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ABSTRACT

How reliable are single-response LLM-as-a-judge ratings without references, and
can we obtain fine-grained, deterministic scores in this setting? We study the com-
mon practice of asking a judge model to assign Likert-scale scores to free-text re-
sponses and show two systematic issues: scores are unstable under sampling and
poorly calibrated, leading to compression near the top of the scale and frequent
ties. We then propose and evaluate Latent Judges, which derive scalar ratings
from internal model signals: (i) probability-weighted scores over integer ratings,
(i1) verifier-style probabilities of “’yes”, and (iii) linear probes trained on model ac-
tivations at the rating position. Across a broad suite of pairwise and single-rating
benchmarks, latent methods match or surpass standard prompting, with consistent
gains on pairwise accuracy and listwise ranking relevant to Best-of-N selection.
Probability-weighted scores achieve the strongest single-rating correlations, while
probes recover useful signals when output logits are miscalibrated. These results
indicate that latent information provides deterministic and more discriminative
signals for reference-free evaluation, and can improve selection and training ap-
proaches like Best-of- N, multi-teacher distillation, and routing.

1 INTRODUCTION

Different Large Language Models (LLMs) have distinct strengths and weaknesses, and even a single
model can produce responses of varying quality to the same prompt. This variability has been
productively exploited by Best-of-N sampling at inference (Cobbe et al.,[2021;|Zhang et al., 2025a))
and by post-training with Group Relative Policy Optimization (GRPO) (Guo et al.| [2025). It also
enables routing, which selects the right model for a given input (Ong et al., 2025} Zhang et al.,
2025b), and multi-teacher distillation, which transfers knowledge across models (Timiryasov &
Tastet, 2023} Roth et al} [2024; [Tian et al., 2025} |Gu et al., |2025). Across these settings, we often
need reference-free judgements of response quality that are fine-grained and, ideally, deterministic.

Much of the prior work has focused on verifiable settings, such as code, math, factuality, or for-
matting, where correctness can be checked objectively (Guo et al., 2025; |Zhang et al.l [2025a). In
contrast, evaluating the quality of responses to arbitrary prompts is harder (Gehrmann et al., [2021])).
Here, the prevailing approach is the LLM-as-a-Judge paradigm (Zheng et al., 2023)), in which a
model rates (or compares) responses, typically on a 5-point Likert scale (Lambert et al., 2024
Hashemi et al., [2024; [Lee et al.| [2024).

However, our analysis reveals two important issues when obtaining single-response, reference-free
ratings via prompting. First, unless decoding greedily, scores are unstable: the same response can
receive different ratings across runs. Second, ratings are often poorly calibrated: they compress
near the top of the scale, leading to frequent ties and limited discriminability. These problems arise
from generating discrete tokens on bounded scales under stochastic decoding, and they persist even
with strong judge models.

These limitations matter in practice. Reward learning benefits from fine-grained, unconstrained
scalar signals that better reflect true quality and are more robust to distractors (Tripathi et al.| [2025).
Best-of- N selection (Cobbe et al., [2021} [Lightman et al., [2023)) and multi-teacher distillation re-
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quire clear, tie-resistant rankings without reference answers for calibration. Likewise, routing needs
consistent per-response scores to choose among models. In short, many high-impact applications
require deterministic and discriminative reference-free evaluation.

To address this, we propose and evaluate Latent Judges, which derive scalar ratings from internal
model signals instead of only from generated tokens. We study three complementary families: (i)
probability-weighted ratings, which compute the expectation over integer scores using the model’s
next-token distribution; (ii) verifier-style ratings, which use the probability of “yes” in a binary
“is this response good?” query; and (iii) latent probes, lightweight classifiers trained on hidden
activations at the rating position. These methods expose latent information that is inherently real-
valued and deterministic (for fixed inputs), can be rescaled to address calibration, and can recover
useful quality signals even when output logits are miscalibrated.

In summary, our contributions are: (1) We systematically evaluate weaknesses of ordinal, single-
response LLM-as-a-judge ratings, i.e. instability, compression, and ties, across a wide range of
general and finetuned judge models. (2) We propose to mitigate these limitations by using latent
model information (probabilities and probes) to produce deterministic, fine-grained ratings. (3)
We demonstrate that across standard LLM-as-a-judge metrics, latent judges perform on par with
or better than prompting baselines. (4) We show how these insights improve practically relevant
applications, including listwise ranking for Best-of- /N selection and the design of LLM routers.

2 RELATED WORK

LLM-as-a-Judge. LLM-as-a-Judge has emerged as a practical alternative to traditional human and
metric-based evaluation, with models such as GPT-4 shown to align closely with human judgments
(Zheng et al., 2023} |Li et al.,2024). This paradigm has been applied to holistic quality scoring (Kim
et al., 20244), pairwise preference comparisons (Zheng et al., [2023), and multi-rubric assessments
(Lee et al., 2024; |[Hashemi et al.,|2024), as well as domain-specific tasks like medical text generation
(Brake & Schaafl [2024), legal reasoning (Ryu et al.,|2023)), and financial analysis (Xie et al.,|2023).

Recent work has sought to improve the reliability and faithfulness of evaluation through prompz-
based methods (e.g., GPTScore (Fu et al., 2024), G-Eval (Liu et al.,|2023))), which guide evaluation
with optimized prompts, explicit rubrics, or reasoning. Fine-tuned judges such as JudgeLM (Zhu
et al., 2025), Auto-J (L1 et al.| |2023)), Prometheus (Kim et al.l 2024a;b), and Themis (Hu et al.,
2025a)) directly adapt models to human preferences. However, this requires specialized data collec-
tion and model training and may not generalize well beyond the training set (Huang et al., 2024).

Finally, adapting LLM-as-a-judge to settings beyond pairwise comparison, which is relevant in prac-
tice, is challenging. This is because of the inherent limitations of Likert scale ratings, a point we
demonstrate extensively in this paper. Moreover, pairwise comparisons scale poorly to listwise rank-
ings due to context limits, order bias, and non-transitivity (Xu et al.,|2025; Hu et al., 2025b).

Verifiers. To evaluate correctness in domains where objective correctness of responses can be deter-
mined, like math reasoning or code generation, training verifiers is successful (Cobbe et al., 2021}
Uesato et al., |2022; Wang et al.l 2023; [Lightman et al.l 2023; [Yu et al., 2024} |Luo et al., 2024;
Hosseini et al., |2024). Verifiers classify responses as correct or incorrect, which serves as a reward
model and helps Best-of-N selection (Cobbe et al.|[2021;|Zhang et al., 2025a). Beyond trained veri-
fiers, having a binary classifier assess the degree of correctness via the probability of “yes” has found
application in math/coding (Zhang et al.,|2025a) and prompt following evaluation in text-to-image
generation (Lin et al.}[2024)). Our work extends this method to arbitrary natural language generation,
where reference answers may not exist and evaluation requires going beyond binary correctness.

