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16 Abstract

17 Identifying goal-relevant features in novel environments is a central challenge for efficient be-
18 haviour. We asked whether humans address this challenge by relying on prior knowledge about
19 common properties of reward-predicting features. One such property is the rate of change of fea-
20 tures, given that behaviourally relevant processes tend to change on a slower timescale than noise.
21 Hence, we asked whether humans are biased to learn more when task-relevant features are slow
2 rather than fast. To test this idea, 100 human participants were asked to learn the rewards of
23 two-dimensional bandits when either a slowly or quickly changing feature of the bandit predicted
2 reward. Participants accrued more reward and achieved better generalisation to unseen feature
25 values when a bandit’s relevant feature changed slowly, and its irrelevant feature quickly, as com-
26 pared to the opposite. Participants were also more likely to incorrectly base their choices on the
27 irrelevant feature when it changed slowly versus quickly. These effects were stronger when partici-
28 pants experienced the feature speed before learning about rewards. Modelling this behaviour with
29 a set of four function approximation Kalman filter models that embodied alternative hypotheses
30 about how feature speed could affect learning revealed that participants had a higher learning rate
31 for the slow feature, and adjusted their learning to both the relevance and the speed of feature
32 changes. The larger the improvement in participants’ performance for slow compared to fast ban-
33 dits, the more strongly they adjusted their learning rates. These results provide evidence that
34 human reinforcement learning favours slower features, suggesting a bias in how humans approach
35 reward learning.

» Author Summary

s Learning experiments in the laboratory are often assumed to exist in a vacuum, where participants
s solve a given task independently of how they learn in more natural circumstances. But humans and
3 other animals are in fact well known to “meta learn”, i.e. to leverage generalisable assumptions
w0 about how to learn from other experiences. Taking inspiration from a well-known machine learning
a technique known as slow feature analysis, we investigated one specific instance of such an assumption
2 in learning: the possibility that humans tend to focus on slowly rather than quickly changing features
s when learning about rewards. To test this, we developed a task where participants had to learn the
« value of stimuli composed of two features. Participants indeed learned better from a slowly rather than
s quickly changing feature that predicted reward and were more distracted by the reward-irrelevant
s feature when it changed slowly. Computational modelling of participant behaviour indicated that
«  participants had a higher learning rate for slowly changing features from the outset. Hence, our results
s support the idea that human reinforcement learning reflects a priori assumptions about the reward
% structure in natural environments.
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» Introduction

s1 A remarkable amount of information is reaching our senses at any given time, yet often only a small
52 subset of it is relevant to our current goal. Determining which aspects of our environment are relevant
53 is therefore a crucial challenge for learning goal-directed behaviour. But addressing this challenge is
s« hard. The space of possibilities is often too large to be explored fully within the time limits we need
ss  to consider, and yet limiting attention to only a subset of features risks ignoring relevant information
ss [, 2]. One approach to this problem is to not learn every problem anew, but instead use knowledge of
57 properties that have been relevant in the past as a starting point, in the form of so-called priors, also
s known as inductive biases [3—7]. Here, we study the role of one such prior in human learning, namely a
5o bias to focus learning on slowly changing features in our environments, and their potential association
o to rewards.

61 Analogous to the concept of a ‘prior’ in Bayesian statistics, priors are pre-existing beliefs about
e the underlying structure of an environment, based on generalised past experiences or evolutionary
3 transmission [3, 8]. Previous research has shown that priors can expedite the learning process by
s« focusing information processing on what is common across many environments [4, 9, 10]. The resulting
s decision-making biases are numerous [10-13] and can for instance be observed in the form of adaptive
s heuristics that reflect constraints on time or resources [14], or in the form of visual illusions that reflect
v the simplifying assumptions of our visual system, such as that light tends to come from above [15].
e Studying useful priors for representation learning is also an active field of development in artificial
e intelligence [8, 16-18], in particular for reinforcement learning (RL), where knowledge about which
70 actions maximise reward and minimise punishment is acquired through a trial-and-error process [19].
7 While the RL framework has been very successful in furthering our understanding of learning and
2 decision-making, [20-23], it becomes notoriously inefficient in high dimensional environments [19].
7z This problem can be alleviated through a process known as representation learning, where learning is
7 limited to a subset of features that help predict future rewards, known as task states [19, 24-28]. The
75 difficulties of learning the state space for each new problem de novo have been widely recognized [29],
7 underscoring the potential benefit of leveraging prior knowledge.

7 A useful prior for reinforcement learning should therefore help quickly build appropriate task states
7 from rich perceptual observations in novel environments [8, 30]. A characteristic shared across many
7o environments is that the causal process generating observations develops on a slower timescale than
s the sensory signals we observe [31-33]. For example, the appearance of a ball flying toward you in a
a1 park might fluctuate rapidly as it passes through patches of sun and shade, but its true colour will
&2 remain unchanged. Similarly, other relevant properties such as its speed and trajectory will change
& in a slower, continuous manner compared to low-level perceptual features. In short, signal tends to
s« vary more slowly than noise [34]. It follows that a way to extract features relevant to building task
s states, while remaining impartial to the exact nature of those features or the causal process underlying
s the perceptual observations, is to focus on slowly changing features. Indeed, some research has shown
& that humans have a bias toward perceiving slower speeds in the spatial domain [34-36]. This idea
s has gained more traction in machine learning, where a slowness prior has been shown to enable the
s discovery of task states from raw observations [8, 28, 37, 38].

% A well-known implementation of this prior is Slow Feature Analysis (SFA), an unsupervised learn-
o1 ing algorithm that reduces the dimensionality of its input by identifying slowly changing dimensions
» in the data [31, 39, 40]. SFA first isolates independent components in the data and then extracts
o3 those components that change slowly, under the premise that slower features are more meaningful
o« representations of the data [31]. This insight has been shown to be relevant for RL, for instance in the
e context of a spatial learning task where SFA can provide a effective representation learning mechanism
o [41]. The same paper showed that the SFA agent produced similar learning trajectories to rats solving
o7 a comparable task, underscoring the relevance of a slowness prior for animals. Theoretical research
e also demonstrated that extracting slow features can explain the activity of complex cells in the visual
e cortex, the formation of allocentric spatial maps in the hippocampus and can be implemented in a bio-
o logically plausible network [42-46]. Hence, a slowness prior promises a domain-general and biologically
1w plausible way to extract task states from environmental input.

102 Despite its potential for representation learning and the abundance of research in the machine
w3 learning domain, studies on the slowness prior in human reinforcement learning are largely lacking.
e  Here we explored the idea that humans rely on a slowness prior during reinforcement learning. We
s developed a novel decision-making task, in which participants had to repeatedly learn which of two
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ws stimulus features predicted reward. We manipulated the speed of change of the features and asked
w7 whether participants were faster to learn when the relevant feature changed slowly versus when it
s changed quickly. Across two studies and extensive model comparison, our results indicate that they
wo do. This finding enriches our understanding of human inductive biases in RL and can prompt further
o studies about other such biases in human learning, as well as inform artificial intelligence about how
m  to best build human-like agents.
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» Results

us  We investigated whether humans have a prior to preferentially process slowly changing features of the
s environment that impacts reinforcement learning. We hypothesised that given such a prior, partici-
us pants should be better at learning the task if reward-predictive features changed slowly, rather than
us quickly. To test this, we developed a task that required participants to learn the rewards associated
w7 with a set of visual stimuli characterized by two features, a colour and a shape (Fig 1a). During each
us trial of learning, participants saw a stimulus composed of both features and decided between rejecting
o or accepting the stimulus. While rejecting always led to a fixed reward of 50 coins, accepting led to
120 reward between 0 to 100 coins that was higher than 50 for half of all stimuli. Across trials, the two
w1 features changed independently and with different speeds: one feature changed slowly (e.g., partici-
122 pants saw relatively similar shapes from trial to trial), while the other feature changed quickly (e.g.,
13 participants saw relatively distinct colours from trial to trial, Fig 1a). Our core manipulation was that
124 in each block either the slowly-changing or the fast-changing feature was reward-predictive, while the
s other had no relation to reward (relevant and irrelevant feature, respectively). The relevant feature
126 had a fixed relation to reward in each block, with the maximum reward of 100 assigned to one position
12z and decreasing rewards assigned to other positions based on their distance to the maximum. This split
s the circular feature space into two semicircles: high- and low-reward (Fig 1b). Hence participants had
120 to learn which feature was reward-predictive in general, and which specific feature positions should be
1o accepted vs rejected.

