updates the
shared parameters. In this way, the model “learns to infer.”
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in two ways. First, if amortization is deployed not only when two
queries are identical but also when they are similar, then answers will
be biased due to blurring together of the distributions. This is analogous
to interference effects in memory. Second, the answer to the first query
might itself have been inaccurate or biased, so its reuse will propagate
that inaccuracy to the second query’s answer. Our experiments focus on
the second type of error. Specifically, we will investigate how the over-
or underestimation of unpacked probabilities resulting from approx-
imate inference for one query will continue to influence responses to a
second query.

2.3. Two amortization strategies

In our experiments, we ask participants to sequentially answer pairs
of queries (denoted Q1 and Q2). In Experiment 2, both queries are
conditioned on the same cue object (d), but with varying query object
sets (h). That is, both questions are querying the same probability dis-
tribution over objects, but eliciting the probabilities of different objects
in each case. So in theory, all samples taken to answer query 1, can be
reused to answer query 2 (they are both samples from the same dis-
tribution). This sample reuse strategy allows all computations carried
out for query 1 to be reused to answer query 2.2 However, it is ex-
pensive, because each sample must be stored in memory. A less
memory-intensive solution is to store and reuse summary statistics of
the generated samples, rather than the samples themselves. This sum-
mary reuse strategy offers greater efficiency but less flexibility. Several
more sophisticated amortization schemes have been developed in the
machine learning literature (e.g., Paige & Wood, 2016; Rezende et al.,
2014; Stuhlmüller et al., 2013), but we focus on sample and summary
reuse because they make clear experimental predictions, which we
elaborate below.

In the context of our experiments, summary reuse is only applicable
to problems where the answer to Q2 can be expressed as the compo-
sition of the answer to Q1 and another (putatively simpler) computa-
tion. In Experiment 2, Q2 queries a hypothesis space that is the union of
the hypothesis space queried in Q1 and a disjoint hypothesis space. For
example if Q1 is “What is the probability that there is an object starting
with a C in the scene?”, Q2 could be “What is the probability that there
is an object starting with a C or an R in the scene?”. In this case, samples
generated in response to Q1 are summarized by a single number (“the
probability of an object starting with C”), new samples are generated in
response to a simpler query (“the probability of an object starting with
R”), and these two numbers are then composed (in this case added) to
give the final estimate forQ2 (“the probability of an object starting with
C or R”). This is possible because both queries are functions of the same
probability distribution over latent objects.

These strategies are simplifications of what the brain is likely doing.
Reusing all the samples exactly would involve their storage and is very
intensive in its use of memory – in this aspect they are similar to ex-
emplar models of categorization (Medin & Schaffer, 1978; Nosofsky,
1986). While reusing only the summary statistic is much less memory
intensive, it is unreasonably inflexible to restrict reuse of only the exact
statistic in the few places that the second query can be expressed as a
composition of the first query and a simpler computation. We do not
claim that either extreme is plausible, but—to a first approx-
imation—they capture the key ideas motivating our theoretical fra-
mework, and more importantly, they make testable predictions which
can be used to assess which extreme pulls more weight in controlled
experiments.

In particular, sample-based and summary-based amortization stra-
tegies make different predictions about how subadditivity and super-
additivity change as a function of the sample size (Fig. 3, details of
these implementations can be found in the Appendix). For sample-
based amortization, as the sample size for Q1 grows, the effect for Q2
asymptotically diminishes and eventually vanishes as the effect of biased
initialization in Q1 washes out. However, initially increasing the sample
size for Q1 also amplifies the effects for Q2 under a sample-based
scheme, because this leads to more biased Q1 samples being available
for reuse. The amplification effect dominates up to a sample size of
around 230 (estimate for the number of samples taken for inference in
this domain, reported in Dasgupta et al., 2017). This effect can be
counteracted by increasing the sample size for Q2. These are unbiased
samples, since Q2 is always presented as a packed query. More such
samples will push the effect down by drowning out the bias with ad-
ditional unbiased samples.

Under a summary-based strategy, increasing the sample size for Q1
will only diminish the effects for Q2, because the bias from Q1 is
strongest when the chain is close to its starting point. The effect of
early, biased samples on the summary statistic disappears with more
samples. We see also that changing the number of samples for Q2 does
not influence the effect size because the initialization of the chain for
Q2 is not influenced by the samples or summary statistic from the an-
swer to Q1. Under the summary-based strategy, the subadditivity and
superadditivity effects for Q2 derive entirely from the same effects for
Q1, which themselves are driven by the initialization (see Dasgupta
et al., 2017).

We test the different predictions of these strategies by placing
people under cognitive load during either Q1 or Q2 in Experiment 2, a
manipulation that is expected to reduce the number of produced sam-
ples (Dasgupta et al., 2017; Thaker et al., 2017). In this way, we can
sample different parts of the curves shown in Fig. 3.

2.4. Adaptive amortization

Amortization is not always useful. As we have already mentioned, it
can introduce systematic bias into probabilistic judgments. This is
especially true if samples or summary statistics are transferred between
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Fig. 3. Simulation of subadditivity and superadditivity effects under sample-
based (top) and summary-based (bottom) amortization strategies. In all panels,
the y-axis represents the unstandardized effect size for Q2. Left panels show the
effects of changing the sample size for Q1; right panels show the effects of
changing the sample size for Q2. When sample size for one query is changed,
sample size for the other query is held fixed at 230 (the sample size estimated
by Dasgupta et al., 2017).

