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ABSTRACT

Large Language Models (LLMs) excel at in-context learning, the ability to use
information provided as context to improve prediction of future tokens. Induction
heads have been argued to play a crucial role for in-context learning in Trans-
former Language Models. These attention heads make a token attend to succes-
sors of past occurrences of the same token in the input. This basic mechanism
supports LLMs’ ability to copy and predict repeating patterns. However, it is un-
clear if this same mechanism can support in-context learning of more complex
repetitive patterns with hierarchical structure or contextual dependencies. Natural
language is teeming with such cases. For instance, the article the in English usu-
ally prefaces multiple nouns in a text. When predicting which token succeeds a
particular instance of the, we need to integrate further contextual cues from the
text to predict the correct noun. If induction heads naively attend to all past in-
stances of successor tokens of the in a context-independent manner, they cannot
support this level of contextual information integration. In this study, we design
a synthetic in-context learning task, where tokens are repeated with hierarchical
dependencies. Here, attending uniformly to all successor tokens is not sufficient
to accurately predict future tokens. Evaluating a range of LLMs on these token
sequences and natural language analogues, we find adaptive induction heads that
support prediction by learning what to attend to in-context. Next, we investigate
how induction heads themselves learn in-context. We find evidence that learning
is supported by attention heads that uncover a set of latent contexts, determining
the different token transition relationships. Overall, we not only show that LLMs
have induction heads that learn, but offer a complete mechanistic account of how
LLMs learn to predict higher-order repetitive patterns in-context.

1 INTRODUCTION

In-context learning is one of the most pervasive features of Large Language Models (LLMs). Infor-
mally, in-context learning is simply the ability to predict future tokens more accurately given more
contextual information, for instance, feedback, examples, and the like. Crucially, this level of adap-
tation does not involve a change in model weights but stems solely from the information provided
in-context. Consequently, understanding the internal mechanisms that give rise to in-context learn-
ing in LLMs, has been a key focus in the machine learning community. A natural starting point of
such an analysis for Transformer-based LLMs is the model’s attention heads. A conventional gen-
erative Transformer Language Model is composed of a sequence of Transformer layers, containing
a self attention module, a Multi-Layer Perceptron module, and normalization. The self attention
module is responsible for routing information from past tokens to future tokens. In an important
study, Olsson et al. (2022) showed that a two-layer (attention-only) Transformer Language Model
developed attention heads that made tokens attend to the successor tokens of their past instances. By
attending to successor tokens, these attention heads allowed the model to copy previously observed
statistical patterns and token bi-grams. These attention heads are called induction heads and have
since served as an important explanatory mechanism behind in-context learning.
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Figure 1: Left: A schematic of our experimental design. First-order structures can be learned
by a bi-gram model. Second-order structures introduce context-dependent transition probabilities,
requiring the model to identify the current context. Third-order structures generalize this by merging
second-order contexts into higher-order ones. Right: Attention patterns from an adaptive induction
head. The model moves beyond simple bi-gram behavior by learning to attend to successor tokens in
the correct context. Green cells indicate correct attention, while red cells indicate incorrect attention.

However, induction heads, in their most basic formulation, cannot serve as the be-all and end-all
of pattern induction. Many statistical patterns in language and other domains have long-range and
hierarchical contextual dependencies. For instance, if a token x has had two different successor
tokens in the input, which successor token should it attend to? Natural language is teeming with
higher-order repetitive structure where keeping track of bi-gram statistics alone is not sufficient for
accurate prediction. For instance, the token the can preface multiple different noun tokens in a
text. To predict what token will follow the, we need to consider more than just the set of noun
tokens that succeeded it in the past, and integrate higher-order contextual cues. Olsson et al. (2022)
indeed reported an induction head that showed signs of context-sensitive adaptation, raising the
possibility that induction heads can adapt in-context and actually account for a more substantial part
of in-context learning than simple copying. Similarly, Akyürek et al. (2024) also report induction
heads copying successor tokens based on 2-gram prefix matching in Transformer Language Models
trained from scratch to predict strings from synthetic formal languages.