Latent Probing. LLMs encode rich information about the input text in their latent activations (Peters
et al., 2018} Devlin et al., 2019). Many works have explored how to extract this knowledge using
lightweight classifiers, i.e. probes (Veldhoen et al.l 2016} |[Ettinger et al., [2016; |Alain & Bengio,
2017;|Adi et al., 2017 |Conneau et al., 2018)). These representations become even more informative
when combined with the strong reasoning capabilities of LLMs through targeted prompting (Zou
et al.,|2023; Marks & Tegmark, 2024;|Yang et al., 2024), which enables applications such as steering
(Turner et al., 2023; Rimsky et al.| [2024)), hallucination detection (Obeso et al., 2025} |Orgad et al.,
2025)), and detecting true or false statements (Marks & Tegmark, 2024} Maiya et al.| [2025)). Building
on this, we explore probing as robust text evaluation. Specifically, we extract logits from judge
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Figure 1: Agreement of ratings with the mode across 10 sampled runs. Even the most consistent
models fall below 80% agreement, and some near 40%.

LLMs and train probing classifiers on their internal activations to rate a response, which transforms
these latent signals into stable and fine-grained ratings, overcoming the key shortcomings of existing
LLM-as-a-Judge methods.

3 LIMITATIONS OF LLM-AS-A-JUDGE AND HOW TO Fi1X THEM

3.1 UNCOVERING WEAKNESSES OF LLM-AS-A-JUDGE APPROACHES

We systematically examine the limitations of using LLMs to assign holistic ratings to single re-
sponses without a reference. This setting is realistic and important, for example, for Best-of-N
selection and multi-teacher distillation, but our analysis reveals two weaknesses: ratings are incon-
sistent across runs and poorly calibrated. As a result, scores fluctuate with the decoding seed and
concentrate near the top of the scale, limiting their ability to distinguish response quality.

Data and Models. Our experiments use the Tiilu Preference Mixture dataset (Lambert et al.,
2024])), which contains 273,000 prompts paired with chosen and rejected responses. We sample
5,000 prompts and their responses to evaluate 12 judge models, including three trained specifically
as judges: Prometheus-v2 8B (Kim et al.| [2024b)), Selene-1 Mini 8B, and Selene-1 70B (Alexan-
dru et al., 2025). Models are prompted with two variants of the Prometheus template (Kim et al.,
2024ab): one using a 1-5 scale and another using a 1-10 scale. The concrete prompts are shown in
Section[C.T} Ratings are generated with temperature 0.7, with 10 scores per response sampled using
different seeds. This setup allows us to assess variability and calibration.

Finding: LLM judges are inconsistent. Figure[I|reports the agreement of individual ratings with
the mode across 10 samples. Even the most stable models, such as Qwen2.5 70B and Selene 70B,
reach only 70-80% agreement. Others, including Prometheus-v2 7B and Llama 8B, drop to 40—
50%. Thus, one in five ratings, and often more, diverges from the most frequent score. Some
variation is expected under stochastic decoding, but this level undermines reliability. Because scores
cluster in a narrow range, even small inconsistencies have a large impact.

Finding: LLM ratings are not calibrated. Calibration is another issue. Figure [2| shows that
chosen responses nearly always receive high scores (often above 8 on a 1-10 scale), while rejected
responses are only slightly lower. For instance, Qwen2.5 70B and Selene-1 assign averages between
7 and 8 even to rejected responses. This compression obscures meaningful differences: without a
reference, models default to generous ratings because most responses seem strong in isolation.

High scores also lead to frequent ties. Table [I] compares strict and lenient agreement with GPT-4
preferences. Strict agreement, requiring chosen responses to score higher, is low across all models
(e.g., 50.1% for Llama 70B and 16.9% for InternLM2.5 20B on the 1-5 scale). Lenient agreement,
which counts ties as correct, is much higher (e.g., 92.6% and 85.9% respectively). The large gaps
show that ties are pervasive and that single-response ratings lack discriminative power.

Summary. Overall, the holistic scoring of single responses without references is unreliable. Ratings
vary substantially across runs, with even the best models disagreeing one-quarter of the time. Scores
are also inflated and compressed near the top of the scale, producing frequent ties that obscure
differences. While pairwise prompts can mitigate this when both responses are shown together, our
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Figure 2: Average ratings for chosen and rejected responses across judge models. Scores are high
overall and differences are small.

Model Qwen2.5 Llama3 Selene ExaOne3.5 GLM4 Qwen3 Int.LM2.5 Qwen3 Phi-4 Selene Llama3 Prom.v2

70B 70B 70B 32B 32B 32B 20B 14B 14B 8B 8B 7B

5 Strict 35.7 50.1 50.0 29.1 39.8 37.1 16.9 409 294 233 325 20.6
Lenient 87.5 92.6 93.8 86.2 91.3 88.5 85.9 88.0 916 82.2 75.3 80.9

10 Strict 38.9 61.2 56.4 329 44.6 49.8 343 499 427 30.2 42.6 34.6
Lenient 83.1 88.3 90.4 80.6 88.2 7.7 68.1 80.8 824 75.2 65.5 65.3

Table 1: Agreement of judge models with GPT-4 preferences. Strict metrics require chosen re-
sponses to score higher than rejected ones; lenient metrics also allow ties. Large gaps indicate poor
discriminability of single-response ratings.

analysis highlights fundamental weaknesses of single-response holistic scoring, which is the focus
of this work. These findings motivate us to look for methods that mitigate these issues by providing
deterministic and discriminative ratings.

3.2 USING SCORES DERIVED FROM LATENT INFORMATION TO RATE RESPONSES

As shown in Section [3.1] LLM-as-a-judge for single responses has several drawbacks. The ratings
are often unstable, saturated near the top of the scale, and lack discriminative power. These is-
sues stem from using discrete categories, bounded scales, and stochastic decoding (Holtzman et al.,
2020). We investigate to what extent extracting the latent knowledge of a Judge LLM immedi-
ately after it processes the prompt can mitigate these issues. This approach offers, in theory, clear
advantages: it is deterministic because it does not rely on sampling the LLM’s output, and it is dis-
criminative because its scores are real-valued instead of integers on an ordinal scale. Furthermore,
these real-valued scores can be scaled and shifted to solve potential calibration issues.

To extract latent knowledge, we investigate three different methods. In probability-weighted ratings,
we calculate a weighted average of integer ratings. We prompt the LLM to rate a response on a scale,
such as 1 to 10, and to output only the rating. Then, we take the token probabilities for the next
predicted token, extract the probabilities that correspond to the integers on the scale, and compute a
weighted average. This is formally expressed as:

Sp(prompt) = Z n X pLom(n | prompt) (1)
i=1

In binary or verifier-style ratings, we ask the LLM if the given response is good for the given prompt,
and the LLM should only output either “yes” or “no”. We then use the probability of predicting “yes”

as the rating, formally:
Sp(prompt) = prpm(yes | prompt) (2)
Finally, in latent probing, we train linear probes on the latent activations of a Judge LLM. Specif-
ically, we extract the residual stream activation at the position of the next predicted token after
prompting the model to evaluate a response. This option is particularly useful when the LLM’s
logits are not well-calibrated and may not faithfully reflect its internal states. Formally, for a Judge
LLM f,, given an input sequence of length 7', we extract activation () € R from layer [ at posi-
tion T+1. We then train a lightweight probe g, : R? — R that predicts a quality score § = g4 (2().
Probes can be linear or small MLPs. Details on how we train probes on activations are in Section B}
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Dataset Size Dataset Size Dataset Size
Auto-J 1,019 JudgeBench 620 LFQA 1,059
PreferenceBench 1,998 RewardBench 2,984 RewardBench-2 1,825
MT-Bench 890 HHH-Alignment 221 Tiilu Mixture 10,000

UltraFeedback 10,000

Table 2: Sizes of pairwise evaluation benchmarks.