2 We focus on sampling-based amortization strategies because our earlier experiments
support the idea that human probability judgment is sample-based (Dasgupta et al.,
2017). However, amortization strategies can be realized without any form of sampling.
These typically reduce time complexity by re-using a feedforward mapping from inputs to
probabilities that replaces a more expensive form of iterative computation (e.g., message
passing).
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two dissimilar distributions. This raises the question: are human
amortization algorithms adaptive? This question is taken up empirically
in Experiment 3. Here we discuss some of the theoretical issues.

Truly adaptive amortization requires a method to assess similarities
between queries. Imagine as an example the situation in which there is
a “chair” in the scene and you have to evaluate the probability of any
object starting with a “P”. If afterwards you are told that there is a
“book” in another scene, and the task is again to evaluate the prob-
ability of any object starting with a “P”, it could be a viable strategy to
reuse at least some of the previous computations. However, in order to
do so efficiently, you would have to know how similar a chair is to a
book, i.e. if they occur with a similar set of other objects on average.
One way to quantify this similarity is by assessing the induced posterior
over all objects conditioned on either “book” or “chair”, and then
comparing the two resulting distributions directly. Cues that are more
similar should co-occur with other objects in similar proportions.

To assess the similarity of two distributions over objects induced by
two different cues, we will need a formal similarity measure. One fre-
quently used measure of similarity between two probability distribution
is the Kullback-Leibler (KL) divergence. For two discrete probability
distributions Q and P, the KL divergence between P and Q is defined as

∑=D P Q P h P h
Q h

( || ) ( )log ( )
( )

.
h

KL
(5)

The KL divergence is minimized to 0 when Q and P are identical. We
will use this measure in Experiment 3 to select queries that are either
similar or dissimilar, in order to examine whether our participants only
exhibit signatures of amortization when the queries are similar.3 Note,
however, that the exact calculation of these divergences cannot be part
of the algorithmic machinery used by humans to assess similarity, since
it presupposes access to the posterior being approximated. Our ex-
periments do not yet provide insight into how humans might algor-
ithmically achieve tractable adaptive amortization, a problem we leave
to future research.

3. Experiment 1

In Experiment 1, we sought initial confirmation of our central hy-
pothesis: human inference is not memoryless. To detect these “re-
membrances of inferences past”, we asked participants to answer pairs
of queries sequentially. The first query was manipulated (by packing or
unpacking the queried hypothesis) in such a way that subadditive or
superadditive probability judgments could be elicited (Dasgupta et al.,
2017). Crucially, the second query is always presented in packed form,
so any differences across the experimental conditions in answers to the
second query can only be attributed to the lingering effects of the first
query.

3.1. Participants

84 participants (53 males, mean age= 32.61, SD=8.79) were re-
cruited via Amazon’s Mechanical Turk and received $0.50 for their
participation plus an additional bonus of $0.10 for every on-time re-
sponse. The sample size for this and all of the following experiments
was determined before data collection commenced. We decided to
collect more participants than in our earlier work (Dasgupta et al.,
2017) as the sub- and superadditivity effects might be weaker for the
amortized answers to the second query.

3.2. Procedure

Participants were asked to imagine playing a game in which their
friend sees a photo and then mentions one particular object present in
the photo (the cued object). The participant is then queried about the
probability that another class of objects (e.g., “objects beginning with
the letter B”) is also present in the photo.

Each participant completed 6 trials,4 where the stimuli on every
trial corresponded to the rows in Table 2. On each trial, participants
first answered Q1 given the cued object (for example, “I see a lamp in
this photo. What is the probability that I also see a window, a wardrobe,
a wine rack, or any other object starting with a W?”), using a slider bar
to report the conditional probability using values between 0 (not at all
likely) to 100 (very likely, see also Fig. 4).

The Q1 framing (typical-unpacked, atypical-unpacked or packed)
was chosen randomly. Participants then completed the same procedure
for Q2 (immediately after Q1), conditional on the same cued object. The
framing for Q2 was always packed and Q2 was always presented as a
conjunction (for example, “What is the probability I see an object
starting with a W or F?”), where the order of the letters was determined
at random.

Data for this experiment and all subsequent experiments reported in
this article were submitted along with the final manuscript.

3.3. Results

Six participants were excluded from the following analysis, four of
whom failed to respond on time in more than half of the questions, and
two of whom entered the same response throughout.

We applied one-sided hypothesis testing for all hypothesis involving
sub- and superadditivity effects as these effects only make sense when
assessed directionally.

Consistent with our previous studies (Dasgupta et al., 2017), we
found both subadditivity and superadditivity effects for Q1, depending
on the unpacking: probability judgments were higher for unpacked-
typical queries than for packed queries (a subadditivity effect; 59.35 vs.

= <t p49.67; (77) 4.03, 0.001) and lower for unpacked-atypical than for
packed queries (a superadditivity effect; 31.42 vs.

= − <t p49.67; (77) 6.44, 0.001).
Next we calculated the difference between each participant’s re-

sponse to every query and the mean packed response to the same
queried object. This difference was then entered as a dependent vari-
able into a linear mixed effects regression with random effects for both
participants and queried objects as well as a fixed effect for the con-
dition. The resulting estimates revealed both a significant subadditivity
effect ( = ± = <t pdifference 12.60 1.25, (610.49) 10.083, 0.0001) and
superadditivity effect ( = − ± = −tdifference 15.69 1.32, (615.46) 11.89,

<p 0.0001).
Additionally, we found evidence that participants reused calcula-

tions from Q1 for Q2: even though all Q2 queries were presented in the

Table 2
Experimental stimuli and queries for Experiment 1.