Expanding on these ideas, we investigate whether induction heads in pre-trained LLMs can learn
what successor tokens to attend to in-context when the token sequences have hierarchical depen-
dencies. We design a comprehensive set of synthetic token sequences that incorporate repetitive
patterns at various levels of hierarchy, along with natural language analogues. In order to predict
these token sequences accurately using induction heads, the LLM needs to direct them to attend
to specific successor tokens while ignoring others based on these tokens’ preceding context. Re-
markably, across all LLMs we evaluate, we discover induction heads in later layers that learn what
successor tokens to attend to in-context (see Fig. 1 for task and induction head visualization). We
subsequently verify our finding on a simple natural language test, showing how this mechanism is
used for sequences closer to the training distribution.

Ultimately, if LLMs learn in-context in virtue of induction heads learning in-context, how do they do
it? We propose a simple mechanism explaining how induction heads learn in-context in our task. In
our proposed circuit, dedicated heads make tokens attend to the context preceding them, routing in-
formation from potentially distant past tokens to allow subsequent context-sensitive attention. From
the output of these heads, we can decode whether the current token xt has the same N preceding
context tokens as the previous instance of xt′<t after N . These heads could support a representation
of the latent contexts giving rise to the different successor relationships between the tokens in the
sequence. With controlled ablation experiments we confirm that these heads support the in-context
learning ability of induction heads. Our results are shown for LLMs in the Qwen2.5 family of mod-
els (Yang et al., 2024), and reproduced for four other models, Gemma2-2B (Team et al., 2024),
Llama3.2-3B (Dubey et al., 2024), SmolLM3-3B (Bakouch et al., 2025) and Qwen3-0.6B (Yang
et al., 2025a) in Appendix B.
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2 TASK

2.1 SYNTHETIC DATA

To investigate how LLMs learn hierarchical structure in-context, we design token sequences where
repetitions appear at various levels of hierarchy. In the simplest case, let us consider a sequence
C =< a, b, c > which is repeated N times to form C ′ =< C1, ..., CN >. Induction heads are
perfectly fit to capture sequences like these. Each token has a unique successor token, and is repeated
in a completely predictable matter without the need to consider higher-order dependencies.

Next, let us incorporate higher-order dependencies, e.g. where successor tokens can be predicted
only by additionally considering the tokens that immediately precede them. Suppose we have three
different token sequences like the one designed above α =< a, b, c >, β =< b, c, a >, γ =<
c, b, a >. We refer to these token sequences as 2nd order chunks. Now we can construct a new
sequence where we randomly transition between our 2nd order chunks α, β and γ. Since these
consist of the same tokens in different orders, simply attending to any successor token will not be a
successful strategy for prediction. For instance, the c token is succeeded by a in the β chunk, and
by b in the γ chunk. To this end, if induction heads are responsible for in-context learning in these
cases, they have to learn what successor tokens to attend to. We refer to sequences composed of 2nd
order chunks as 2nd order sequences.

Finally, let us consider repetition at one more level of hierarchy. Like in the previous paragraph,
we can treat the building blocks of our 2nd order sequences α, β, γ as primitive and compose
a more complex vocabulary from them. Consider the set of 3rd order chunks as follows: ϕ =<
α, γ, β >, ψ =< β, α, γ >, Ω =< γ, α, β >. We can compose a new sequence with
predictable, repetitive patterns by randomly transitioning between the 3rd order chunks. Here, too,
simply attending uniformly to successor tokens is futile: For tokens embedded in the 2nd order
chunks α, β or γ, the induction head has to attend to successor tokens from the same 2nd order
structures. For tokens that transition between the 2nd order structures, the induction heads need to
attend to successor tokens in the right position within the same 3rd order chunk ϕ, ψ and Ω. We
refer to sequences composed of 3rd order chunks as 3rd order sequences.