Vicuna-Eval MT-Bench UltraFeedback Flask BiGGen Bench

Human GPT Human GPT

Size 320 320 60,917 2,001 2,001 2,780 68,805
Mean 4.15 3.49 3.32 3.81 3.62 3.49 3.17
Std 0.78 1.25 1.09 1.10 1.32 1.41 1.21

Table 3: Sizes and summary statistics of single-rating benchmarks.

4 EXPERIMENTAL EVALUATION OF LLM-AS-A-JUDGE BENCHMARKS

4.1 PAIRWISE AND SINGLE-RATING BENCHMARKS

We evaluate models on two types of benchmarks: Pairwise and Single-Rating. These are the tradi-
tional baselines to evaluate LLM Judges (Kim et al., [2024alb; |Alexandru et al.| 2025)). In pairwise
benchmarks, we assess if the LLM Judge assigns a higher score to a response preferred by humans
or GPT-4 than to its dispreferred counterpart. In single-rating benchmarks, we evaluate if the scores
correlate with ground-truth ratings from human raters or GPT-4.

Pairwise Benchmarks. We evaluate models on the following benchmarks: MT-Bench Human
Preferences (Zheng et al.| 2023)), RewardBench (Lambert et al., [2025), HHH-Alignment (Askell
et al., 2021)), RewardBench-2 (Malik et al., 2025)), Auto-J (L1 et al.}|2023)), LFQA (Xu et al., 2023)),
PreferenceBench (Kim et al.l [2024a), and JudgeBench (Tan et al., 2025). All benchmarks consist
of (prompt, chosen, rejected) triplets. We only consider unambiguous preferences, where there is a
chosen and a rejected response, and we exclude ties, as modeling ties is not the focus of this paper.

For MT-Bench and HHH-Alignment, we use deduplicated versions from (Kim et al.|[2024a)), remov-
ing all repeated (prompt, chosen, rejected) triplets. We also include 10,000-sample subsets from the
Tiilu Preference Mixture (Lambert et al., 2024)) and UltraFeedback (Cui et al., [2024) as additional
evaluation sets. The standard evaluation metric for these benchmarks is accuracy, which measures
the rate at which predicted rankings agree with the ground truth. Benchmark sizes are in Table [2]

Single-Rating Benchmarks. We include the following single-rating benchmarks: FLASK (Ye
et al.| 2024), MTBench (Zheng et al.,2023)), Vicuna-Eval (Kim et al.| |2024a), BiGGen Bench (Kim
et al.| 2025), and UltraFeedback (Cui et al.l [2024). For FLASK and BiGGen Bench, both human
and GPT-4 ratings are available. For UltraFeedback, we use only the rejected responses and their
scores from the binarized version because the score distribution is skewed towards the max score.

Summary statistics and sizes are in Table [3] They vary in size, from 320 samples for Vicuna-Eval
and MT-Bench to 68,805 for the GPT ratings in BiGGen Bench. All ratings are on a scale from
1 to 5, and the mean scores are positively skewed (i.e., above 3) in all benchmarks. However, the
standard deviations indicate significant score variation, which is important for assessing qualitative
differences between responses. Still, as all benchmarks resemble the 5-scale baseline and skew
positive, this favors the baseline methods.

4.2 LLM MODELS AND BASELINES

We compare the rating methods described in Section to LLM Judges using the same 5-scale
and 10-scale prompts evaluated in Section [3.1] as this is our main point of comparison. Since this
baseline produces frequent ties, as shown in Section [3.1] we ensure a fair comparison by breaking
ties randomly. For baselines, probability-weighted ratings, and verifier-style ratings, we use the fol-
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lowing models: Phi-4 (Abdin et al.| 2024)), Qwen3 14B and 32B (Yang et al., [2025), Qwen2.5 70B,
(Qwen Team, 2024), Llama-3.3 70B (Dubey et al., 2024), Prometheus-v2 7B (Kim et al., 2024b)),
and Selene-1 70B (Alexandru et al.l 2025). We selected these models as the most capable judge
models within our compute budget, and Selene-1 and Prometheus were selected as representatives
of LLMs specifically fine-tuned for judging response quality. For latent probing, we only evaluate
Qwen3 14B, Phi-4, and Prometheus v2 7B due to the increased cost of extracting embeddings.

4.3 RESULTS ON PAIRWISE AND SINGLE-RATING BENCHMARKS

Due to space constraints, we report results for Phi-4, Qwen3 14B, Prometheus, Llama 3.3 70B, and
Selene-1, as well as only the 10-scale baseline. Results for other models and the 5-scale baseline
confirm observations and are in Section[A.1]

Pairwise Benchmarks. Table [4] reports accuracies across pairwise evaluation benchmarks. Four
key observations stand out: First, probability-weighted and verifier-style scores consistently match
or exceed the 10-scale baseline, with gains of up to 5 percentage points in average accuracy. This
indicates that extracting probability distributions or binary logits yields more discriminative signals
than discrete categorical outputs, while remaining competitive where the baseline performs well.
Second, specialized judge models such as Selene and Prometheus do not surpass general-purpose
models (e.g., Llama, Phi-4). In fact, Prometheus fails entirely under probability-weighted and veri-
fier setups, as it does not follow these prompts. This demonstrates that fine-tuning for judgment can
compromise general model capabilities, reducing its applicability to alternative scoring schemes.

Third, when raw logits are poorly calibrated (e.g., Qwen3 14B under weighted scoring, Prometheus
across settings), latent probes recover useful internal signals. By training directly on hidden activa-
tions, probes extract stable and fine-grained information about response quality that is not accessible
through the model’s output probabilities alone. This highlights latent probing as a general solution
that can be applied to any judge model, regardless of its calibration. We also want to note that the
latent probe can be further enhanced, to some degree (typically 1-2%) by targeted hyperparameter
tuning, but here we report results for the same parameter configurations. Fourth, the comparison is
conservative with respect to alternative methods: for the 10-scale baseline, frequent ties are resolved
by random breaking. Thus, a model that produces ties in half of all cases already reaches 65% ac-
curacy with only 40% correct and 10% incorrect predictions. The true discriminative ability of such
baselines is therefore substantially lower than the reported numbers.

Single-Rating Benchmarks Table[5|reports Pearson correlations with ground-truth ratings, which
themselves come from 5-point Likert scales or their averages. Here, we find that probability-
weighted ratings and 10-scale ratings achieve the highest correlations, with strong models (Phi-4,
Llama, Selene) reaching averages near 0.6. This suggests moderate to high correlation with human
or GPT-4 ratings. However, verifier-style scores perform significantly worse. Verifyer-style scores
mostly concentrate close to 0 or 1, leading to consistently lower correlations. For latent probes, the
BCE objective used for training likely also squashes outputs toward the extremes, reducing variance
and degrading linear correlation. Combined with the discretization of ground truth, this limits their
effectiveness on single-rating benchmarks.