Cue Q1 Q1-Typical Q1-Atypical Q2

Table C chair, computer,
curtain

cannon, cow, canoe C or R

Telephone D display case, dresser,
desk

drinking fountain, dryer,
dome

D or L

Rug B book, bouquet, bed bird, buffalo, bicycle B or S
Chair P painting, plant,

printer
porch, pie, platform P or A

Sink T table, towel, toilet trumpet, toll gate, trunk T or E
Lamp W window, wardrobe,

wine rack
wheelbarrow, water fountain,
windmill

W or F

3 Our findings do not strongly depend on the use of the KL divergence measure and all
of our qualitative effects remained unchanged when we applied a symmetric distance
measure such as the Jensen-Shannon divergence.

4 Note that participants were not directly informed that two consecutive trials are re-
lated and were therefore instructed that there would be 12 trials in total as there are two
queries per query pair.
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same format (as packed), the estimates for that query differed de-
pending on how Q1 was presented. In particular, estimates for Q2 were
lower when Q1 was unpacked to atypical exemplars (46.38 vs

= <t p56.83; (77) 5.08, 0.001), demonstrating a superadditivity effect
that carried over from one query to the next. We did not find an ana-
logous carry-over effect for subadditivity (58.47 vs.

= =t p56.83; (77) 0.72, 0.4). This is possibly due to the subadditivity
effect “washing out” more quickly (i.e. with fewer samples) than su-
peradditivity, as has been observed in this domain before (see Dasgupta
et al., 2017).5

We calculated the difference between each participant’s response
for every Q2 and the mean response for the same object averaged over
all responses to Q2 conditional on Q1 being packed. The resulting
difference was again entered as the dependent variable into a linear
mixed effects regression with both participants and cued object as
random effects as well as condition as a fixed effect. The resulting
estimates showed both a significant subadditivity effect
( = ± = <t pdifference 4.39 1.14, (606.40) 3.83, 0.001) and super-
additivity effect ( = − ± = −tdifference 7.86 1.21, (610.41) 6.50,

<p 0.0001).
We calculated each participant’s mean response to all packed hy-

potheses for Q2 over all trials as a baseline measure and then assessed
the difference between each condition’s mean response and this mean
packed response. This resulted in a measure of an average effect size for
the Q2 responses (how much each participant under- or overestimates
different hypotheses as compared to an average packed hypothesis).
Results of this calculation are shown in Fig. 5.

The superadditivity effect was significantly greater than 0
( = <t p(77) 5.07, 0.001). However, the subadditivity effect did not
differ significantly from 0 ( = − >t p(77) 0.42, 0.6; see also Dasgupta
et al., 2017).

Next, we explored whether responses to Q1 predicted trial-by-trial
variation in responses to Q2. Fig. 6 shows the difference between par-
ticipants’ estimates for Q1 and the true underlying probability of the
query (as derived by letting our MCMC model run until convergence)
plotted against the same difference for Q2. 6 If participants do indeed

reuse computations, then how much their estimates deviate from the
underlying truth for Q1 should be predictive of the deviance of their
estimates for Q2.

We found significant positive correlations between the two queries
in all conditions when aggregating across participants (average corre-
lation: = <r p0.67, 0.01). The same conclusion can be drawn from
analyzing correlations within participants and then testing the average
correlation against 0 ( = <r p0.55, 0.01). Moreover, the within-parti-
cipant effect size (the response difference between the unpacked con-
ditions and the packed condition) for Q1 was correlated with responses
to Q2 for both atypical ( = <r p0.35, 0.01) and typical
( = <r p0.21, 0.05) unpacking conditions. This means that participants
who showed greater subadditivity or superadditivity forQ1 also showed
correspondingly greater effects for Q2.

3.4. Discussion

Experiment 1 established a memory effect in probabilistic inference:
answers to a query are influenced by answers to a previous query,
thereby providing evidence for amortization. In particular, both a sub-
and a superadditivity effect induced at Q1 carried over to Q2, and
participants showing stronger effect sizes for both sub- and super-
additivity for Q1 also showed greater effects for Q2.

4. Experiment 2

Our next experiment sought to discriminate between sample-based
and summary-based amortization strategies. We follow the logic of the
simulations shown in Fig. 3, manipulating cognitive load at Q1 and Q2
in order to exogenously control the number of samples (see Thaker
et al., 2017; Dasgupta et al., 2017, for a similar approach).

In addition to cognitive load, we manipulate the “overlap” of Q1

Fig. 4. Experimental setup. Participants were asked to estimate the conditional
probability using a slider bar within a 20s time limit.
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Fig. 5. Experiment 1: Differences between Q2 responses for each condition and
an average packed baseline. A negative relative mean estimate indicates a su-
peradditivity and a positive relative mean estimate a subadditivity effect. Error
bars represent the standard error of the mean.

5 The extent and direction of this asymmetry depends on the difference between how
many samples it takes on average to get out of modes once the chain is in them (the root
cause of subadditivity), and how many samples it takes on average to find high prob-
ability areas when the chain is far away from them (the root cause of superadditivity).