131 We conducted a pilot experiment and a main experiment, each with 50 participants. The key differ-
12 ence between the pilot and main experiments was that the main experiment included a demonstration
133 of stimulus changes before each block. Hence, in the pilot experiment participants directly started
1« reward learning, and could observe which feature changed fast vs. slow while they also had to observe
135 the reward outcomes. In the main experiment, we ensured participants knew how fast each feature
s would change before each block by displaying a sequence of 30 trials without reward that participants
137 observed passively before learning (Observation phase, see Fig 1d). Participants were not informed
s about which feature was relevant in either experiment but had to learn it in each block through trial
1 and error from the Learning phase, as described above (pilot experiment: 45 trials, main experiment:
w60 trials, Fig 1e). Due to the continuous reward structure, it was beneficial to generalise observed out-
w1 comes to nearby feature positions. We probed generalisation of learned values at the end of each block
w2 in a Test phase in which participants were asked to choose the more valuable stimulus among pairs of
1z stimuli not seen during learning, without feedback (pilot experiment: 15 trials, main experiment: 36
e trials, Fig 1f).

145 Participants performed eight blocks in total. In half of the blocks the slow feature was reward-
us predictive (slow blocks), in the other half the fast feature was reward-predictive (fast blocks, Fig 1c).
1z Within each of these conditions, colour and shape were assigned as the relevant feature an equal
us number of times.

w Participants learned feature rewards and generalised their knowledge

150 We first analysed participant choices to confirm learning of the feature-reward mapping. In the main
151 experiment, participants’ choice accuracy on the learning task increased from an average of 51% in the
12 first ten trials of a block to 74% in the last ten trials (£(49) = 13.699 p < .001, Fig 2a). This increase
153 in accuracy was accompanied by a gradual decrease in ‘accept’ choices throughout the learning phase,
1sa reducing from 86% in the first ten trials to 61% in the last ten trials (¢(49) = —12.755 p < .001,
155 Fig 2b). Note that ‘accept’ choices allowed participants to gather information on stimulus values and
156 therefore were necessary for exploration early in a block. Accordingly, participants learned with time
157 to selectively reject low-value stimuli, while they continued to accept high-value stimuli (Fig 2c). We
155 confirmed participants did not engage in simplified strategies by fitting two control models, one which
150 captures possible biases for accept choices (Random Choice model), and one which can capture a bias
o for one of the response keys (Random Key model). These models did not explain participant choices
e well, compared to the learning models discussed below (Fig 2a, details see below and Methods). These
12 results show that participants learned the feature-reward mapping and are consistent with data from
163 the pilot experiment, see S1 Fig

164 We also found that participants could correctly identify the higher value stimulus in the test phase,
165 in which previously unseen feature positions were presented, for which participants never witnessed
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Figure 1: Continuous reward features learning task. a) The two stimulus features and their possible
speeds. Each jump of the arrows indicates the change in the feature on a trial. The slow feature (here:
shape) changes gradually, while the fast feature (here: colour) changes randomly. The feature-speed
mapping is only for illustration, in each block, either shape or colour could change slowly. b) The
mapping of reward onto the relevant feature space. The relevant feature (here: shape) determines the
stimulus reward. The closer the stimulus shape is to the maximum reward location, the higher the
reward. The irrelevant feature (here: colour) was uncorrelated with reward. The feature-reward map-
ping is only for illustration, in each block, either shape or colour could be relevant and the maximum
reward location changed. ¢) How feature speed and reward predictiveness were combined to form slow
and fast blocks. Note that which feature was slow/relevant was counterbalanced across blocks. d-f)
Schematic of the three phases in each task block in the main experiment. In the pilot experiment, the
observation phase d was omitted.

s reward feedback (mean accuracy 75% significantly higher than the chance level of 50% ¢(49) = 17.378,
7 p < .001). Further, participant choice probabilities reflected true stimulus values (Fig 2d). Performance
s during the test phase did not differ statistically from end-of-learning performance in the learning phase
e (£(49) = —1.48, p = .143). Hence, our data suggests that participants generalised values successfully
o across task and stimulus differences between the two phases. These results were a replication of what
w1 we observed in the pilot experiment, see S1 Fig

» Performance improved when the relevant feature changed slowly

13 Having established that participants learned and generalised well in our task, we turned to our
e  main question, namely, whether reward learning and generalisation differed for slowly versus fast-
s changing features. The hypothesis and main analyses were preregistered prior to data collection
ws  (https://osf.io/6dy8f). Note that some changes were made to the design and follow-up analyses af-
w7 ter the preregistration (e.g. ANOVAs were replaced with linear mixed effect models). None of these
s changes were material to the main conclusions of our paper. For specific changes in the rationale
e behind them, see S1 Text. All mixed effect models used the maximal random effects structure that
1o converged. We first included all main effects and interactions between predictors in the fixed effects
w1 and sequentially removed all terms that did not significantly improve the model. Predictors were z-
12 scored and no response trials were excluded, see Methods for details. Full model descriptions including
183 effect sizes and confidence intervals can be found in S2 - S7 Tables.

182 Improved learning We measured performance in the learning phase by subtracting the cumula-
s tive reward expected by chance (50 per trial) from the cumulative reward obtained by participants.
16 In line with our hypothesis, the cumulative reward gain was higher in slow compared to fast blocks
w (Mg = 248.62 £ 21.54, Mp = 217.57 4+ 22.43, t(49) = 2.17, p1—_sidzea = 017, d = 0.31, Fig 2¢). To
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Figure 2: Participants performed better in slow blocks. a) Proportion correct choices across trials in
the learning phase. The behaviour of two control models which capture aspects of random behaviour
are shown in blue/green colours. b) The proportion of accept choices in the learning phase reduces
across trials. ¢) The proportion of accept choices depending on the true stimulus reward, for every 15
trials from the start to the end of the block. Participants learn to selectively reject low-value stimuli.
a-c) Curves were averaged across 3 adjacent values. d) Proportion of choosing the right stimulus in the
test trials, depending on the difference in value between the right and left stimulus, shows sensitivity to
the true reward value. Curves were averaged across 5 adjacent values. e) Cumulative reward obtained
in a block of the learning phase above a chance baseline of 50 per trial is higher in slow than in fast
blocks. f) Cumulative reward obtained relative to a chance baseline of 50 on each trial increases more
rapidly in slow blocks. g) Mean accuracy in the test phase is higher in slow than in fast blocks. e-g)
separately for blocks where the slow feature (purple) and fast feature (green) were relevant. Individual
participants in grey. Grey ribbons show the standard error of the mean.