Throughout this paper we evaluate models on sequences in these three levels of hierarchy, with
a focus on the last two. To create them, we fix a small vocabulary, a randomly sampled subset
consisting of V tokens drawn from the LLM’s original vocabulary. We then generate P unique
permutations of the new vocabulary, resulting in P sequences of length V . To create what we call
a 2nd order sequence, we repeat each permutations N times and shuffle their order (while keeping
the 2nd order chunks intact), giving us a total sequence length of N × P × V . Finally, for the 3rd
order chunks we construct P ′ unique permutations of the 2nd order chunks. We then compose a new
sequence by randomly shuffling N repetitions of the 3rd order chunks, giving us a total sequence
length of N × P ′ × P × V . Example prompts for both 2nd and 3rd order sequences are shown in
Appendix A.3.

3 INDUCTION HEADS LEARN TO ATTEND IN-CONTEXT

We evaluated three LLMs from the Qwen2.5 family (Yang et al., 2024), with 0.5, 1.5 and 3 billion
parameters, on the synthetically generated sequences from the three levels of hierarchy described in
Section 2. Notably, since the sequences were composed of random tokens from the vocabulary and
were generated using the procedure above, they never resembled natural language text. Despite this,
all models learned to predict the sequences accurately through in-context learning (see Fig. 2 A).
This suggests that there are dedicated circuits for discovering and predicting structured data patterns,
even if the data do not resemble natural language.

Next, we assessed if the models had induction heads that learned to attend to the correct successor
tokens in-context. To do this we first determined which of a model’s attention heads were induction
heads. We did this using a conventional score matching procedure, where each attention head’s
attention matrix was matched with an ideal induction head mask for a sequence with random tokens
repeated twice (Olsson et al., 2022).
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Figure 2: Some, but not all, induction heads learn to attend to successor tokens in higher-order
contexts. (A) Accuracy on the 2nd-order (top row) and the more complex 3rd-order (bottom row)
in-context learning tasks. All models can predict the transitions that require an understanding of
contexts. There are both induction heads and non-induction heads that learn to attend to the correct
context. The learning curves of the heads are the averages of the best performing 5 heads. (B) Exam-
ple attention maps showcasing two distinct strategies. The adaptive head (left) successfully learns
to attend to the correct successor tokens from previous contextual chunks. In contrast, the static
head (right) fails, defaulting to a generic, unfocused attention pattern. (C) Ablating the induction
heads severely reduced predictive accuracy and in-context learning for all LLMs across the 2nd and
3rd order sequences, indicating that these are key for in-context learning of repetitive patterns with
hierarchical structure. (D) Adaptive induction heads identify the correct successor token in natural
language as well. Static induction heads that appear earlier do not and attend more uniformly to the
two possible successor tokens. Accuracies in A and C are averaged across 32 different sequences.

This analysis left us with a pool of induction heads per model. We then assessed whether these heads
made tokens attend to their successor tokens from the correct contexts. For 2nd order sequences,
we calculated how often a token at attended to a successor of at′<t where at′<t was embedded
in the same type of 2nd order chunk. For 3rd order sequences, we designed a stricter criterion
for learning. We calculated whether tokens that marked predictable transitions between 2nd order
chunks attended to successor tokens from previous instances of the same 3rd order chunk.

Remarkably, in all models we evaluated we discovered several induction heads that learned to attend
to the correct successor tokens in-context, based on the above criterion for correctness. This shows
that more sophisticated induction heads exist in LLMs. Induction heads that learned in-context were
located in later layers, whereas induction heads that did not show signs of learning were embedded
in earlier layers. We showcase example attention maps of both adaptive, or learning, induction heads
as well as their static counterparts in Fig. 2B.
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3.1 INDUCTION HEAD LEARNING EXPLAINS IN-CONTEXT LEARNING IN OUR TASK

Next we assessed whether it was the activity of the induction heads that indeed was responsible
for the LLMs learning to predict our synthetic token sequences in-context. To test this we ablated
all induction heads by setting the output of their self attention mechanism to a vector of zeros. As
a control condition we repeated this experiment, but ablated an equal number of randomly sam-
pled non-induction heads. We confirmed that the induction heads were indeed responsible for the
in-context learning in the LLMs. When they were ablated, the 0.5B and 1.5B parameter models
predicted tokens at chance level. The 3B parameter model was still better than chance after the ab-
lation, but its performance was severely reduced. The control ablation on the other hand produced
small or negligible reductions in accuracy (see Fig. 2C).