6 Although we did not initially plan to perform the analysis using difference scores, we
believe that this is the correct way to report our results as it takes into account the mean

(footnote continued)
differences between the judgments. In fact, performing the correction actually lead to
smaller correlations and weaker effects overall as compared to using the raw values.
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with Q2, by creating a new set of queries with no overlap between the
hypothesis spaces of the query pairs. We predicted that we would only
see a memory effect for queries with overlapping pairs. This manip-
ulation allows us to rule out an alternative trivial explanation of our
results: numerical anchoring (high answers to the first query lead to
high answers to the second query). If the apparent memory effect was
just due to anchoring, we would expect to see the effect regardless of
query overlap, contrary to our predictions.

4.1. Participants

80 participants (53 males, mean age=32.96, SD=11.56) were
recruited from Amazon Mechanical Turk and received $0.50 as a basic
participation fee and an additional bonus of $0.10 for every on time
response as well as $0.10 for every correctly classified digit during
cognitive load trials.

4.2. Procedure

The procedure in Experiment 2 was largely the same as in
Experiment 1, with the following differences. To probe if the memory

effects arise from reuse or from numerical anchoring, we added several
Q2 queries to the list shown in Table 2. These Q2 queries have no
overlap with the queried hypothesis forQ1 (for example, ’T or R’ instead
of ’C or R’ in the trial shown in the first row in Table 2). In other words,
these queries could not be decomposed such that the biased samples
from Q1 would be reflected in the answer to Q2, so the sub- and super-
additive effects would not be seen to carry over to Q2 were reuse to
occur. We refer to these queries as “no overlap”, in contrast to the other
“partial overlap” queries in which one of the letters overlapped with the
previously queried letter. Half of the queries had no overlap and half
had partial overlap, randomly interspersed. The stimuli used in Ex-
periment 2 are shown in Table 3.

To probe if the memory effect arises from reuse of generated sam-
ples (sample-based amortization) or reuse of summaries (summary-
based amortization), we also manipulated cognitive load: on half of the
trials, the cognitive load manipulation occurred at Q1 and on half at Q2.
A sequence of 3 different digits was presented prior to the query, where
each of the digits remained on the screen for 1 s and then vanished.
After their response to the query, participants were asked to make a
same/different judgment about a probe sequence. Half of the probes
were old and half were new.
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r=0.65
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r=0.55
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Overall Packed

0 0 0 0 0 0 0 0

0

30

0

30

0

30

0

30

Q1

Q
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Fig. 6. Trial-by-trial analyses of Experiment 1. Difference between Q1 responses and true probability (as assessed by our MCMC model) plotted against the same
quantity for Q2. Lines show the least-squares fit with standard error bands.

Table 3
Experimental stimuli and queries for Experiment 2.

Cue Q1 Q1-Typical Q1-Atypical Q2-Partial overlap Q2-No overlap

Table C chair, computer, curtain cannon, cow, canoe C or R T or R
Telephone D display case, dresser, desk drinking fountain, dryer, dome D or L G or L
Rug B book, bouquet, bed bird, buffalo, bicycle B or S D or S
Chair P painting, plant, printer porch, pie, platform P or A M or A
Sink T table, towel, toilet trumpet, toll gate, trunk T or E F or E
Lamp W window, wardrobe, wine rack wheelbarrow, water fountain, windmill W or F L or F
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We hypothesized that partial overlap would lead to stronger
amortization effects, whereas no overlap would lead to weaker effects.
Furthermore, if participants are utilizing sample-based amortization,
then cognitive load duringQ2 should increase the amortization effect: if
more samples are generated during Q1 (which are the samples that
contain the sub- or superadditivity biases) and these samples are con-
catenated with fewer unbiased samples during Q2, then the combined
samples will be dominated by biased samples from Q1 and therefore
show stronger effects. Vice versa, if participants are utilizing summary-
based amortization, then cognitive load during Q1 should increase the
amortization effect: if less samples are generated during Q1, then a
summary of those samples will inherit a stronger sub- or superadditivity
effect such that the overall amortization effect will be stronger if the
two summaries are combined (assuming that the summaries are com-
bined with equal or close-to equal weights).

4.3. Results

Analyzing only the queries with partial overlap (averaging across
load conditions), we found that probability judgments for Q1 were
higher for unpacked-typical compared to packed conditions (a sub-
additivity effect; = <t p(79) 4.38, 0.001) and lower for unpacked-aty-
pical compared to packed (a superadditivity effect;

= − <t p(79) 4.94, 0.001). These same effects occurred for Q2 (un-
packed-typical vs. packed: = <t p(79) 2.44, 0.01; unpacked-atypical vs.
packed: = − <t p(79) 1.93, 0.05).

We again calculated the difference between each participant’s response
to every query duringQ1 and the overall mean response for the same query
object in the packed condition. This difference was then used as the de-
pendent variable in a linear mixed-effects regression model with partici-
pants and queried object as random effects and condition as fixed effect.
The resulting estimates showed both a significant subadditivity effect
( = ± = <t pdifference 13.64 1.57, (396.95) 8.70, 0.0001) and super-
additivity effect (− ± = − <t p14.90 1.56, (395.48) 9.55, 0.0001).
Afterwards, we repeated the same analysis for responses to Q2 (as in
Experiment 1). This analysis again showed significant indicators of amor-
tization as both the subadditivity ( = ±difference 5.37 1.34,

= <t p(398.01) 4.02, 0.001) and the superadditivity effect
( = − ± = − <t pdifference 4.92 1.34, (398.01) 3.69, 0.001) were still pre-
sent during Q2.