188 test more specifically whether the rate at which participants accumulated reward was greater in slow
19 blocks, we modelled the trial-wise cumulative reward with a linear mixed effects model with trial
wo number, condition (slow/fast), and trialxcondition interaction as predictors. We found a significant
1 trial xcondition interaction, indicating that the rate of reward accumulation was greater in slow com-
w2 pared to fast blocks (8 = 39.07, 95% CI = [2.44 to 75.70], likelihood ratio test comparing to model
w03 without interaction: X?2(1) = 4.19, p = .041, Fig 2g).

104 The learning benefit was also evident in an analysis of the average percent of correct choices in slow
s vs fast blocks (MS = 6526% + ]..24, MF = 6354% + 135, t(49) = 1.98 Pl1—sided = 028, d= 028)
s A logistic mixed effects model of choice accuracy with fixed effects for condition (slow/fast), trial
17 number, stimulus value difference to 50, and trial xvalue difference showed that including the effect of
s condition marginally improved the model predictions (X2(1) = 3.33, p = .068), reflecting that correct
o choices were more likely in slow blocks, albeit marginally (8 = 0.08, 95% CI = [0.00 to 0.16]). In sum,
200 participants made more correct choices in slow relative to fast blocks and hence accumulated more
20 rewards at a faster pace. This lends support to the idea that participants benefited when the relevant
22 feature was changing slowly.

203 Given that the slowness prior proposes that slow-changing features will be more likely to be con-
2a  sidered relevant, we hypothesised that the lower reward and accuracy on fast blocks could result from
20s incorrectly basing choices on the slow feature, even when it was irrelevant. To test this, we used the
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206 feature positions for both the relevant and irrelevant feature, trial number, and their interactions to
27 predict participant choices separately for slow and fast blocks, using a logistic mixed effects model.
28 We found that on fast blocks, there was a significant impact of the irrelevant slow feature on choice,
20 while on slow blocks the effect of the irrelevant fast feature was marginal (Type II Wald X? tests
20 irrelevant slow feature: X?2(1) = 7.07, p = .008, irrelevant fast feature: X?(1) = 2.75, p = .097).
o Hence, participants tended to base their choices on the slowly changing feature, even when it was not
a2 predictive of reward.

a3 Improved generalisation We next asked whether a difference between slow and fast blocks was
2 also evident in the test phase. Indeed, participants’ accuracy was again greater in slow versus fast
a5 blocks (Mg = 76% + 1.6, Mp = 74% + 1.5, t(49) = 1.85, p1_sidea = -035, d = 0.26, Fig 2f). A logistic
26 mixed effects model of choice accuracy with fixed effects for condition (slow/fast) and the absolute value
a7 difference between the shown stimuli supported this finding, as evidenced by a significant fixed effect for
zs  condition (8 = 0.14, 95% CI = [0.01 to 0.28], model comparison to a model without a condition effect:
20 X2(1) = 3.99, p = .046). The same picture emerged when modelling participant left/right choices
20 rather than choice accuracy in a logistic mixed effects model, with the condition, value difference and
21 the conditionxvalue difference interaction as predictors. In slow blocks the true difference in value
22 between the shown stimuli had a greater influence on choice than in fast blocks (6 = 0.13, 95% CI
23 = [0.04 to 0.21]). Hierarchical model comparison showed that a model including the conditionxvalue
»s  difference interaction explained choices better than a model without (X?2(2) = 7.93, p = .005). Hence,
»s  participants were better able to infer and generalise the feature values in the test phase when the
26 relevant feature had changed slowly during the learning phase.

27 Control analyses One possible concern regarding the interpretation of these effects is that the auto-
28 correlation of reward outcomes could facilitate learning for slow but not for fast blocks. Our results
29 speak against this interpretation. First, we tested a control model that ignored the stimulus features
20 and simply learned a value estimate from successive reward outcomes (henceforth: Bandit Model).
a1 This model performed badly on the task and could not predict participant choices well (see Fig 4a
2 and h below, and Methods), suggesting that auto-correlation alone could not explain the differences in
213 performance between slow and fast blocks. Second, we tested a control model that used a win-stay-lose-
ou  shift strategy (henceforth: WSLS Model) [47, 48]. This strategy can be helpful in slow blocks, where
235 consecutive trials are likely to require the same choice, but not in fast blocks, where the correct choice
26 1s likely to change often. Indeed, this model performed well in slow blocks and badly in fast blocks
a7 (see S4 Fig), but could not explain participant choices well (see Fig 4h below, and Methods). Third,
28 we observed better performance on slow blocks in the test trials, where no feedback was provided and
230 rewards on successive trials were not auto-correlated, and participants could not rely on the preceding
a0 trials in this phase to guide choices. As both the Bandit and WSLS model ignored feature values, they
an could not account for generalisation in the test phase.

22 Pilot experiment The pilot experiment, in which the observation phase was omitted, yielded con-
23 sistent but overall weaker results. Briefly, the difference in cumulative reward during the learning
2 phase pointed in the same direction, but was marginal (Mg = 128.11 4+ 14.03, Mr = 108.88 &+ 14.97,
a5 t(49) = 1.57, p1_sidzeda = 061, d = 0.22, S1 Fig), and the analysis of reward accumulation rate also
26 only numerically pointed toward faster learning in slow blocks (8 = 25.16, 95% CI = [-6.52 to 56.83],
awr X2(1) = 2.37, p = .124, S1 Fig). We did not find evidence for a difference in accuracy between
2 conditions in the learning phase, neither in the group means (Mg = 60% + 1.11, Mp = 59% =+ 1.13,
20 t(49) = 1.14 p1_sidea = -130, d = 0.16), nor in the mixed effects analysis (5 = —0.02, 95% CI = [-0.44
»  to 0.40], X2(1) = 1.26, p = .263). However, we did find that the irrelevant feature interfered with
51 choices more on fast blocks than on slow blocks. Specifically, in fast blocks, the effect of the irrelevant
x feature increased across trials (Type IT Wald X? tests irrelevant featurextrial: X?2(1) = 4.40, p = .036),
23 while in slow blocks it did not (X?(1) = 2.71, p = .100). No evidence for condition differences in the
s« test phase was found (all p > .05, S1 Fig). The differences between the pilot and main experiment
»s indicate that the observation phase, which explicitly provided information on the speed of the features,
6 critically strengthened the behavioural effect, although other explanations cannot be ruled out (e.g.
57 the pilot had shorter blocks compared to the main experiment).
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Figure 3: Schematic of the RL models. From left to right: A stimulus is converted to a feature
vector, which is a distribution across neighbouring feature values. The feature vector is combined with
the weight vector, which stores the value estimates. The resulting value for the stimulus is compared
against the reward outcome. This reward prediction error is used to update the weight vector on each
trial (shown as rows in the figure). By the end of the block (bottom row), the model learns a mapping
between the relevant feature (in this case shape) and reward. The right column shows how the learning
rates map onto the stimulus features and experimental condition.

» Computational Models

9 To examine which mechanisms might underlie the difference in learning between the conditions, we
20 fitted four reinforcement learning (RL) models to participant choices during the learning phase. Based
21 on our behavioural findings above, all considered models sought to (a) reflect participants’ learning
22 from outcomes, (b) account for learning about which stimulus feature is relevant and which is not, (c)
23 incorporate generalisation between stimuli of similar appearance, and (d) reflect participant’s tendency
x4 to explore by accepting many stimuli when uncertainty is high. Our major aim was to test whether
»%s the learning process differed depending on whether participants learned about slow or fast-changing
x6 features, i.e. in slow vs fast blocks. To this end, we formulated a set of four models that embodied
»7  alternative hypotheses about how feature speed could affect learning, as described below.