3.2 NATURAL LANGUAGE EXAMPLE

Finally, to verify that induction heads with an adaptive attention mechanism are involved for predict-
ing natural language, we further evaluate the Qwen2.5-1.5B on a simple sentence construct. Again,
a pervasive problem in natural language is that certain tokens like the articles the or a, or com-
mon prefixes like San (as in San Francisco) or New (as in New York), tend to have many possible
successor tokens even within a single text. A representative sentence could be something like the
following:

Prompt

I visited San Antonio and saw the Alamo, and San Francisco where I saw the Golden Gate
bridge. After seeing the Alamo I realized how much I liked San [PREDICTION]

If induction heads are to aid in the prediction process here, the LLMs need to use contextual infor-
mation (either provided in the prompt, or memorized through pretraining) to direct the SAN token
to attend to one of the ANTONIO tokens. We inspected the attention scores for the tokens in this
sequence for two induction heads: Head 19-31, which showed strong learning scores in the synthetic
data prediction task, and Head 2-3, which showed no learning. Consistent with our previous results,
we see that the adaptive induction head attended more to the ANTONIO token than the FRANCISCO
token, whereas Head 2-3 attended more or less equally to the two successor tokens (see Fig. 2). We
verify the robustness of these results by presenting aggregate evidence over 32 different prompts in
Appendix A.4.

4 LEARNING THE BUILDING BLOCKS OF THE HIERARCHY

So far we have presented evidence that LLMs learn to predict structured, repetitive patterns with
higher-order dependencies in-context using induction heads that learn what to attend to in-context.
But if we explain in-context learning through yet another in-context learning mechanism, we may
wonder if we have a satisfactory explanatory account of the phenomenon. In fact, we may wonder
how induction heads themselves learn in-context?

We propose a mechanism for explaining how induction heads learn what to attend to in our task.
Consider the 2nd order sequences we evaluate the models on. The transition relationship between
the tokens can be characterized in terms of the transition structure of the P 2nd order chunks α, β,
etc. For the 3rd order sequences, the transition relationships are determined both by the 2nd order
chunks and the 3rd order chunks. If the model learns to represent that a token belongs to one of these
P latent contexts, it can use this to produce keys and queries that allow induction heads to attend to
appropriate successor tokens.

To assess whether the models become aware of the underlying, latent contexts that determine the
token-transition relationships, we trained linear probes to decode from the models’ token represen-
tation whether the tokens that belonged to a particular latent context (say, α for 2nd order sequences)
were identical to the tokens of the previous latent context.

1We refer to attention heads using the following scheme: layer index - head index. For both layer and head
indices we use 0-indexing.
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We trained probes to decode this binary variable from token representations associated with each
attention head z. Specifically, each attention head produces a representation for each token zi,
which is the sum of all J tokens’ value vectors vj multiplied with how much token i attends to
token j in that particular head ai,j :

zi =
J∑

j=0

ai,jvj (1)

After training probes to decode these latent context identities from z (averaged within each context),
we evaluated the probes on a left-out test set. High decoding accuracy meant that these representa-
tions contained information about whether the previous n-order chunk was the same as the current
n-order chunk.

Notably, our analysis revealed that many heads produced representations encoding these 2nd- and
3rd-order chunk identities (see Fig. 3). We name such attention heads context matching heads.
In context matching heads, we saw that 2nd-order chunk decodability was above 90% for several
attention heads. 3rd-order chunk decodability was lower, but still substantially higher than chance,
and always emerged in context matching heads located in later layers than the heads with high 2nd-
order decodability. This makes sense as the models had to build up representations of the 2nd-order
hierarchy before being able to build representations of the 3rd-order hierarchy.
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Figure 3: We trained linear probes to decode from each attention head’s representations (see equa-
tion 1) whether the previous 2nd or 3rd order chunk was of the same type as the one the token was
embedded in. Lines represent the max test decodability over all the heads in a particular layer. De-
codability for 2nd order chunk identities was high for all models. For 3rd order chunk identities we
see better decodability with model size.