Next, we assessed how the memory effect was modulated by cog-
nitive load and overlap (Fig. 7). When cognitive load occurred during
Q2 and there was no overlap, none of the conditions produced an effect
significantly different from 0 (all >p 0.5). When cognitive load oc-
curred during Q2 and there was partial overlap, only typically un-
packed hypotheses produced an effect significantly greater than 0
( = <t p(38) 2.14, 0.05). When cognitive load occurred during Q1 and
there was no overlap, we again found no evidence that the conditions
differ from 0 (all >p 0.05). Crucially, if cognitive load occurred during
Q1 and there was partial overlap, both conditions showed the expected
subadditive ( = <t p(38) 4.18, 0.05) and superadditive
( = − <t p(46) 1.89, 0.05) effects. Moreover, calculating the average ef-
fect size of amortization for the different quadrants of Fig. 7, the partial
overlap-cognitive load at Q1 condition produced the highest overall
effect ( =d 0.8), followed by the partial overlap-cognitive load at Q2
condition ( =d 0.56) and the no overlap-cognitive load at Q1 condition
( =d 0.42). The no overlap-cognitive load at Q2 condition did not pro-
duce an effect greater than 0. Partial overlap trials were also more
strongly correlated with responses during Q1 than trials with no overlap
(0.41 vs = − <t p0.15, (79) 2.1, 0.05).

Next, we calculated the difference between all responses to Q2 and
the mean responses to Q2 over queried objects provided that Q1 was
packed. This difference was entered into a linear mixed-effects regres-
sion that contained overlap, cognitive load, and the presentation format
of Q1 as fixed effects, and participants and the queried objects as
random effects. We then assessed the interaction between cognitive

load and the sub- and superadditivity conditions while controlling for
overlap. The resulting estimates showed that there was a significant
subadditivity effect ( = ± =tdifference 5.25 2.12, (417.08) 2.48 <p 0.05)
but no superadditivity effect ( = − ±difference 3.19 2.17

= − =t p, (419.23) 1.47, 0.17) when cognitive load was applied
during Q2. Importantly, both the subadditivity (difference
= ± = <t p5.83 2.25, (418.91) 2.59, 0.05) and the superadditivity
( = − ± = − <t pdifference 6.86 2.21, (419.80) 3.102, 0.01) effects were
present when cognitive load was applied during Q1. This finding points
towards a larger amortization effect in the presence of cognitive load on
Q1, thus supporting a summary-based over a sampled-based amortiza-
tion scheme.

Further, on trials with cognitive load at Q2, participants were on
average more likely to answer the probe correctly for partial overlap
trials compared to no overlap trials ( = <t p(36) 3.16, 0.05). This is
another signature of amortization: participants are expected to have
more resources to spare for the memory task at Q2 if the computations
they executed for Q1 are reusable in answering Q2. This also indicates
that these results cannot be explained by simply initializing the chain
forQ2 where the chain forQ1 ended, which would not have affected the
required computations.

Interestingly, there was no evidence for a significant difference
between participants’ responses to Q2 under cognitive load in
Experiment 2 as compared to participants’ responses to Q2 in
Experiment 1 when no cognitive load during either Q1 or Q2 was ap-
plied ( = − =t p(314) 1.44, 0.15).

Finally, we assessed how much the difference between responses for
Q1 and the true underlying probabilities were predictive of the differ-
ence between responses for Q2 and the true underlying probabilities
(Fig. 8). There was a strong correlation between responses to Q1 and Q2
over all conditions ( = <r p0.41, 0.001), for the packed
( = <r p0.44, 0.001), the typically unpacked ( = <r p0.36, 0.01), as well
as the atypically unpacked condition ( = <r p0.40, 0.01). Moreover, the
differences of Q1 and Q2 responses from the true answer were also
correlated within participants (mean = <r p0.31, 0.01) and partici-
pants who showed stronger subadditivity or superadditivity effects for
Q1 also showed stronger effects for Q2 overall ( = <r p0.31, 0.001), for
the superadditive ( = <r p0.3, 0.001), and for the subadditive condition
( = <r p0.29, 0.001). This replicates the effects of amortization found in
Experiment 1.

4.4. Discussion

Experiment 2 extended the findings of Experiment 1, suggesting
constraints on the underlying amortization strategy. Participants ex-
hibited an intricate pattern of sensitivity to cognitive load and query
overlap. Based on our simulations (Fig. 3), we argue that the effect of
cognitive load at Q1 on Q2 responses is more consistent with summary-
based amortization than with sample-based amortization. Summary-
based amortization is less flexible than sample-based amortization, but
trades this inference limitation for an increase in memory efficiency,
and is thus consistent with the idea that humans adopt cost-efficient
resource-rational inference strategies (Gershman et al., 2015; Griffiths,
Lieder, & Goodman, 2015; Lieder et al., 2017a). Further supporting this
idea is our finding that performance on the secondary task was better in
the partial overlap conditions, indicating that more resources are
available when computations can be amortized.

Our design allowed us to rule out a numerical anchoring effect,
whereby participants would give high answers to the second query if
they gave high answers to the first query. This effect should be invariant
to the extent of overlap of the queried hypothesis spaces, but contrary
to the anchoring hypothesis, the memory effect was stronger in the high
overlap condition.
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5. Experiment 3

In this experiment we further probe the strategic nature of amorti-
zation. So far, all generated hypotheses have been reusable, since both
queries probe the same probability distribution, conditioned on the
same cue object. By changing the cue object between Q1 and Q2 and
manipulating the similarity between the cues, we can control how
reusable the computations are. Note that this is in contrast to the notion
of “overlap” in Experiment 2 where all the samples from Q1 are always
“reusable” in Q2 since both query the same probability distribution, but
in the no overlap conditions, the queried hypotheses spaces do not
overlap resulting in the biased samples from Q1 not being reflected in
Q2 judgments. The notion of reusability now allows us to test whether
or not reuse always occurs, or if it occurs preferentially when it is more
applicable (i.e., under high similarity between cues).