268 All models used linear function approximation and a Kalman filter to account for participants’
20 generalisation and exploration behaviour, respectively (see Fig 3 and Methods). Briefly, each stimulus
o0 was converted into a 30-dimensional feature vector x; that indicated which colour and shape stimulus on
on trial ¢ had (one entry for each of the 15 possible shapes and 15 colours). To reflect feature similarity
oz across the circular stimulus space, a von-Mises distribution was centered around the true stimulus
a3 features, such that activation of node ¢ was determined by its distance from the node assigned to the
oa true feature t

ecos(dt,i)n

Tti = —=an > —
2 Z?i(i eCOS(dt,i)K

(1)
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zs  where dy; is the distance between node ¢ and ¢ in radians and x determines the width (a.k.a. concen-
26 tration) of the von-Mises distribution. We then modelled the expected value V; of a stimulus as the
o7 inner product of the feature vector x; and the weight vector wy:

Vi =x{w, (2)

o and updated wy after each accept choice to reflect the outcome R; of trial ¢t with a learning rate «, as
a9 follows:
Wi = Wi +arx¢ (R — Vi) (3)

280 To account for exploration behaviour, we modelled participants’ uncertainty, U;, about the value
21 of a stimulus on trial ¢ using a Kalman Filter. Akin to an upper confidence bound mechanism [49],
22 the uncertainty was added to stimulus value in model choices, serving as an exploration bonus (see
23 Methods for details):

Va,t = V;g + CUt (4)

x4 where ¢ mediates how strongly the exploration bonus is weighted at choice. The uncertainty Uy
s also determined the learning rate on the current trial, a;. As the environment was stationary the
26 uncertainty and learning rate reduced across trials. Finally, the model’s choice was guided by the
27 probability of the value of accepting, V, ¢, being larger than a normal random variable centred on 50
28 (the value of rejecting), with standard deviation o

placcept) = P[X < Vg ]

X ~ N(50,0?) )

289 While all of the four models reported here used the above-described mechanisms, they differed
200 in whether they could adapt their learning rates to the slowness of the features, the relevance of
21 the features to predict reward, or both (see Fig 3 right column). A baseline model used the same
22 learning rate « for all conditions and features (one learning rate model, short 1LR). Hence, this
23 model was indifferent to slowness and could not account for a difference in performance between the
204 slow and fast blocks. A second model used separate learning rates for the slow vs. fast-changing
205 feature (ag/ap), irrespective of whether the feature was relevant in a given block (feature learning
o rates model, 2LR). This model could account for the difference in performance between slow and
207 fast blocks, but since it disregarded the relevance of the features for predicting reward it is an unlikely
28 candidate to explain participant behaviour a priori. In a third model (condition learning rates model,
20 2LR.), separate learning rates were used depending on whether the relevant feature was changing
a0 slowly (ag) or quickly (ap), but used the same learning rate for both features within the same block,
sn regardless of their relevance. Finally, the fourth model had four separate learning rates for the slow
s and fast-changing features, when they were relevant and irrelevant (4LR model, learning rates ag g,
0 QpR VS g1, aF 1, respectively). This model could accommodate both differences in learning due to
s the slowness of the features and the reward structure of the task, for which reason we expected this
s model to predict participant choices best.

s All models can learn the task To ensure that all models represent useful accounts of behaviour,
;7 we first fitted model parameters to maximise reward obtained by the model. This showed that given
w8 optimal parameters all learning models achieved a near-ceiling cumulative reward gain of around 600
30 coins per block, significantly above the cumulative reward expected by chance (all p < .001, theoretical
a0 maximum of clairvoyant agent: ca. 735 coins). In contrast, above mentioned Random Choice, Random
a1 Key, Bandit, and WSLS control models, were all significantly worse at the task (all p < .001, Fig 4a).
sz In the test phase, the differences were even starker — only the learning models learned a mapping of
a3 stimulus features to reward, so only these models could generalise to unseen feature values (Fig 4b).
s Hence all learning models were capable of performing our task.

315 We next evaluated which models could in principle reproduce the above-reported condition differ-
a6 ence by simulating the models with a higher learning rate for the slow compared to the fast feature
ar (0.6 vs 0.3, respectively; for the 1LR model, we used o = 0.3). As expected, all models with 2 or 4
us  learning rates (2LRy, 2LR, and 4LR) could, given appropriate parameters, account for a difference
a0 between the slow and fast conditions (Fig 4c), while the 1LR model could not reproduce this effect.
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Figure 4: Models including slowness effect explain participant behaviour best. a) Mean reward
in the learning phase for the models using optimal parameters. Learning models: one learning rate
model (1LR), separate learning rates per feature (2LR ), separate learning rates per condition (2LR.)
and the four learning rates model (4LR). Control models: win-stay-lose-shift (WSLS), learning model
ignoring features (Bandit), random responding with a bias for accept choices (Rd. Choice) or response
key (Rd. Key). b) Mean accuracy in the test phase for the models using optimal parameters. c)
Mean reward for slow and fast blocks in the learning phase for the models simulated using hand-picked
learning rates, a/ap = 0.3 ag = 0.6. For the 4LR model both relevant learning rates, as r, ®r R,
were increased by 0.1. d) Proportion correct choices across trials in the learning phase. €) Proportion
of accept choices across trials in the learning phase. f) Proportion of accept choices depending on the
true stimulus reward, for the first and last 15 trials of the learning phase. d-f) Using best fit model
parameters. Lines smoothed with width of 3. Models are shown in coloured lines and participants
in black. Control models are not shown. h) Protected exceedance probabilities (bars) and estimated
frequencies (diamonds) of the models. i) Simplex of AICc weights (larger values indicate better fit),
calculated considering only the three best-fitting models: 4LR, 2LR. and 1LR. Each point is one
participant, coloured by their best fit model.

20 Learning is affected by slowness Having established that all models in principle represent plau-
s sible accounts of behaviour, we next asked which model fits participant choices best, using maximum
a2 likelihood fitting and compared models using protected exceedance probabilities. Protected exceedance
23 probabilities were calculated with the bmsR package in R, with model evidence approximated with AICc
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2 weights, relative to the 1LR model [50], for details see Methods. Following maximum likelihood fitting,
»s  we first simulated the models with the best-fit parameters (see Table 1). This showed that all models
26 were able to qualitatively match participant learning curves, increasing from 50% to just under 80%
w7 correct choices across the 60 trials in a learning block (Fig 4d, see S3 Fig for individual participant
»s  fits). Models also captured the decrease in accept choices from around 85% to approximately 63% by
2o the end of learning (Fig 4e), as well the increase in sensitivity to expected reward in both the learning
a0 and test phase (Fig 4f and g).

3 Notably, comparing protected exceedance probabilities [51] and corrected AIC (AICc) scores [52]
s indicated that the model with four different learning rates (4LR model) fitted behaviour best (XP
s = .584, AICc = 471.2, see Fig 4h), followed by the model with separate learning rates per condition
s (2LR. model, XP = .340, AICc = 471.3) and the 1LR and 2LR; models (1LR: XP = .076, AICc =
s 473.5; 2LRy: XP < .001, AICc = 473.0). The 4LR model was estimated as the most frequent model
s out of those tested (32%), closely followed by the 2LR. model (29%, Fig 4h). Together these two
s models best explained the behaviour of most participants (N=28), however some participants were
13 best fit by the 1LR model (N=15, estimated frequency 22%).