4.1 BUILDING BLOCKS ARE LEARNED BY CONTEXT MATCHING HEADS

If there are attention heads that encode 2nd and 3rd order chunk identities, what do their correspond-
ing attention maps look like? In Fig. 4 we visualize two attention heads from Qwen2.5-1.5B where
the 2nd order chunk identity could be decoded with a test accuracy of > 90%. We constructed
shorter 2nd and 3rd order sequences using the procedure described in Section 2 and inspected the
attention heatmaps. One of the heads (layer 13, head 4) made each token attend to its predecessor
token. Such heads have previously been found to pair with induction heads, and have been theo-
rized to copy over representations of the previous token to its successor to enable the induction head
mechanism. However, our analyses suggest that these heads could also be implicated in building
up n-gram statistics by iteratively routing information from past tokens, making up the current to-
ken’s latent context. The fact that one can decode the 2nd and 3rd order chunk identities from them
suggest that they could enjoy a more general functionality - routing higher-order contextual cues
successively from potentially distant tokens to help disambiguate what successor tokens induction
heads should attend to. Furthermore, we also discover a variant of such heads wherein tokens not
only attend to their direct predecessor, but also to the N previous tokens that precede them (Fig. 4,
Head 14-8).
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2nd order 3rd order

Figure 4: A showcase of two attention heads with high latent context identity decodability for
Qwen2.5-1.5B. Head 13-4 invariably makes each token attend to its direct predecessor token. By
propagating information about the previous token forward, induction heads can easily make to-
kens attend to their successors in the past. Head 14-8 on the other hand propagates information
from longer chains of tokens forward, potentially allowing induction heads to match n-grams before
making tokens attend to particular successor token from appropriate contexts.

We hypothesized that attention heads like these were responsible for creating representations of the
latent contexts, enabling induction heads to attend to successor tokens from the appropriate contexts.
To test this hypothesis, we designed another ablation experiment where we observed how individual
induction heads behaved after ablating a context matching head that directly preceded them. Specif-
ically, we ablated head 13-4 in Qwen2.5-1.5B, which showed an off-diagonal, look-one-token-back
pattern and had a latent context decodability accuracy of > 90%. We then observed the behavior
of induction head 14-3, located in the subsequent layer. If this head was only copying over the
previous token information, ablating it should only affect the subsequent induction head’s ability to
attend to successor tokens. However, upon ablating this head, we observed that the subsequent in-
duction head still predominantly attended to successor tokens, but almost completely lost its ability
to attend to successor tokens from the right context. This suggests that the one-token-back attention
mechanism is responsible for integrating higher-order contextual cues. This makes sense, as chains
of one-token-back attention heads can successively route more distal context forward, similar to a
sliding-window attention mechanism (Beltagy et al., 2020). These results are shown in Fig. 5.

4.2 IN-CONTEXT LEARNING SUFFERS FROM ABLATING CONTEXT MATCHING HEADS

To assess more broadly whether context matching heads were responsible for the in-context learning
we observed in the induction heads, we ran controlled ablation experiments. In these ablation exper-
iments we zeroed out the representations of the context matching heads (any attention head whose
latent context decoding score was higher than 85%), and observed how these interventions affected
the prediction accuracy of the LLM as well as the attention accuracy of its induction heads. To
obtain a controlled comparison, we conducted separate ablation experiments where we zeroed out
activations of an equal number of randomly sampled attention heads (excluding the context matching
heads whose latent context decodability was higher than 55%). This allowed us to directly compare
the effect of ablating the context matching heads vs a random population of heads with different
functionalities. We report learning scores averaged across 32 samples. In the control condition, we
randomly picked a set of attention heads to ablate for each of the 32 samples.