5.1. Participants

100 participants (41 females, mean age= 35.74, SD=11.69) were
recruited from Amazon Mechanical Turk and received $0.50 as a basic
participation fee and an additional bonus of $0.10 for every on time
response.

5.2. Procedure

The procedure was similar to Experiments 1 and 2. The only dif-
ference was that participants were shown a new cue word for Q2,

asking them to judge the probability of objects starting with the same
letter as the letter from Q1 with no conjunction of letters (i.e., same
query space, full overlap). The query for Q2 was always packed, as in
previous experiments. The new cue words for Q2 were generated to
either have posterior with a low (similar cues) or a high (dissimilar
cues) KL divergence from the Q1 posterior. The range of KL divergences
fell between 0 and 9; all similar cue words had conditional distributions
with KL divergence of less than 0.1, and all dissimilar cue-words had a
KL divergence of greater than 8.5. The exact KL divergences are re-
ported in Table 4.

5.3. Results

Seven participants did not respond on time to more than a half of all
queries and were therefore excluded from the following analysis.

We again found that probability judgments for Q1 in the typically
unpacked queries were higher than in the unpacked condition (sub-
additivity effect: = <t p(92) 4.67, 0.001) and that probability judg-
ments in the atypically unpacked condition were lower than in the
unpacked condition (superadditivity effect: = <t p(92) 3.25, 0.01).

Analyzing the probability judgments for Q2, we found a significant
subadditivity effect ( = <t p( (92) 2.28, 0.05) but not a significant su-
peradditivity effect (56.06 vs. = =t p55.31; (92) 0.07, 0.94).

As before, we calculated the difference between each participant’s re-
sponse to every query during Q1 and the overall mean response for the
same query object in the packed condition (Fig. 9). This difference was
entered as the dependent variable into a linear mixed-effectsregression
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Fig. 7. Experiment 2: Differences between Q2 responses for each condition and an average packed baseline. A negative relative mean estimate indicates a super-
additivity and a positive relative mean estimate a subadditivity effect. Error bars represent the standard error of the mean.
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model with participants and queried object as random effects and condition
as fixed effect. The resulting estimates showed both a significant sub-
additivity effect ( = ± = <t pdifference 14.39 1.97, (189.84) 7.31, 0.0001)
and a superadditivity effect (− ± t13.72 1.98, (190.18)
= − <p6.941, 0.0001). Repeating this analysis for responses toQ2 revealed
a significant amortization effect for the typically unpacked condition
( = ± = <t pdifference 5.21 1.90, (191) 2.74, 0.05) but not for the atypi-
cally unpacked condition ( = − ± = −tdifference 2.49 1.91, (191.52) 1.303

=p 0.19).
For the dissimilar cues, we did not find statistical evidence for an

effect of subadditivity ( = =t p(49) 1.31, 0.19) or superaditivity
( = − =t p(47) 0.27, 0.79). However, for the similar cues atQ2, the effect
for the typically unpacked condition was significantly different from 0
(subadditivity effect: = <t p(47) 3.30, 0.01), whereas there was again
no superadditivity effect ( = =t p(48) 0.54, 0.59). The difference be-
tween the size of the subadditivity effect was marginally bigger for the
similar cues as compared to the dissimilar cues ( = =t p(36) 1.83, 0.07)
and the overall effect size of the similar cues was =d 0.17, whereas the
effect size for the dissimilar cues was =d 0.11.

The difference between judgments and the true probabilities was
correlated between Q1 and Q2 ( = <r p0.34, 0.001), for the packed
( = <r p0.43, 0.001), the typically unpacked ( = <r p0.43, 0.001), but
not the atypically unpacked condition ( = =r p0.20, 0.3); see Fig. 10.
Participants who showed higher subadditivity or superadditivity effects
for Q1 also showed higher effects for Q2 overall ( = <r p0.29, 0.001),
for the typically unpacked condition ( = <r p0.39, 0.001), but not for
the atypically unpacked condition ( = =r p0.11, 0.29).

5.4. Discussion

Experiment 3 assessed the strategic nature of amortization by ma-
nipulating the similarity between cues, which presumably affected the
degree to which amortization is useful. We found a stronger sub-
additivity effect for similar cues compared to dissimilar cues, indicating
that reuse is at least partially sensitive to similarity.

An unexpected finding was that while the superadditivity effect in
aytpically-unpacked Q1 was significant, neither the memory-based su-
peradditivity effect (in Q2) nor correlations across the queries for aty-
pically-unpacked Q1 were significant. This indicates that the answers to
the atypically-unpacked Q1 are not detectably being reused inQ2 in this
experiment. However, in Experiments 1 and 2, the atypically-unpacked
answers seem to be reused (as indicated by a robust memory-based
superadditivity effect, and correlations across the queries) when the cue
object remains the same. This may be because the extent of rational reuse
here (where the cues change) is smaller than in previous experiments
(where the cues remained the same) and therefore harder to detect.