339 To ask how clear the evidence in favor of the winning model was within each participant, we
a0 inspected the distribution of AICc weights for the three best-performing models on a simplex (4LR,
sn 2LR. and 1LR, Fig 4i). The AICc distribution indicated that participants best fit by the 4LR model
s were unambiguously best fit by this model, i.e., participants best fit by this model had relatively
w3 low weights for the other models. A similar picture emerged for the 2LR, model. In the case of
s the one learning rate model (1LR) the difference in fit between the best and alternative models was
us less pronounced. In sum, the evidence that the best-performing models, 4LR and 2LR., adapted their
us learning rates to the feature speed suggests that participants’ learning was affected by feature slowness.

c o K ajas/asr  ap/opgr as,r apr
ILR  6.08 £ 2.84 41.96 + 20.37 6.70 = 8.29 .59 =+ .33
2LR; 6.57 +£3.08 4452+ 743 588+743 .69+ .34 .55+ .34
2LR., 6.19 +265 4371 +8.76 6.82+876 .61+ .33 .57+ .32
ALR  6.33+296 4748 +801 6.80+801 .78 +.33 .70+ .37 .39+ .36 .40 + .32

Table 1: Mean and standard deviation of the best estimates for the exploration parameter (c), decision
noise (o), von Mises concentration (x), and learning rates on the first trial («) for the slow (g) or fast
(r), and relevant (g) or irrelevant (;) feature, obtained through maximum likelihood fitting.

w  The 4LR model captures participant behaviour Given that the 4LR model emerged as the
us  winning model, we asked how this model related to the behavioural differences between slow and
s fast blocks. We compared 4LR model fits to the 1LR model to examine the improvement in fit
0 conferred by the adaptation of learning rates to feature speed, while accounting for the remaining
351 learning mechanisms and ability to solve the task, which were the same across all models (see Fig 4a).
2 Simulating 4LR model choices using the best-fit parameters showed a similar condition difference in
353 accumulated reward as seen in participants (Fig 5a). We found that larger differences in participants’
s cumulative reward in slow compared to fast blocks in the learning phase were related to a better fit
35 of the 4LR relative to the 1LR model (r = .28, p = .045, Fig 5b top). We also found that stronger
36 behavioural effects in the test phase were related to a better relative fit of the 4LR model (r = .30,
w7 p =.032, Fig 5b bottom). No such relationships were found for the 2LR, model (p > .05, all p values
38 uncorrected).

350 We also found that the fitted learning rates related to participant behaviour. Note that due
30 to the Kalman filter aspect of our model, the learning rates decreased across trials (see S5 Fig).
1 Therefore, we examined the mean learning rate across all trials in a block, instead of using the fit
2 value, which was the learning rate on the first trial. When it was relevant, the slow feature benefited
ss  from higher mean learning rates than the fast feature (Mg = .68 + .36, Mp = .57 £ .37, t(49) = 2.09,
¢ p = 0.042, d = 0.30). For the irrelevant learning rates, we found no such difference (Mg = .28 & .29,
s Mp = .27 + .23, t(49) = 0.16, p = 0.875, d = 0.02, Fig 5c, all p values uncorrected). Larger mean
w6 learning rates for the relevant slow feature were correlated with more reward being accrued on slow
37 than on fast blocks in the learning phase (r = .41, p = .012 Fig 5d). No other learning rate showed a
s significant relationship to the behavioural effect (all p > .05). These results indicate that the effect of
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Figure 5: The four learning rates model captures participant behaviour. a) Simulating the 4LR model
with the best-fit learning rates leads to higher collected reward in slow compared to fast blocks. b)
A better fit of the 4LR model (x) is related to greater collected reward in slow than in fast blocks in
the learning phase (top) and (bottom) greater accuracy in slow than in fast blocks in the test phase
(bottom). c¢) Distribution of learning rates for the 4LR model, obtained from maximum likelihood
fitting. Mean across all trials in a block. d) Higher mean learning rates for the slow feature (x) are
correlated with greater collected reward in slow than in fast blocks in the learning phase (y). Points
are individual participants. Grey ribbons show standard error of the mean.

w0 feature speed on learning was mainly modulated by improved learning from the slow feature. Hence,
s individual differences in model parameters and fit captured differences in how strongly the slowness
sn prior influenced participants’ choices.
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+» IDiscussion

w3 Causal processes tend to evolve on a slower timescale than noise [31]. To investigate whether humans
s employ a slowness prior to identify potentially relevant features during reinforcement learning, we
a5 tested participants in a decision-making task with stimuli composed of one reward-predictive and one
s reward-irrelevant feature. Participants learned the value of stimuli faster when the reward-predictive
sir - feature changed slowly and the irrelevant feature changed quickly, compared to when the opposite was
s the case. Participants were also more distracted by the irrelevant feature when it changed slowly than
;s when it changed quickly. By comparing models with different structures for the learning rates, we
s showed that participants adjusted their learning to the speed of the features. Specifically the learning
s rate for the slow feature when it was relevant mediated the behavioural effect, suggesting that the
sz observed behavioural differences between conditions were being driven by increased learning from the
;3 slow feature. Our study extends research on the slowness prior to humans and suggests that it aids
s learning task states, in a reinforcement learning domain.

385 Our work relates to a broader discussion of how the human brain solves representation learning
s problems [27, 30]. Previous work has shown how representation learning can be implemented in
;7 parallel to reinforcement learning by using feedback signals to guide selective attention [53, 54|, or
38 through replay mechanisms during offline periods [55, 56]. Although these approaches represent flexible
e mechanisms that allow on-the-fly adaptation to the current environment, it is unlikely to be feasible in
30 environments with hundreds of possible signals to attend to [3, 6, 29]. Our results suggest that for this
s reason representation learning mechanisms during RL are supplemented with inductive biases. Our
s findings are in line with previous research showing that priors have a pervasive influence on behaviour,
33 shaping perception [15, 35], remaining stable in the face of exposure to contradictory training [57], and
3¢ hindering learning of structures which do not align with them [58, 59]. More indirectly, our work raises
s the question about the origins of such priors, and whether they are learned themselves. One possibility
36 in this regard is that meta-learning, or learning to learn, is the core mechanism that humans use in
s7  order to extract regularities of their environment and develop priors that aid perception and learning
398 [60].

300 While our results align with several theoretical studies on the slowness prior [34, 37, 41], it is
w0 important to consider other ways in which slowness can benefit learning. For instance, the temporal
w1 auto-correlation of features and rewards inherent to a slowly changing environment could enable the
w2 use of heuristic strategies, such as a win-stay-lose-shift rule [47, 48]. We addressed this concern
w03 through model comparison and found that these strategies were unable to explain the behaviour of
w4 participants. Another possibility is that presenting stimuli in an ordered fashion yields benefits, as
ws  suggested in function learning studies [61]. In our task, slow blocks were more likely to be ordered
w6 than fast blocks, but due to the periodic nature of our feature-reward mapping, ordering might not be
w7 immediately apparent in either condition. Still, future research should aim to disentangle the effects
ws of ordering and slowness on learning. Importantly, assuming relevant processes change slowly only is
w0 a useful assumption given the physical laws that govern our world, i.e., Newton’s first law of motion,
a0 inertia [37]. Under these conditions, slow acceleration and changes in acceleration are likely to also
a1 provide useful priors, as has been shown in motion perception studies in humans [36]. Human learning
a2 likely incorporates a host of priors, reflecting other properties determined by our (intuitive) physical
sz understanding of the world [16].