Summary. Our extensive results on a large number of benchmarks show that approaches using
internal judge representations serve as a valid replacement for traditional generative judges by ad-
dressing their limitations, such as non-determinism and saturated scales. Pairwise evaluation results
show that their discriminativeness is superior or on par with the baselines. The linear correlation
for single-rating evaluations is decent, especially for probability-weighted ratings. This is notable
because the benchmarks closely resemble Likert scale ratings, which favors the 10-scale and 5-scale
baselines. Finally, latent probing can recover model capabilities that are not accessible in training-
free methods due to their miscalibrated outputs.

4.4 ABLATIONS AND ADDITIONAL ANALYSES

Are Scores Based on Internal Features Less Saturated? In Section [3.1] (see Fig. [2), we observe
that prompting judge models for integer ratings from 1 to 10 mostly produces scores near the top
of the scale, such as between 7 and 9. In contrast, probability-weighted and verifier-style ratings
are real-valued and thus more fine-grained. However, they are still bounded: probability-weighted
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Setting Benchmarks Average
Auto-J] HHH JB LFQA MTB PB RB-2 RB Tiilu UF
Prometheus 0.12 0.16 0.00 0.00 0.08 0.02 0.10 0.07 0.08 0.09 0.07
E Qwen3 14B 0.76 0.85 0.69 0.72 0.64 085 088 087 0.74 0.78 0.78
'S Phi-4 0.72 0.88 0.67 0.59 0.64 0.87 086 087 0.74 0.77 0.76
> Llama 3.3 70B 0.72 0.87 0.63 0.72 0.65 0.83 0.82 082 0.72 0.74 0.75
Selene-1 0.72 0.85 0.66 047 0.66 0.85 0.85 085 0.73 0.76 0.74
~ Prometheus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g Qwen3 14B 0.66 0.83 043 0.77 0.57 0.84 0.58 0.59 0.54 0.61 0.64
&b Phi-4 077 0.89 0.69 077 0.67 092 085 089 0.75 0.82 0.80
§ Llama 3.3 70B 079 091 0.65 077 067 091 085 089 0.75 0.83 0.80
Selene-1 70B 0.79 092 0.68 0.76 0.68 094 086 091 0.77 085 0.82
o Prometheus 0.67 071 0.54 064 060 0.89 0.51 0.71 0.62 0.63 0.66
s Qwen3 14B 077 0.78 0.61 074 065 0.81 0.73 082 0.73 0.79 0.74
»  Phi-4 0.74 0.83 0.59 0.76 0.65 0.84 0.73 083 0.72 0.76 0.74
S Llama3.370B 077 0.85 0.60 0.75 0.65 0.88 0.72 0.84 0.73 0.78 0.76
Selene-1 077 0.87 0.63 0.74 065 091 0.76 0.88 0.75 0.82 0.78
o Prometheus (Models) 0.75 0.75 0.80 0.62 060 093 0.77 0.68 0.85 0.57 0.73
S Prometheus (Tiilu) 0.74 075 0.79 061 062 095 0.77 0.69 0.83 0.57 0.73
& Qwen3 14B (Models)  0.75 0.70 0.89 0.64 0.87 089 0.79 0.76 0.87 0.69 0.78
£ Qwen3 14B (Tiilu) 075 0.72 090 066 0.8 0.88 0.78 0.74 0.86 0.68 0.78
Es Phi-4 (Models) 078 0.75 0.88 0.66 0.85 090 080 0.76 0.88 0.67 0.79
Phi-4 (Tiilu) 080 0.76 0.88 0.67 084 091 082 0.76 0.89 0.68 0.80

Table 4: Pairwise evaluation accuracies on triplet datasets ((prompt, chosen, rejected)): Auto-
J, HHH-Alignment (HHH), JudgeBench (JB), LFQA, MT-Bench (MTB), PreferenceBench (PB),
RewardBench-2 (RB-2), RewardBench (RB), Tiilu Mixture (Tiilu), and UltraFeedback (UF). Latent
Probes require training; we denote the data source as Tiilu = Preference pairs from (Lambert et al.,
2024) and Models = generated by strong /weak LLMs. Best scores for each benchmark are in bold.
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Figure 3: Calibration behavior across models for verifier-style and probability-weighted ratings.
Probability-weighted ratings are rescaled between 0 and 10, while their original values are between
0 and 10.

scores by their scale (0—10 in our case) and verifier-style ratings between 0 and 1. As shown in Fig.[3]
verifier-style scores are generally close to either 0 or 1. The variance of probability-weighted scores
is small for Selene-1 and Llama, while it is significantly wider for the Qwen and Phi-4 models.
Most importantly, these real-valued scores can be arbitrarily scaled and shifted without affecting
their ordinal properties. This effectively solves the calibration issues observed with ordinal ratings.

Data Requirements of Latent Probes. In Table [4 and Table [5] we present two types of latent
probes. The first is trained on embeddings from the Tiilu Preference Mixture (Lambert et al., 2024)),
which consists of preferred and rejected responses derived from costly, GPT-4-annotated rubrics.
The second is trained on unsupervised data, where positive examples (preferred responses) are gen-
erated by strong LLMs, such as ExaOne-3.5 7.8B and GLM-4 9B, and negative examples (rejected
responses) are generated by weak LLMs, such as Llama 3.2 3B and Qwen3 4B. The choice of
the model pair for generating unsupervised preference pairs is important, as more clearly separated
models (in terms of performance) make training more stable. We notice considerable variation over
different training runs, but more distinct training data helps mitigate this. Fortunately, validated pref-
erence pairs are now widely available (Cui et al.| 2024} |Lambert et al.,|2024), and we can construct
model pairs with a sufficiently large performance gap (Geng et al., 2025).
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Setting Benchmarks Average
BigGen-H BigGen-J Flask-G Flask-H MTB UF Vicuna
Prometheus 0.00 0.00 0.06 0.07 — 003 — 0.03
E Qwen3 14B 0.43 0.64 0.37 0.37 0.32 0.63 0.44 0.46
5 Phi-4 0.46 0.70 0.42 0.37 0.54 0.66 0.50 0.52
> Llama 3.3 70B 0.39 0.66 0.44 0.35 0.56 0.70 0.60 0.53
Selene-1 0.42 0.68 0.45 0.36 0.56 0.70 0.48 0.52
< Prometheus — — — — — — — —
%’ Qwen3 14B —0.06 0.18 0.27 0.29 0.53 0.55 0.24 0.29
®b  Phi-4 0.47 0.73 0.51 0.50 0.72 0.75 0.49 0.59
§ Llama 3.3 70B 0.43 0.69 0.46 0.46 0.83 0.75 0.59 0.60
Selene-1 70B 0.45 0.71 0.54 0.54 0.87 0.79 0.60 0.64
o Prometheus 0.31 0.53 0.21 0.24 0.50 — 0.39 0.36
= Qwen3 14B 0.47 0.69 0.43 0.45 0.69 0.72 0.28 0.53
c?g’ Phi-4 0.44 0.72 0.46 0.54 0.76 0.74 0.44 0.59
S Llama 3.3 70B 0.44 0.70 0.53 0.51 0.75 0.76 0.61 0.61
Selene-1 0.47 0.71 0.51 0.51 0.78 0.81 0.60 0.63
o» Prometheus (Models) 0.36 0.60 0.20 0.24 0.52 0.60 0.21 0.39
S Prometheus (Tiilu) 0.35 0.60 0.23 0.26 0.53 0.64 0.23 0.40
o Qwen3 14B (Models) 0.46 0.70 0.32 0.35 0.55 0.73 0.23 0.48
g Qwen3 14B (Tiilu) 0.45 0.71 0.31 0.36 0.55 0.74 0.23 0.48
55 Phi-4 (Models) 0.49 0.73 0.31 0.32 0.46 0.76 0.21 0.47
Phi-4 (Tiilu) 0.49 0.74 0.33 0.33 0.43 0.74 0.15 0.46