6. General discussion

We tested a model of amortized hypothesis generation across 3
experiments and found that participants not only exhibited subadditive
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Fig. 8. Trial-by-trial analyses of Experiment 2. Relationship between difference between Q1 responses and true probability (as assessed by our MCMC model) and Q2
responses and true probability. Lines show the least-squares fit with standard error bands.

Table 4
Experimental stimuli and queries for Experiment 3. Kullback–Leibler (KL) di-
vergence between the posteriors for Q1 and Q2 are shown in parentheses.

Cue1 Q1 Q1-Typical Q1-Atypical Cue2-sim
(KL)

Cue2-diff (KL)

Rug B book, bouquet,
bed

bird, buffalo,
bicycle

Curtain
(0.080)

Car (8.658)

Chair P painting, plant,
printer

porch, pie,
platform

Book
(0.031)

Road (8.508)

Sink T table, towel,
toilet

trumpet, toll gate,
trunk

Counter
(0.001)

Sidewalk
(8.503)
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and superadditive probability judgments in the same paradigm (re-
plicating Dasgupta et al., 2017), but also carried over these effects to
subsequent queries—a memory effect on inference. Experiment 2 de-
monstrated that this memory effect is some function of the hypotheses
generated in the first query and made some inroads into trying to un-
derstand this function. We found that the effect is stronger when cog-
nitive load is applied to the first query, suggesting that the memory

effect is driven by a form of summary-based amortization, whereby a
summary statistic of the first query is computed from the samples and
then reused to answer subsequent queries, provided they can be ex-
pressed in terms of previous computations. Summary-based amortiza-
tion gives up some flexibility (compared to reusing the raw samples
generated by past inferences), in order to gain memory-efficiency. Ex-
periment 3 demonstrated that the memory effect selectively occurs
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Fig. 9. Experiment 3: Differences between Q2 responses for each condition and an average packed baseline. A negative relative mean estimate indicates a super-
additivity effect and a positive relative mean estimate a subadditivity effect. Error bars represent the standard error of the mean.
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Fig. 10. Trial-by-trial analyses of Experiment 3. Relationship between difference between Q1 responses and true probability (as assessed by our MCMC model) and
Q2 responses and true probability. Lines show the least-squares fit with standard error bands.
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when the queries are similar, indicating that reuse is deployed speci-
fically when it is likely to be useful.

Building on earlier results (Gershman & Goodman, 2014), our
findings support the existence of a sophisticated inference engine that
adaptively exploits past computations. While reuse can introduce error,
this error may be a natural consequence of a resource-bounded system
that optimally balances accuracy and efficiency (Gershman et al., 2015;
Griffiths et al., 2015; Lieder et al., 2012; Vul et al., 2014). The in-
corporation of reuse into a Monte Carlo sampling framework allows the
inference engine to preserve asymptotic exactness while improving ef-
ficiency in the finite-sample regime.

6.1. Related work

This work fits into a larger nexus of ideas exploring the role of
memory in inductive reasoning. Heit, Hayes and colleagues have car-
ried out a number of studies that make this link explicit (Hayes, Fritz, &
Heit, 2013; Hayes & Heit, 2013; Hawkins, Hayes, & Heit, 2016; Heit &
Hayes, 2011). For example, Heit and Hayes (2011) developed a task in
which participants studied a set of exemplars (large dogs that all pos-
sess “beta cells”) and then on a test set of exemplars (consisting of large
and small dogs) made either property induction judgments (“does this
dog have beta cells?”) or recognition memory judgments (“did this dog
appear in the study phase?”). The key finding was that property in-
duction and recognition memory judgments were strongly correlated
across items, supporting the hypothesis that both judgments rely on a
shared exemplar similarity computation: test exemplars are judged to
be more familiar, and have the same latent properties, to the degree
that they are similar to past exemplars. Heit and Hayes showed that
both judgments could be captured by the same exemplar model, but
with a broader generalization gradient for induction.

Another example of memory effects on inference is the observation
that making a binary decision about a noisy stimulus (whether dots are
moving to the left or right of a reference) influences a subsequent
continuous judgment about motion direction (Jazayeri & Movshon,
2007). Stocker and colleagues (Luu & Stocker, 2016; Stocker &
Simoncelli, 2008) refer to this as “conditioned perception”’ or “self-
consistent inference” because it appears as though observers are con-
ditioning on their decision as they make a choice. Fleming and Daw
(2017) have pushed this idea further, arguing that observers condition
on their own confidence about the decision. Self-consistent inferences
may reflect rational conditioning on choice or confidence information
when a memory trace of the stimulus is unavailable or unreliable.

Another important consideration for the study of amortization is the
utility conferred by reuse rather than simply the efficiency. Previous
work has explored resource-rational solutions to balancing the utility of
events with their probability of occurrence (Gershman & Wilson, 2010;
Lieder et al., 2012; Lieder, Griffiths, & Hsu, 2018; Vul et al., 2014).
These have successfully modeled effects such as the over-representation
of low frequency events with extreme utilities, indicating a possible role
for utility in availability for subsequent reuse.

An intriguing explanation of order effects has been reported by
Wang and colleagues (Wang & Busemeyer, 2013; Wang, Solloway,
Shiffrin, & Busemeyer, 2014). The key idea, derived from a quantum
probability model of cognition (see also Trueblood & Busemeyer,
2011), is that answering a question will cause the corresponding mental
state to linger and thus “superpose” with the mental state evoked by a
second question. This superposition gives rise to a particular symmetry
in the pattern of judgments when question order is manipulated, known
as the quantum question order equality (see Wang & Busemeyer, 2013, for
details). Our amortization framework does not intrinsically make this
prediction, but nor does it necessarily exclude it. Rather, we prefer to
think about superposition states as arising from computational princi-
ples governing a computation-flexibility trade-off. Roughly speaking,
states superpose in our framework because the inference engine is re-
using information from past queries.