We observed a consistent and sharp reduction in prediction accuracy when we ablated the context
matching heads (see Fig. 6, left). In comparison, ablating the same number of randomly picked
attention heads that did not encode the latent context produced much smaller adverse effects on
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Figure 5: When ablating a single context matching head, we observed a substantial drop in the
subsequent induction head’s ability to attend to successor tokens in the correct context. However,
the induction head’s ability to attend to successor tokens in general remained mostly intact. The two
heatmaps show attention patterns for head 14-3 for an example sequence. Lines represent the mean
from 84 randomly generated 2nd order sequences. Chance level was 33%.

Figure 6: (Left) LLM predictive accuracy in-context suffers from ablating context matching heads,
but much less so from ablating random pools of non-context matching heads of equal size. This
trend is observed across all models. (Right) Consistent with our previous results, we also see a
notable reduction in the accuracy with which induction heads attend to successor tokens from the
correct contexts. Lines represent mean from 32 independently generated sequences.

prediction accuracy. For Qwen2.5-0.5B, the adverse effects were almost negligible when we ablated
non-context matching heads.

Next we analyzed how these ablations affected the behavior of the induction heads. Here, too,
we observed consistent drops in the in-context learning ability of induction heads across both 2nd
and 3rd order sequences, suggesting that induction heads learn with the help of context matching
heads, making tokens peer back at previous tokens to infer the set of latent token-to-token transition
relationships (see Fig. 6, right).

5 RELATED WORK

Analyses of in-context learning. In-context learning, one of the most pervasive features of modern
language models, has been analyzed from various theoretical and empirical points of view. Brown
et al. (2020) showed that Transformer language models were generally better at predicting tokens

8



Preprint. Under review.

with more examples provided as context across a variety of tasks. Subsequent work focused on mod-
eling the phenomenon of in-context learning in Language models as gradient descent (Von Oswald
et al., 2023), Bayesian inference (Xie et al., 2021), latent variable inference (Hendel et al., 2023),
as well as in virtue of specific circuits like induction heads (Elhage et al., 2021; Singh et al., 2023)
and training distribution (Chan et al., 2022). Recent work has also focused on analyzing in-context
learning empirically using tools like Sparse Auto-Encoders and probing (Demircan et al., 2025; Park
et al., 2024a;b; Akyürek et al., 2022).

Induction and compression. Being able to induce repetitive structure is one of the basic building
blocks of compression (Bartı́k et al., 2015; Sayood, 2017; Delétang et al., 2023; Saanum et al.,
2023; Solomonoff, 1964). As we have shown, this ability is afforded in part by induction heads
and context matching heads. Notably, these induction heads show a remarkable invariance to the
particular token sequences they are presented with, picking up on repetitive structure even if the
sequences are composed of arbitrary tokens that never co-occur in natural language. Invariances like
these are crucial for generalization and for the LLMs ability to serve as general-purpose compressors
(Olshausen et al., 1993; Saanum et al., 2024; Quessard et al., 2020).

Zoo of attention heads for in-context learning. Various types of attention heads have been identi-
fied to be important for in-context learning. Elhage et al. (2021) and Olsson et al. (2022) identified
induction heads that operate at the token level, with some implications of carrying more abstract
functions. Later research (Yin & Steinhardt, 2025) has argued that in-context learning is also driven
by function vector heads (Todd et al., 2023), rather than purely by induction heads. Several other
types of head have been identified that support various forms of in-context learning, some of which
include concept induction heads (Feucht et al., 2025), semantic induction heads (Ren et al., 2024), n-
gram heads (Akyürek et al., 2024) and symbolic induction heads (Yang et al., 2025b). Our work not
only discovers a complementary type of attention head, but also highlights the mechanism through
which these heads learn, and how this relates to the original induction head circuit (see section 4.1).

Learning structured sequences. Lastly, several studies have shown that when LLMs are given
sequences generated from latent structures, their internal representations reflect the latent structure
(Demircan et al., 2025; Park et al., 2024a; Shai et al., 2024). We build on this line of work by show-
ing that LLMs can learn higher-order transition structures and that they represent key information
regarding these structures, such as whether a given higher-order structure matches the preceding
one.