414 Our findings also relate to previous work on curriculum learning, which has shown that humans
a5 benefit from blocked, rather than interleaved, training on a context-dependent categorisation task [62].
a6 In the blocked curriculum the relevant features for categorisation were the same across trials, whereas
a7 in the interleaved curriculum the relevant features could switch from trial to trial, even though the
ais stimuli characteristics changed in both curricula. This raises the possibility that slowness, not only in
a0 feature dynamics but also in task rules, may aid learning. However, it is worth noting that interleaved
w20 training might promote the formation of more generaliseable representations [63], suggesting that the
a1 optimal learning curriculum may differ depending on the task at hand. In sum, multiple lines of
a2 research point toward a beneficial effect of slowness on learning. Here, we propose that part of this
23 effect is due to the existence of a slowness prior.

a2 Our task and models make some simplifying assumptions. In our task, participants need to reduce
a5 a two-dimensional stimulus to a one-dimensional representation. Despite its simplicity, the task itself
26 posed a considerable challenge to participants, as indicated by their end-of-learning performance,
27 which still left room for improvement. Consequently, the task contained the necessary elements to
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w28 test our hypothesis and provides a controlled test bed for looking at dimensionality reduction. Our
w20 winning model, the four learning rate model, assigned learning rates to the features based on their
a0 speed and relevance from the first learning trial of the block. While it is reasonable to assume that
a1 participants in the main experiment knew the speed of the features based on the preceding observation
a2 phase, they could not yet have known which feature was relevant. However, it is important to note
.3 that due to our models being Kalman Filters, we merely fit the learning rates on the first trial, and
s the development of learning rates throughout the blocks was determined by the experience with the
s environment. Additionally, participants’ accuracy increased within the first learning trials in a block,
s leading us to believe that they quickly developed a sense for the relevance of the features. We chose
a7 this approach for its computational simplicity, but it remains a potential avenue for future research.
a3 It is for instance possible that the dynamics of learning rates are influenced by a number of additional
a0 factors, such as volatility or the size of prediction errors [64—66]. In addition, participants might learn
wo  a belief about which feature is relevant to determine learning rates [67].

a1 Overall, the results of our experiments suggest that participants were able to infer, learn and
a2 generalise the values of stimuli better when the relevant feature changed slowly. By providing empirical
w3 evidence for the role of a slowness prior in human learning and connecting to a large number of machine
ws  learning findings [31, 37, 39], our study sheds light onto how humans might rapidly learn representations
s in complex environments.
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« Methods

s Participants

as  For each of the two experiments 50 participants (pilot ezperiment: female = 19, age = 18-38 years, M
o0 = 24.4 years, SD = 5.3 years, main experiment: female = 15, age: 18-39 years, M = 24.6 years, SD
e0 = 5.4 years) were recruited through Prolific (www.prolific.co) and completed the experiment online.
s None reported being colour blind and none were currently receiving treatment or taking medication
22 for mental illness. Participants were compensated £3.75, plus a performance-dependent bonus of up
s to £1.50. The sample size was based on a power analysis set to achieve a power of .8, using the results
e« from a preparatory study (d = .36, paired one-tailed t-test with alpha of .05). The study was approved
s by the Ethics Committee of the Max Planck Institute for Human Development.

«s Materials

2z Stimuli were coloured shapes, with shapes originating from the Validated Circular Shape space [68]
s and colours defined as a slice in CIELAB colour space, with luminance 70, chroma 51 and origin [0,0].
20 Shapes and colours were parameterized on a circular space, so each position (0-359°) corresponded to
s one colour or one shape (Fig la), and colour/shape similarity varied continuously but had no hard
s boundaries. The feature spaces were perceptually uniform, so that the angular distance between feature
s values corresponded to the perceived difference between them. Small angular distances correspond to
s similar shapes (or colours), whereas large angular distances correspond to distinct shapes (or colours).
634 In the learning phase of each block, a subset of 15 positions was shown, spaced uniformly around
&35 the circle in steps of 24°. Each block used a distinct set of positions, offset from the positions used in
e3s  other blocks in multiples of 3° and assigned to blocks in a random order. In the test phase, stimuli were
s constructed from 15 feature positions offset by 12° from the positions used in the preceding learning
s3s phase. This offset ensured that shapes and colours seen at test were maximally different from those
69 seen during learning, providing a strong and semi-independent test of participants’ knowledge about
sao the feature-reward mapping.

641 The task was programmed as an online experiment using the jsPsych library version 6.1.0 [69].

s Design

s3  Participants completed a task that required them to learn the rewards associated with a set of visual
s« stimuli characterized by two features (colour and shape) (Fig 1). Unbeknownst to participants, stimulus
es rewards were related to only one of the two features in each block. We refer to the feature that predicted
ss reward as the relevant feature and the feature that did not predict reward as the irrelevant feature
sr  (Fig 1b). For each block one position in the relevant feature space was chosen as the maximum reward
ss  position. Maximum reward positions were at 10°, 100°, 190°, or 280° in the feature space. Each of
s these reward positions was used once for colour-relevant and once for shape-relevant blocks, in random
0 order. The closer the relevant stimulus feature was to the maximum reward position, the higher the
1 stimulus reward. The stimulus reward was calculated as the absolute distance between the relevant
e2 feature position and the maximum reward position, subtracted from the maximum possible distance of
s 180°. The resulting value was re-scaled from the angular distance range (0-180°) to the reward range
s« (0-100 coins).

655 We manipulated feature speed, by controlling the trial-to-trial variability of the two features.
s Within each block, one feature had low variability across trials (e.g. participants see relatively similar
7 shapes from trial to trial), while the other feature had high variability (e.g. participants see relatively
ess  distinct colours from trial to trial). We refer to these as the slow and fast feature, respectively (Fig
0 la). The slow feature was sampled using a Gaussian random walk centred on 0°, with a standard
0 deviation of 30°. The fast feature was sampled randomly, while preventing the smallest step-size (24°)
1 from occurring. Within each block, the 15 feature positions (see Materials) repeated three times in the
e2 pilot experiment and four times in the main experiment, with each position being shown once before
o3 repeating. In this way, we ensured comparable exposure to the slow and fast feature spaces, despite
o4 their differing variability.

665 We counterbalanced the relevant feature dimension (shape relevant/colour irrelevant or vice versa)
s and the feature speed (shape slow/colour fast or vice versa). Each combination of relevant feature
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ez dimension and relevant feature speed was repeated twice, resulting in eight task blocks. In half of the
s eight task blocks, the slow feature was relevant (slow blocks), in the other half the fast feature was
seo relevant (fast blocks, Fig 1c¢). The block order was pseudo-randomised, so that each combination was
e0  experienced once before repeating.

«1 Procedure

s» Hach task block consisted of three phases, observation, learning, and test (Fig 1d-f).

673 The observation phase served to demonstrate the variability of the features to participants. Thirty
e individual stimuli were shown in rapid succession (500ms each) and without intervening screens. The
s speed of the features in the observation phase matched that in the subsequent learning phase. Both
o6 phases used the same set of 15 feature positions, however, sequences for observation and learning were
ez sampled independently and started at randomly selected positions in feature space. In the learning
es  phase, participants played an accept-reject task and were asked to maximise coins earned by collecting
o valuable gems. Each trial began with a gem (a coloured shape) being displayed centrally on the screen.
s0 Using the ‘F’ or ‘J’ key, participants could either accept the stimulus, and receive the reward associated
1 with it (between 0 to 100 coins), or reject the stimulus and receive an average reward (50 coins). The
2 reject/accept key mapping was counterbalanced across trials. If participants failed to respond after
63 four seconds they received zero coins. Immediately after a key press, the number of coins earned was
s displayed on the screen for one second, followed by a blank screen for a variable inter-trial interval
s (0.5 to 1.5s). A correct response was defined as accepting a stimulus with a value above 50 coins or
e rejecting a stimulus with a value below 50 coins.