Recently, Costello and Watts (2018) pointed out that the quantum
question order equality could arise from rational probabilistic rea-
soning corrupted by correlated noise. In particular, answers to a
probabilistic query will be corrupted by samples retrieved recently to
answer another probabilistic query (similar to the concept of “over-
generalization” in probabilistic estimation, as developed in Marchiori,
Di Guida, & Erev, 2015). Costello and Watts (2018) view this as a kind
of priming effect. Alternatively, correlated noise would arise in the
amortized inference framework due to stochastic reuse. Thus, amorti-
zation might provide a complementary rational analysis for the
“probability theory plus noise” model proposed by Costello and Watts
(2018).

Most closely related to the present paper is the work of Dougherty
and colleagues (Dougherty, Gettys, & Ogden, 1999; Dougherty &
Hunter, 2003a, 2003b; Thomas, Dougherty, & Buttaccio, 2014; Thomas,
Dougherty, Sprenger, & Harbison, 2008), who have pursued the idea
that probability judgments depend on the generation of hypotheses
from memory. In particular, they argue that subadditivity arises from
the failure to generate hypotheses, much like the account offered by
Dasgupta et al. (2017), and that this failure is exacerbated by cognitive
load or low working memory capacity. The key difference from our
account is the particular way in which memories are used to generate
hypotheses. For combinatorial hypothesis spaces like the scene in-
ference task used here and by Dasgupta et al. (2017), one cannot as-
sume that all the relevant hypotheses are already stored in memory;
rather, these must be generated on the fly—a function we ascribe to
MCMC sampling, where new hypotheses that have never been seen
before can be generated from a probabilistic generative model, and only
these generated samples need be stored for the purposes of inference.
The present paper asserts a more direct role for memory within a
sampling framework, by controlling the trade-off between computation
and flexibility.

This trade-off mirrors a similar tension in reinforcement learning,
where the goal is to estimate long-term reward (Daw, Niv, & Dayan,
2005; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Kool,
Gershman, & Cushman, 2017). “Model-based” algorithms estimate
long-term reward by applying tree search or dynamic programming to a
probabilistic model of the environment. This is flexible, but computa-
tionally expensive. “Model-free” algorithms avoid this cost by directly
estimating long-term rewards by interacting with the environment,
storing these estimates in a look-up table or function approximator.
This is computationally cheap but inflexible. In other words, model-free
algorithms trade time for space, much in the same way that amortized
inference uses memory to reduce the cost of approximate inference.
Analogous to our proposed summary-based amortization strategy, re-
cent work has suggested that model-free value estimates can be in-
corporated into model-based tree search algorithms (Keramati,
Smittenaar, Dolan, & Dayan, 2016), thus occupying a middle ground in
the time-space trade-off.

6.2. Future directions

Our work has focused on fairly simple forms of amortization. There
exists a much larger space of more sophisticated amortization strategies
developed in the machine learning literature (e.g., Rezende et al., 2014;
Stuhlmüller et al., 2013) that we have not yet explored. Finding be-
haviorally distinguishable versions of these algorithms is an interesting
challenge. These versions could take the form of reuse in much more
abstract ways, such as developing strategies and heuristics, instead of
just local reuse in a sequence of queries. We believe that further ex-
amining established effects of heuristics and biases through the lens of
computational rationality will continue to produce interesting insights
into principles of cognition.

More broadly, we are still lacking a comprehensive, mechanistic
theory of amortized inference. What objective function is being opti-
mized by amortization? How are the computational trade-offs managed
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algorithmically? What are the contributions of different memory me-
chanisms (episodic, semantic, procedural, etc.)? Answering these
questions will require a more general theoretical treatment than the one
offered here. Nonetheless, our experiments provide important con-
straints on any such theory.
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Appendix A

A.1. Two reuse schemes

The two schemes for reuse described in Fig. 3, summary-based and sample-based amortization, are described below in greater detail.
In sample-based amortization, we simply add samples generated in response to one query (Q1) to the sample set for another query (Q2). So if N1

samples were generated in response to Q1, and N2 new samples are generated in response to Q2, in the absence of amortization, the responses to the
two queries Q1 and Q2 would be generated as follows:
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Under the sample-based amortization scheme, the response to Q2 is given by a calculation carried out over all +N N1 2 equally weighted samples.
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Under this scheme, all the computations carried out for Q1 are available for flexible reuse in the computation for Q2.
In summary-based amortization, we reuse a summary statistic computed from Q1. This strategy is only applicable to problems where the answer to

Q2 can be expressed as the composition of the answer to Q1, and an additional simpler computation. For example if Q1 is “What is the probability
that there is an object starting with a C in the scene?”, Q2 could be “What is the probability that there is an object starting with a C or an R in the
scene?”. In this case, the N1 samples generated in response to Q1 are summarized into one probability (“the probability of an object starting with C”),
N2 new samples are generated in response to a simpler query (“the probability of an object starting with R”), and these two numbers are then
composed (in this case simply added) to give the final estimate for Q2 (“the probability of an object starting with C or R”).
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Under this scheme, only the final product of the computation carried out for Q1 is reused in the calculations for Q2.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cognition.2018.04.017.
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