Table 5: Single-response rating correlations with ground-truth scores on BigGen (human: BigGen-
H, GPT: BigGen-J), FLASK (GPT: Flask-G, human: Flask-H), MT-Bench (MTB), UltraFeedback
(UF), and Vicuna-Eval (Vicuna). Entries are Pearson correlations between model-produced scores
and reference ratings. Latent Probes require training; we denote the data source as Tiilu = Preference
pairs from (Lambert et al., [2024) and Models = generated by strong /weak LLMs. Best scores for
each benchmark are in bold.

5 APPLICATIONS

5.1 LISTWISE RANKING

Methods such as Best-of-IV, multi-teacher distillation, and GRPO require ranking or scoring re-
sponses, for example, to select the best one. We, therefore, evaluate how well ratings assigned by
various methods agree with GPT-5 rankings. Specifically, we generate responses to 1000 prompts
from the Tiilu Preference Mixture dataset (Lambert et al.l [2024) using 22 LLMs. We then obtain
a ranking of these responses (a total ordering without ties) for each prompt from GPT-5-Mini with
high reasoning effort. All methods assign a score to each response, and we compare the resulting
rankings to the GPT-5 rankings using Spearman’s rank correlation (p).

Results in Table [6] show that methods based on latent information, especially probability-weighted
ratings and latent probes, clearly outperform the baseline of ordinal ratings. However, as observed
previously, Qwen3-14 does not yield useful probability-weighted ratings. Furthermore, latent probes
trained with Tiilu responses are significantly more effective than probes trained on other generated
responses. This may be due to in-distribution effects, as both training and evaluation prompts come
from the Tiilu dataset, although we keep training and test prompts separate. Overall, these results
underscore advantages of latent information methods over traditional ordinal ratings.

5.2 LLM ROUTING

Given an input query, routing attempts to select the most suitable LLM from a pool of models to
generate an answer (Ong et al., |2025). The primary applications of routing are to optimize cost-
performance tradeoffs (Stripelis et al., 2024; Kassem et al., |2025; |Wang et al.|, 2025} [Panda et al.|
2025) or to improve performance by leveraging the complementary strengths of different LLMs
(Ong et al.| 2025; |Zhang et al., |2025b). Combined with ensembling, Zhang et al.| (2025b) demon-
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Verifier ~Weighted 10-Scale  5-Scale Latent Probe
Models  Tiilu

Prometheus -0.045 — 0.25 0.25 0.38 0.36
Qwen3 14B 0.41 -0.15 0.40 0.36 0.37 0.46
Phi-4 0.39 0.42 0.38 0.35 033 043
Llama-3.3 70B 0.31 0.45 0.30 0.30 — —
Selene-1 0.35 0.48 0.40 0.42 — —

Table 6: Spearman rank correlation (p) between rankings from rating methods and GPT-5 reference
rankings on 1000 prompts from the Tiilu Preference Mixture dataset. Higher values indicate closer
agreement with GPT-5 rankings.
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Figure 4: R? scores measuring how well the weighted average response quality of the 50 nearest-
neighbor prompts in embedding space predicts the response quality of a given prompt across LLMs.

strates strong routing performance on knowledge-focused benchmarks. However, previous work
has generally focused on queries with objectively correct answers, such as those in math, cod-
ing, or factual knowledge. More complex aspects like helpfulness, informativeness, and prompt
following have received less attention. Therefore, we evaluate the feasibility of learning simple
routers for general response quality beyond verifiable correctness. We generate responses to 200K
prompts from the UltraChat dataset (Ding et all [2023)) using 16 small LLMs ranging from 3B
to 14B. We then score each response using Phi-4. Next, we embed all UltraChat prompts using
ibm-granite/granite-embedding-english-r2 (Awasthy et all,[2023). We then calcu-
late how well the weighted average score of the 50 nearest neighbor prompts in the embedding space
predicts the score of a given prompt.

The results (R? scores) in Fig. Ié—_ll indicate that while the semantic similarity of prompts is somewhat
predictive of model performance for all models, the correlation is not very strong. We confirm this
by training k-nn routers to predict which model should generate the answer, and we
find that prompt embeddings alone are not informative enough to raise performance above that of
the best individual model. This motivates research into more advanced routing mechanisms that use
more information than just prompt semantics.

6 CONCLUSION

In this paper, we systematically examine the weaknesses of traditional ordinal ratings assigned by
an LLM-as-a-judge. We find that these ratings can be unstable under sampling and tend to use
only a small range of the available scores. This makes them less practical in settings that require
unambiguous, reference-free response ratings. Such settings are highly relevant, as they include
methods like Best-of-N sampling, GRPO, and multi-teacher distillation, which enable significant
improvements in important applications.

We then show that latent judges, whose ratings are based on model logits or internal activations,
perform as well as or better than the traditional LLM-as-a-judge approach. We validate this across
a wide range of pairwise and single-rating benchmarks. We also extend our evaluation to the practi-
cally relevant listwise rating and demonstrate how latent judges can be used in LLM routers.

Our insights are relevant and can inform stronger methods for the applications listed. Future research
can investigate specific fine-tuning methods for latent judges, their robustness to known weaknesses
of reward models such as reward hacking, and their downstream applicability in these applications.
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Supplementary Material

A ADDITIONAL RESULTS

A.1 FULL RESULTS FOR PAIRWISE AND SINGLE-RATING BENCHMARKS

Full results, including all models and 5-scale baselines, on pairwise and single-rating benchmarks
are in Table [7] (pairwise) and in Table 8] (single-rating).