687 Following the learning phase, participants completed a two alternative forced choice task to test
s their understanding of the stimulus values. In this test phase, participants were presented with pairs
eo  of stimuli and asked to choose the more valuable stimulus in the pair, based on the preceding learning
s phase. On each trial, participants could choose the left or right stimulus with the ‘F’ or ‘J’ keys,
sr  respectively, with no time limit. After their response a blank screen was shown for a variable inter-trial
o2 interval (0.5 to 1.5s). There was no trial-wise feedback during the test phase. A correct response was
s3 defined as choosing the stimulus with the higher value. Here, feature speed was no longer manipulated.
sa Instead, the difference in value between the two stimuli in a pair was systematically varied. By
s controlling the relevant feature positions of the two stimuli, it was possible to probe choices from
sos easier comparisons, where stimuli had more distinct values (the maximum included difference was 54
o7 coins), to increasingly difficult comparisons, where the values of the two stimuli were more similar(the
s minimum difference was 2 coins in the main experiment and 13 coins in the pilot experiment). Overall
s block accuracy (including both learning and test phase) was reported to participants at the end of the
70 block and used to determine the performance bonus.

701 We ran two versions of the experiment. In the pilot experiment the observation phase of the
2 experiment was omitted. Nonetheless, the speed of the features was still manipulated during the
703 learning phase, so slowness information was available, but less evident and presented concurrently
74 with the reward learning task. The main experiment included an observation phase prior to the
s learning phase, as described above, which explicitly demonstrated the speed of the features prior to
06 learning their values. Additionally, there were differences in the length of each task. In the pilot
o7 experiment participants completed 45 learning trials and 15 test trials per block, while in the main
w8 experiment participants completed 30 observation trials, 60 learning trials, and 36 test trials per block.
70 In all other aspects, the experiments were identical.

no  Data Analysis

m Mixed Effects Models We ran mixed effect models in R (R version 4.3.1, RStudio version 2023.09.1
72+ 494), using lmer (linear) and glmer (logistic) from the 1me4 package (version 1.1-32) [70-72]. To
713 obtain parameter values we ran the Bound Optimisation by Quadratic Approximation (BOBYQA)
ns  algorithm for 100.000 evaluations. We initially included all relevant fixed effects and their interactions
75 in the models and subsequently used the dropl function in R to test which terms contributed to the
76 fit. All terms that did not significantly improve the fit were removed. We used a maximal random
nr  effects structure whenever possible [73]. That is, all variables and interactions initially included as
ns  fixed effects were included in the random effects, even if they were later dropped from the fixed effects.
n9  Random effects were only simplified if the maximal structure led to fitting issues. All continuous
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=0 predicting variables were scaled, trial number was normalised to range between zero and one. Trials
71 with no response were excluded from all analyses.

722 We first analysed performance in the learning phase by using a linear mixed effects model to look
723 at the cumulative reward obtained by participants relative to a chance level reward of 50 per trial.
724 The best model was:

CR; = Bo + 51 Condition; + B2t + 85 Condition; x t + (1 + Condition; + ¢t + Condition; X t|Subject)

725 where C'R; is the cumulative reward relative to chance on trial ¢, and the predictors are the Condition
76 (slow/fast block), the trial number ¢, and their interaction.

727 We then examined correct vs. incorrect choices in the learning phase using a logistic mixed effects
s model. After backwards model comparison the best model was:

ACC} = By + 1 Condition; + B2t + B3 |R: — 50| + B4t x |Ry — 50| + (1 + Condition;|Subject)

720 where ACC} denotes whether a choice on trial ¢ was correct and |R; — 50| is the absolute difference
70 between the stimulus reward on trial ¢ and the choice boundary of 50 coins.

To examine the effect of the relevant and irrelevant feature on choice we used a logistic mixed
effects model to predict choices based on the stimulus colour and shape positions on each trial. As
the features were angles in the shape and colour circles, each feature was included as a cos() and
sin() predictor in the model. As this analysis was run separately for slow and fast blocks, no model
comparison was done.

Ci = Bo + Bit + B2 cos(0r) + Bz sin(0r) + Ba cos(0r) + Ps sin(0r)
+ Bt x cos(0r) + Brt X sin(0r) + Bst x cos(0r) + Byt x sin(fr)
+ (1 4+ cos(0r) + cos(fr)|Subject)

1 where O is the position of the relevant feature and 6y is the position of the irrelevant feature.
73 To look at performance in the test phase, we examined correct versus incorrect choices using a
733 logistic mixed effects model and found the following model predicted accuracy best:

ACCy = By + B1Condition; + B2| Raig ¢

+ (1 + Condition;|Subject) (6)

73 where |Rqig,¢| is the absolute difference in value between the left and right stimulus on trial ¢.
735 The probability of choosing the right stimulus on a test trial was best explained by the following
16 logistic mixed effects model:

Cy = Bo + B1Condition; + /BQRdiﬁ‘,t + B2Condition; x Rdifﬂt + (1 + Conditiont|Subject) (7)

77 where Rgig,; is the difference in value between the left and right stimulus on trial ¢.

= Computational Models

720 To analyse trial-by-trial learning, we fit eight computational models to the choices of participants in
o the learning task. Four learning models embodied alternative hypotheses about how the prior could
m  affect learning and differed in their ability to adapt their learning rates to the slowness of the features.
2 The other four models served as control models and tested for competing hypotheses or tested whether
3 participants engaged with the task.

74 Learning models The reinforcement learning (RL) models used the outcome of each trial to update
s their estimate of the value of the features and predict the next choices of participants. To account for
s the fact that continuous feature dimensions in the task allowed participants to generalise their learning
77 within each feature (i.e., learning about the value of red was also informative of the value of orange),
us  stimuli were represented as a distribution in feature space, instead of being represented as only their
720 specific colour and shape angles (Fig 3). A stimulus on trial ¢ was represented as a feature vector x;.
0 Note that, as each stimulus was made up of two feature dimensions, it was represented by two feature
751 vectors: one for the slow, x; g, and one for fast-changing feature, x; p (corresponding to colour/shape
72 as determined by the current block condition). Therefore, the feature vector for a stimulus x; was
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753 the concatenation of the slow and fast feature vectors: x; = [x¢5,%¢ r]. The feature vectors for the
= slow and fast feature angles of a stimulus were obtained from a von Mises like distribution, which
75 approximates a normal distribution in circular space, as follows:

cos(ds i)k

e
T oot )
756 where:
0, —0;
dtﬂ‘ = 360 d 2T (9)
757 where x4 ; is the ith entry of feature vector x;, and d;; is the distance from the stimulus’ feature

s angle on trial ¢ to feature angle i. The parameter x determines the concentration of the function. With
o large k, the distribution becomes concentrated around the stimulus feature angle, and less surrounding
w0 angles are included. With k approaching 0, the distribution becomes uniform. Representing stimuli
7 in this way allowed the model to learn about the value of unobserved angles, based on perceptual
72 similarity.

763 For each of the two feature dimensions, the models learned a feature weight vector, w; g and
76 Wy g, which were concatenated in the weight vector w, = [wy g, w; p]. This vector corresponds to the
s estimated value for each feature position on trial t. The expected value V; of a stimulus on trial ¢ was
w6 calculated as the inner product of the feature vector x; with the weight vector wy:

Vi =x{w, (10)

767 This value estimate flowed into the prediction of the choice on the next trial and could guide choices
w8 to maximise reward. However, before being fully guided by value estimates, it is necessary to gather
70 information and become certain that the estimates are meaningful (as participants do, see Fig 2b).
70 To mediate between the pressures of exploring and exploiting, we supplemented the value estimate
m  for each stimulus with an exploration bonus Uy, which reflects how uncertain the model is in its value
2 estimate. The value of accepting stimulus on trial ¢, V, ;, was then calculated as follows:

Var=Vi+c Uy (11)

773 where ¢ mediates how strongly the exploration bonus is weighted at choice.

74 Due to the continuous nature of the features and the flexible recombination of features across
75 stimuli, a simple count-based uncertainty estimate (as in the Upper Confidence Bound method [49])
e would be ineffective. Instead, specifying the models as Kalman Filters allowed us to take a rigorous
777 approach to estimating the uncertainty on each trial. In addition to tracking a mean value, Kalman
s Filters keep an estimate of the variance around that mean, which embodies the uncertainty inherent
79 to the estimate. Similar to the feature and weight vectors, the variance estimates were saved in a
70 variance vector vy, which was a concatenation of slow and fast variance vectors: v, = [vy,s, vy p|. The
7 exploration bonus was the inner product of the feature vector with the variance vector:

Uy =xt v, (12)

782 While the features shown on each trial changed, the mapping between the feature and the reward
73 was stationary within each block. Therefore, the uncertainty was highest at the beginning of each
7 block and steadily reduced with each observed outcome.
785 When predicting the next choice, the models compared the value of accepting V, + with the value
786 of a rejecting, by testing for the probability of V, ; under a cumulative normal distribution centred on
77 50, with a standard deviation o:

placcept) = PIX < V.

13
X ~ N(50,0?) (13)
788 Here a smaller 0 means a steeper increase in accept probability with increasing V/, ;.
789 After an ‘accept’ choice the reward outcome R; of the trial ¢ is used to update the value and

70 uncertainty estimates. The reward prediction error is used to update weight vector with a learning
1 rate oy, as follows:
Wit = Wi+ X¢ (R — V) (14)
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72 The variance vector is reduced by an amount proportional to the learning rate ay:
Vitl = Vi — Q¢ Xt Vy (15)

73 Finally, the Kalman Filters also update the learning rate on each trial, as with decreasing uncertainty
s about the value estimates, smaller updates to the weight vector are needed.

Ui

U, 1 (16)

Q41 =
75  where M is the constant measurement noise.
796 All four learning models included the three free parameters, x, ¢ and o, as specified in the equations
77 above, but they differed in their ability to adapt their learning rates to the slowness of the features
s (Fig 3). A one learning rate (1LR) model used the same learning rate « regardless of feature speed
7o and thus was indifferent to feature variability and could not account for a difference in performance
o between the slow and fast blocks. A two learning rates model sensitive to feature variability (2LRy)
s used different learning rates for the slow ag and fast ap changing feature across all blocks, irrespective
s of whether they were relevant or irrelevant. Another two learning rates model, this one sensitive to
ss  block condition (2LR.), used different learning rates, depending on whether the relevant feature was
s changing slowly ag or quickly apr (but used the same learning rate for both features within the block).
s Finally, a four learning rates (4LR) model had learning rates sensitive to both the feature variability
sos and the block condition. Meaning it had separate learning rates for the slow and fast-changing features
sor  when they were relevant (as g, ap r) and irrelevant (as 7, g r).
808 In models with separate learning rates for the slow and fast feature (2LR; and 4LR), the uncertainty
so U (equation 12) and learning rates o (equation 16) were calculated separately for the slow x; g and
s fast x; p feature vector. Accordingly, the weight and variance vectors for the slow and fast features
sn  were updated with their respective learning rates. To keep comparable magnitudes of learning rates
sz between models, in models with the same learning rate for both features in a block (1LR and 2LR,.),
sz we calculated the uncertainty separately for the slow and fast feature and used their mean to update
sie  the learning rate according to equation 16.

s1s  Control models We implemented a control model with the same Kalman Filter machinery, which
s treated the task as a single, stationary bandit for which it estimated a mean and variance (Bandit
sz model). By ignoring the stimulus features, this model could only learn from the reward outcomes.
s This model was critical to rule out that learning might be easier on slow blocks, simply due to the
sio reward on the current trial being more predictive of the reward on the next trial, irrespective of the
s20 variability of the features. Equations were similar to the models of interest, obviating the need for
s vectors. A single value V' and uncertainty U estimate were kept. These were combined as in equation
g2 11 to the value of accepting V, with the mediating parameter c¢. The same choice rule as in equation
s23 13 was used. The value and uncertainty estimates, and the learning rate were updated according to:

Vi1 = Vi + i (R — V) (17)

Ut+1 = Ut — Ot Ut (18)
Ut

_ 19

aag U+ M ( )

s« where M is the constant measurement error.

825 To account for a choice perseverance strategy, which could selectively benefit performance in slow
226 blocks where the correct choice on the previous trial was likely the same as the correct choice on the
g7 current trial, we included a win-stay-lose-shift model (WSLS model). When the choice on the previous
w8 trial was ‘accept’ and the received reward was equal to or above the default value of 50, this was
g0 counted as a win and the model was likely to choose ‘accept’ again. In contrast, if the outcome of an
s ‘accept’ choice lay below 50, this was counted as a loss and the model was likely to choose ‘reject’ on
g1 the next trial. In both cases the model could instead make the less likely choice with probability e.
sz As ‘reject’ choices always resulted in a reward of exactly 50 no wins or losses as such were possible,
83 so the model continued to make ‘reject’ choices and switched to ‘accept’ with probability €. The first
g4 choice was made randomly. The WSLS model can be described as follows:
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1 —¢, if choice;_1; = accept and R;_1 > 50.

p(accept) = { (20)

€ otherwise.

)

835 In addition, we set up models which did not learn and responded randomly, with either a bias to
g ‘accept’ or ‘reject’” (Random Choice model), with choices given by:

p(accept) = b, (21)

g7 or a bias for the left or right response key (Random Key model), with choices given by:

b, if right key is ‘accept’.

p(accept) = { (22)

1—b,, otherwise.

ss  Model fitting Models were fit to each participant’s data in the training trials using the nloptr
ss0  package version 2.0.3 in R by minimising the log likelihood with the NLOPT_GN_DIRECT_L optimisation
a0 function run for 10.000 evaluations. We initialised the learning models and the Bandit model, so
s that on the first trial of each block, the value estimate of the stimulus V; was 50 (the same as the
s value of rejecting), and the uncertainty bonus U; was 5 for each feature. At the start of fitting, the
a3 measurement error M was adjusted so that the learning rate a; on the first trial would be equal to
se  the fit learning rate (equations 16 and 19).

845 We quantified the reliability of parameter estimates through parameter recovery for the learning
ss  rates of the learning models (see S6 Fig). The fitting procedure provided fair to excellent reliability,
sz with a high correspondence between ground truth and recovered learning rates.

ss  Model comparison We simulated model choices given the parameter values obtained from maxi-
g0 mum likelihood fitting and obtained the predicted likelihoods for participant choices. These likelihoods
o were used to calculate the Akaike Information, corrected for small samples [74]:

2k(k+1)
AlCe=2k - 2LL + ————=
Cc + N_h_1
851 Where k is the number of free parameters of the model, LL is the log likelihood of the data given
s2  the model and fit parameters and N is the sample size.
853 We then calculated AICc weights, which provide a measure of goodness of fit of a model relative

s« to a baseline model (for which we chose the 1LR model) [50], as follows:

e~ L AAICE
AICcweight = - —TaAice, (23)
me

855 where AICc; is the difference in AICc between the AICc of the model and the baseline model,
sss and M is the set of all models m. AICc weights are normalised to sum to one for each partici-
ss7  pant, with larger values indicating a better fit. Finally, we used AICc weights as an approxima-
sss  tion of model evidence to calculate protected exceedance probabilities with the bmsR package in R
sso  (https://github.com/mattelisi/bmsR) [51].

860 We tested model identifiability through model recovery, using the same fitting and model compar-
s ison procedure as for participants (see S6 Fig). Model recovery proved to be reliable, identifying the
sz model that had generated the data correctly for most simulations.
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