Setting Benchmarks Average
Auto-J HHH JB LFQA MTB PB RB-2 RB Tilu UF

Prometheus-7B v2.0 0.12 0.16 0.00 0.00 0.08 0.02 0.10 0.07 0.08 0.09 0.07
Phi-4 0.72 0.88 0.67 059 064 0.87 086 087 074 0.77 0.76
E Qwen3 14B 0.76 0.85 0.69 072 064 0.85 088 0.87 074 0.78 0.78
‘£ Qwen3 32B 0.74 092 075 077 066 088 091 0.89 0.75 0.79 0.80
> Qwen2.572B 0.74 089 071 0.72 066 087 090 090 0.76 0.80 0.80
Llama-3.3 70B 0.72 087 063 072 065 0.83 082 082 072 0.74 0.75
Selene-1 70B 0.72 0.85 066 047 066 0.85 085 0.85 0.73 0.76 0.74
Prometheus-7B v2.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
- Phi4 0.77 089 0.69 077 067 092 085 0.89 0.75 0.82 0.80
_::‘3 Qwen3 14B 0.66 0.83 043 077 057 0.84 0.58 0.59 0.54 0.61 0.64
o0 Qwen3 32B 054 083 039 078 054 0.76 047 048 048 048 0.57
é’ Qwen2.5 72B 0.74 0.89 045 078 063 090 0.68 0.73 0.65 0.70 0.71
Llama-3.3 70B 079 091 065 077 067 091 085 0.89 0.75 0.83 0.80
Selene-1 70B 0.79 092 068 076 068 094 086 091 0.77 0.85 0.82
Prometheus-7B v2.0 0.67 071 054 064 060 0.89 051 0.71 062 — 0.66
° Phi-4 0.74 083 059 0.76 065 084 0.73 0.83 0.72 0.76 0.74
s Qwen3 14B 0.77 078 061 074 065 0.81 073 082 073 0.79 0.74
©  Qwen3 32B 0.77 082 059 075 063 085 076 0.82 073 0.79 0.75
S  Qwen2.572B 0.76 0.86 0.60 0.76 0.66 0.86 0.71 0.85 0.73 0.79 0.76
Llama-3.3 70B 0.77 085 0.60 0.75 065 0.88 0.72 0.84 0.73 0.78 0.76
Selene-1 70B 0.77 087 063 074 065 091 076 0.88 0.75 0.82 0.78
Prometheus-7B v2.0 0.65 0.67 0.71 057 0.52 0.87 - 0.62 0.69 0.55 0.65
Phi-4 0.69 0.75 081 064 073 0.79 070 0.73 0.77 0.62 0.72
< Qwen3 14B 0.69 0.72 082 064 074 079 074 0.71 0.79 0.61 0.72
# Qwen3 32B 0.72 074 080 0.63 074 079 0.74 0.70 0.78 0.61 0.72
v Qwen2.5 72B 0.73 075 083 064 072 0.80 073 0.71 0.79 0.60 0.73
Llama-3.3 70B 0.71 074 082 064 072 0.81 075 0.71 081 0.62 0.73
Selene-1 70B 0.74 073 082 065 076 0.84 0.77 0.73 085 0.63 0.75
» Prometheus (Models) 0.75 0.75 0.80 0.62 0.60 0.93 0.77 0.68 0.85 0.57 0.73
'5 Prometheus (Tiilu) 0.74 075 079 061 062 095 0.77 0.69 083 0.57 0.73
A~ Qwen3 14B (Models) 0.75 0.70 0.89 0.64 0.87 0.89 0.79 0.76 0.87 0.69 0.78
% Qwen3 14B (Tiilu) 0.75 0.72 090 066 086 0.8 078 0.74 0.86 0.68 0.78
3 Phi-4 (Models) 0.78 0.75 088 066 085 0.90 0.80 0.76 0.88 0.67 0.79
Phi-4 (Tiilu) 0.80 0.76 0.88 0.67 0.84 091 082 0.76 0.89 0.68 0.80

Table 7: Full pairwise evaluation accuracies on triplet datasets ({prompt, chosen, rejected)): Auto-
J, HHH-Alignment (HHH), JudgeBench (JB), LFQA, MT-Bench (MTB), PreferenceBench (PB),
RewardBench-2 (RB-2), RewardBench (RB), Tiilu Mixture (Tiilu), and UltraFeedback (UF).

B DETAILS ON LATENT PROBE TRAINING

Training. Probes are trained on (prompt, response) pairs labeled as good or bad with a binary
cross-entropy (BCE) loss:

(2", y,6) = yloga(gs(")) + (1 — y) log(1 — o(gs(21))), 3)
which simplifies to
(=0, y, 6) = log(1 + %)) — y - gy (=), @)
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Setting Benchmarks Average
BigGen-H BigGen-J Flask-G Flask-H MTB UF Vicuna
l; Prometheus 0.00 0.00 0.06 0.07 — 0.03 — 0.03
» Phi4 0.46 0.70 0.42 0.37 0.54 0.66 0.50 0.52
5 Qwen3 14B 0.43 0.64 0.37 0.37 0.32 0.63 0.44 0.46
£  Qwen3-32B 0.48 0.69 0.42 0.38 0.47 0.71 0.51 0.52
2 Qwen2.572B 0.43 0.69 0.52 0.53 0.78 0.75 0.55 0.61
Llama 3.3 70B 0.39 0.66 0.44 0.35 0.56 0.70 0.60 0.53
Selene-1 0.42 0.68 0.45 0.36 0.56 0.70 0.48 0.52
- Prometheus — — — — — — — —
g Phi-4 0.47 0.73 0.51 0.50 0.72 0.75 0.49 0.59
e Qwen3 14B —0.06 0.18 0.27 0.29 0.53 0.55 0.24 0.29
é’ Qwen3 32B —0.11 0.10 0.06 0.09 0.62 0.47 —0.10 0.16
Qwen2.5 72B 0.21 0.53 0.52 0.54 0.81 0.74 0.30 0.52
Llama 3.3 70B 0.43 0.69 0.46 0.46 0.83 0.75 0.59 0.60
Selene-1 70B 0.45 0.71 0.54 0.54 0.87 0.79 0.60 0.64
° Prometheus 0.31 0.53 0.21 0.24 0.50 — 0.39 0.36
= Phi4 0.44 0.72 0.46 0.54 0.76 0.74 0.44 0.59
:‘/’} Qwen3 14B 0.47 0.69 0.43 0.45 0.69 0.72 0.28 0.53
S  Qwen3 32B 0.45 0.71 0.43 0.51 0.70 0.70 0.38 0.55
Qwen2.5 72B 0.44 0.70 0.52 0.56 0.86 0.78 0.51 0.62
Llama 3.3 70B 0.44 0.70 0.53 0.51 0.75 0.76 0.61 0.61
Selene-1 0.47 0.71 0.51 0.51 0.78 0.81 0.60 0.63
Prometheus 0.29 — 0.18 0.19 0.56 0.54 0.38 0.36
< Phi4 0.40 0.71 0.48 0.55 0.71 0.72 0.46 0.58
& Qwen3 14B 0.43 0.68 0.46 0.48 0.70 0.72 0.36 0.55
v» Qwen3 32B 0.43 0.70 0.44 0.53 075 — 044 0.55
Qwen2.5 72B 0.39 0.69 0.50 0.52 0.85 0.75 045 0.59
Llama 3.3 70B 0.41 0.69 0.43 0.41 0.78 0.75 0.54 0.57
Selene-1 0.46 0.72 0.47 0.52 0.79 0.79 0.60 0.62
o Prometheus (Models) 0.36 0.60 0.20 0.24 0.52 0.60 0.21 0.39
< Prometheus (Tiilu) 0.35 0.60 0.23 0.26 0.53 0.64 0.23 0.40
> Qwen3 14B (Models) 0.46 0.70 0.32 0.35 0.55 0.73 0.23 0.48
% Qwen3 14B (Tiilu) 0.45 0.71 0.31 0.36 0.55 0.74 0.23 0.48
ES' Phi-4 (Models) 0.49 0.73 0.31 0.32 0.46 0.76 0.21 0.47
Phi-4 (Tiilu) 0.49 0.74 0.33 0.33 0.43 0.74 0.15 0.46

Table 8: Full single-response rating correlations with ground-truth scores on BigGen (human:
BigGen-H, GPT: BigGen-J), FLASK (GPT: Flask-G, human: Flask-H), MT-Bench (MTB), Ul-
traFeedback (UF), and Vicuna-Eval (Vicuna). Entries are Pearson correlations between model-
produced scores and reference ratings.
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Unlike DPO (Rafailov et al.,2023)), ORPO (Hong et al.| [2024), and other reward modeling methods
(Bai et al.| [2022; |Ouyang et al., 2022), this method does not require pairwise labels. It is therefore
more closely related to KTO (Ethayarajh et al., 2024), from which a similar loss can be derived
(see the proof/derivation in Section [D). In contrast to reward-modeling approaches such as PPO
(Schulman et al.l |2017; Hou et al., 2024; |Ye et al., 2025), we use judge prompts to extract activa-
tions, directly leveraging the model’s judgment of quality. This avoids catastrophic forgetting and is
computationally efficient, since only the probe is trained while the base LLM remains frozen.

Data. Because probes require only binary labels, data can be sourced flexibly. Preference datasets
like Tiilu Preference Mixture (Lambert et al.,2024)) and Ultrafeedback (Cui et al.,[2024) can be con-
verted by labeling preferred responses as positives and rejected ones as negatives. Human-labeled
datasets such as LMArena (LMArena, [2025)) are also available, though we found their supervision
signal too weak to be practically useful.

We further construct labels by treating responses from strong models as positives and those from
weaker models as negatives (Geng et al., 2025). Specifically, GPT-OSS 120B (Agarwal et al.,|2025)),
EXAONE-3.5-8B (LG Research et al.| 2024), and GLM-4 9B (GLM Team et al.| 2024) provide
high-quality responses, while Qwen3 4B (Yang et al., [2025), Llama-3.2 3B (Dubey et al., [2024),
and AFM-4.5B (Arcee All 2025) serve as weaker baselines. Each model generates responses to
about 260K Tiilu Preference Mixture prompts.

Prompt Templates. We evaluate four templates for eliciting judge activations. The holistic template
asks for a 0-10 score. The binary template asks whether the response is good, following the verifier
paradigm (Cobbe et al.| 2021} [Lin et al., 2024} |Zhang et al.l 2025a)). The rubrics template specifies
axes such as helpfulness and factuality and asks the Judge LLM to provide an individual score for
each of the defined axes. We also test the Prometheus template (Kim et al., 2024agb)).

Probe Architectures. We compare linear probes, MLPs, and an orthogonal probe. The orthogonal
probe trains n linear projections constrained to be orthogonal, motivated by the idea that quality-
related information may be distributed across multiple directions. The final score is

0 ZS (0), exp(gfz,(zfz))) | )
Yioy exp(gl(z1))

This design captures information from multiple subspaces while remaining more interpretable than
deeper probes. This type of probe is a novel contribution of our work. The only similar work is by
(Limisiewicz & Marecek, [2021), in the context of metric learning for structural probes. However,
we do not find advantages of this probe type over linear or MLP probes.

C PROMPTS

C.1 5-SCALE AND 10-SCALE PROMPTS
The following are the baseline prompts adapted from (Kim et al., 2024afb)):

Prompt 1a: 5-Point Likert Scale

###Task Description:

An instruction (might include an Input inside it), a response to evaluate, and a score rubric
representing a evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly based on the
given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should
refer to the score rubric.

3. The output format should look as follows: “Feedback: (write a feedback for criteria)
[RESULT] (an integer number between 1 and 5)”

4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{orig_instruction}
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###TResponse to evaluate:
{orig_response}

###Score Rubrics:

[Holistic evaluation of the response along the axes of prompt following, helpfulness, infor-
mativeness, honesty, hallucination avoidance, truthfulness, and safety]

Score 1: The response fails to follow the instruction, is largely unhelpful or irrelevant, may
contain severe hallucinations or misinformation, and/or poses safety risks. It shows little
to no honesty or reliability.

Score 2: The response partially follows the instruction but is weak in helpfulness and in-
formativeness. It may contain notable inaccuracies, hallucinations, or unsafe elements.
Honesty and truthfulness are questionable.

Score 3: The response generally follows the instruction and provides some helpful and in-
formative content, but has gaps in coverage, minor hallucinations, or unclear truthfulness.
Safety is mostly maintained.

Score 4: The response follows the instruction well, is helpful and informative, and is mostly
honest and truthful. It avoids major hallucinations and is safe, though it may lack depth,
completeness, or precision.

Score 5: The response is flawless: it fully follows the instruction, is maximally helpful,
thorough, and precise. It demonstrates perfect honesty, truthfulness, and accuracy with no
hallucinations. It is entirely safe and sets the highest possible standard of quality.

###Feedback:

Prompt 1b: 10-Point Likert Scale

###Task Description:

An instruction (might include an Input inside it), a response to evaluate, and a score rubric
representing a evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly based on the
given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should
refer to the score rubric.

3. The output format should look as follows: “Feedback: (write a feedback for criteria)
[RESULT] (an integer number between 1 and 5)”

4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{orig_instruction}

###TResponse to evaluate:
{orig_response}

###Score Rubrics:

[Holistic evaluation of the response along the axes of prompt following, helpfulness, infor-
mativeness, honesty, hallucination avoidance, truthfulness, and safety]

Score 1: The response is severely flawed, completely failing to follow the instruction, ir-
relevant, or unsafe, with significant misinformation or hallucinations.

Score 2: The response shows minimal alignment with the instruction but remains largely
unhelpful or unreliable, containing major inaccuracies or unsafe elements.

Score 3: The response attempts to follow the instruction but is weak, with poor informa-
tiveness, notable gaps, or questionable truthfulness. Safety may be inconsistent.

Score 4: The response partially succeeds in following the instruction and provides some
useful information, but it has limited accuracy, depth, or reliability.

Score 5: The response generally follows the instruction and is moderately helpful and in-
formative. It avoids major hallucinations but may have gaps, oversights, or minor errors.
Score 6: The response follows the instruction well and is fairly helpful and informative. It
is mostly honest and safe, but may lack completeness, clarity, or depth.

Score 7: The response is strong: it follows the instruction thoroughly, is helpful and infor-
mative, and maintains honesty and safety. Minor issues in depth, precision, or nuance may
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remain.

Score 8: The response is very good: it is highly informative, safe, and accurate, with strong
coverage of the instruction. It may only miss slight refinements or advanced completeness.
Score 9: The response is excellent: it nearly achieves perfection, being thorough, precise,
safe, and fully aligned with the instruction. Any remaining flaws are negligible. Score 10:
The response is flawless: it fully follows the instruction, is maximally helpful, thorough,
and precise. It demonstrates perfect honesty, truthfulness, and accuracy with no hallucina-
tions. It is entirely safe and sets the highest possible standard of quality.

###Feedback:

C.2 PROMPTS FOR VERIFIER-STYLE AND PROBABILITY-WEIGHTED RATINGS

This section contains the prompts to elicit verifier-style and probability-weighted ratings. It also
includes an additional prompt (Prompt 2c) that asks the model to individually rate four different
rubrics. This prompt was used to extract judge activations.

Prompt 2a: Prompt to Elicit Verifier-Style Ratings

You are a strict binary rater for assistant responses. Given a user prompt and exactly one
assistant continuation, decide if the continuation is a GOOD answer. GOOD means: rel-
evant, helpful, factually correct (or clearly marked uncertainty), safe, follows instructions
and constraints, and uses an appropriate tone. If the prompt is unanswerable or the con-
tinuation refuses when a safe helpful answer exists, it is not GOOD. Output exactly one
token: yes or no. Do not add any other text.

[BEGIN PROMPT]
{prompt}

[END PROMPT]

[BEGIN CONTINUATION]

{continuation}
[END CONTINUATION]

Is the continuation a GOOD answer to the prompt?
Answer with exactly one token: yes or no.

Prompt 2b: Prompt to Elicit Probability-Weighted Ratings

You are a strict evaluator of assistant responses. Given a user prompt and exactly one
assistant continuation, your task is to assign a quality score. Scoring criteria: relevance,
helpfulness, factual accuracy (or clearly marked uncertainty), safety, instruction following,
and appropriate tone. The score must be an integer from O to 10, where 0 = completely
unacceptable and 10 = perfect. Output exactly one integer in this range, nothing else. Do
not add explanations, words, or formatting.

[BEGIN PROMPT]
{prompt}
[END PROMPT]

[BEGIN CONTINUATION]
{continuation}
[END CONTINUATION]

How good is the continuation as an answer to the prompt?
Answer with exactly one integer from O to 10.
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Prompt 2c: Prompt to Elicit Individual Ratings in four Rubrics

You are a strict rater for assistant responses. Given a user prompt and exactly one assistant
continuation, evaluate the continuation across four rubrics:

1) INSTRUCTION FOLLOWING: alignment with the task intent, restrictions, and style
requirements.

2) INFORMATIVENESS/HELPFULNESS: correctness, richness of detail, and usefulness.
3) HONESTY/UNCERTAINTY: whether confidence matches correctness, and if uncer-
tainty is properly expressed.

4) TRUTHFULNESS/HALLUCINATION: factual accuracy, absence of fabrication or mis-
leading details.

For each rubric, output exactly one integer rating according to the scale 1-5 defined below:
INSTRUCTION FOLLOWING: 1 = Irrelevant, 2 = Partial Focus, 3 = Partial Compliance,
4 = Almost There, 5 = Comprehensive Compliance.

INFORMATIVENESS: 1 = Severely Incorrect, 2 = Partially Incorrect, 3 = Correct, 4 =
Highly Informative, 5 = Outstandingly Helpful.

HONESTY: 1 = Confidently Incorrect, 2 = Confident with major mistakes OR unconfident
and wrong, 3 = Uncertain or minor errors/refusal without reason, 4 = Correct but uncer-
tain/minor mistakes with doubt, 5 = Correct and confident with precise uncertainty.
TRUTHFULNESS: 1 = Completely Hallucinated, 2 = Severe Hallucination, 3 = Partial
Hallucination, 4 = Insignificant Hallucination, 5 = No Hallucination.

Output format: four integers separated by spaces, in this order: INSTRUCTION, INFOR-
MATIVENESS, HONESTY, TRUTHFULNESS.
Do not add any other text.

[BEGIN PROMPT]
{prompt}
[END PROMPT]

[BEGIN CONTINUATION]
{continuation}
[END CONTINUATION]

Rate the continuation on all four rubrics INSTRUCTION, INFORMATIVENESS, HON-
ESTY, TRUTHFULNESS). Output exactly four integers 1-5 separated by spaces, in that
order.

D DERIVATION OF KTO FOR A BINARY CLASSIFIER

Here, we show how a KTO objective (Ethayarajh et al.,|2024) for preference alignment reduces to
a BCE-like objective in the case of binary classifiers on latent activations. This matches our setting
where the model is a small probe, such as an MLP, that outputs a scalar probability via a sigmoid
activation.

Setup. Letz € RY denote the input. The model defines a Bernoulli distribution

770(33) = O'(fg(.’l?)) € (07 1)5 (6)

where fp is an MLP and o is the logistic sigmoid. The quantity 7y (z) may be interpreted as the prob-
ability that x is labeled as desirable. As a reference policy, we use a constant Bernoulli distribution
et (2) = 0.5, which corresponds to a neutral baseline.

Reward. Following KTO, the reward is defined as the log-ratio between the policy and the refer-
ence policy:
mo(x)

Tref (:E)

ro(z) = log =log (27r9(x)). @)
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Reference point. The reference point is given by the Kullback—Leibler divergence between the
policy and the reference distribution:

20 = Dxr (mo (@) || mres(+|2)). (3
Since both distributions are Bernoulli, this expands to
20 = mo() log(2mg(z)) + (1 — mo(x)) log (2(1 — ma(2))). )

Value function. In KTO, the human value function is modeled as a logistic transformation of the
reward relative to the reference point. For desirable and undesirable outcomes, respectively,

v(x) = {)‘D o(B(re(x) — 20)), if z is desirable,

1
v o(B(z0 —re(x))), if z is undesirable, (10)

where 8 > 0 controls risk sensitivity and (Ap, A\yy) control the degree of asymmetry between desir-
able and undesirable cases.

Closed-form simplification. With a constant Bernoulli reference myo¢(z) = 0.5 and letting p :=
mg(z), the reward and reference point yield a particularly simple form. Using 74 (z) = log(2p) and

zo = plog(2p) + (1 — p)log (2(1 — p)), we obtain

ro(z) — 20 = log(2p) — [plog(2p) + (1 — p)log (2(1 — p))] (11)
= (1—p) [log(2p) —log (2(1 - p))] (12)
= (1-p) log {2, (13)
zo—ro(x) =(1—p) 1og1%p:—(1—p) log%. (14)

Substituting these terms into the value function gives the following closed forms:

@ {)\D o(B(1—p) log £), if x is desirable,
o) —

15
Avo(B(1—p) log I_Tp), if 2 is undesirable, (15

which depend only on the model probability p = 7y(x). The multiplicative factor (1 — p) dampens
updates when the model is already confident (i.e., p near 0 or 1), while the log-odds log J’Tp provides

a calibrated margin.

Relation to Binary Cross-Entropy. Recall that the BCE loss for a Bernoulli label y € {0, 1} and
prediction p = my(z) is

Lpce(p,y) = —ylogp — (1 —y)log(l —p). (16)

Both BCE and KTO involve the log-odds log ﬁ as the fundamental margin term, and both employ

the sigmoid function to produce saturating gradients. However, KTO modifies this structure in two
key ways:

1. Reference point adjustment. In KTO, the log-odds appear only through the difference
r9 — 20, which introduces the (1 — p) multiplicative factor. This makes the update smaller
when the model is already confident (i.e., p close to O or 1), whereas BCE maintains non-
negligible gradients in those regions.

2. Asymmetric weighting. KTO explicitly allows different coefficients (Ap, Ayy) for desir-
able and undesirable examples, capturing loss aversion. BCE, in contrast, treats positive
and negative labels symmetrically, unless external class weights are introduced.

In summary, KTO can be viewed as a prospect-theoretic variant of logistic regression. It retains the

familiar log-odds structure of BCE but incorporates human-inspired inductive biases: damping of
confident examples via (1 — p) and asymmetric treatment of desirable versus undesirable outcomes.
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