6 CONCLUSION

In this paper we have made two important contributions to our understanding of in-context learning
in LLMs. 1) We have shown that LLMs can learn repetitive structures with hierarchical dependen-
cies using induction heads that learn what to attend to in-context. 2) We have presented evidence
that these induction heads learn through an accompanying circuit of attention heads that serve to
discover the latent contexts that give rise to the different token-to-token transition relationships in
the input prompt. We observed that these heads make tokens attend to either directly preceding
tokens, or longer chains of preceding tokens, routing information allowing subsequent induction
heads to query into the successor tokens that have similar chains of preceding tokens. Overall, our
results suggest that induction heads can offer a unifying account of how LLMs learn to predict pat-
terns introduced in-context. We have shown that this also holds for prevalent natural language cases,
where induction heads can learn to attend to the correct successors of tokens like the, which usually
precede conventionally precede multiple different nouns.

Limitations: While we have argued that induction heads, with the supporting context matching
heads, can give a unifying account of LLMs’ ability to induce repetitive structures with hierarchical
dependencies, there are other types of in-context learning that we have not explored. For instance,
problems from the Abstraction and Reasoning Corpus (Chollet, 2019) require LLMs to learn abstract
relationships between tokens in few examples. It is unclear if our proposed circuit, relying on context
matching, is powerful enough to induce abstract relationships like these. Secondly, all learning
analyzed here happened non-verbally, without explicit verbal reasoning. Encouraging in-context
learning through reasoning and deliberation may be a second mechanism by which an LLM can
change how induction heads allocate attention. Our study paves the way for future work to study
induction head behavior in these settings.
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A APPENDIX: IMPLEMENTATION DETAILS

A.1 SYNTHETIC DATA GENERATION

The parameters that were used to generate the synthetic data are shown in Table 1. The sequence
parameters were shared across learning, ablations, and decoding experiments. The P ′ parameter
was only used to generate the 3rd order sequences. In the 3rd order sequences, we the length of
the 2nd order chunks (V ) was halved to avoid prohibitively long sequences. We used a larger batch
size in order to train the linear probes for the decoding analysis. For the qualitative demonstrations
(i.e., Fig. 1, 2B, 4, 5, 7) we used shorter sequences. Example prompts for both 2nd and 3rd order
sequences are shown in Fig. 7.

Experiment Batch Size N P P ′ V

Learning & Ablation 32 8 4 4 8 (4 for 3rd order sequences)

Decoding 64 8 4 4 8 (4 for 3rd order sequences)

Table 1: The parameters used to generate the synthetic data.

A.2 DECODING ANALYSIS

To assess whether the models represented the latent generative contexts, we trained probes to decode
from the outputs of each attention head whether a chunk of tokens were generated by the same latent
context as the previous chunk of tokens. To obtain the input variables to our decoder we therefore
averaged token representations within a context.

the context of the current token was the same as the previous context. Next, we optimized an L2-
regularized logistic regression model using the scikit-learn library (Pedregosa et al., 2011).
We used 75% of the data to train the classifier and the remaining 25% to test it. Due to the structure
of the sequences, the previous context and the current context were more likely to be different,
creating a class imbalance. Therefore, the accuracy scores reported in Fig. 3 are balanced accuracy
scores.

A.3 PROMPT VISUALIZATION

Figure 7: Example prompts. On the upper row are two second order sequences with three unique
tokens, three unique chunks, and three repetitions. Tokens are separated by a vertical bar. The
colors of the tokens indicate to which unique chunk they belong to. On the lower row are third order
sequences, which additionally include three unique higher order chunks. Here we use different
background colors to denote different unique higher order chunks. The sequences are split into new
lines in the figure only for illustrative purposes.

A.4 NATURAL LANGUAGE

We tested whether adaptive induction heads are successful in resolving ambiguities in natural lan-
guage. We carried out the same analysis presented in Section 3.2. We provided Qwen2.5-1.5B with
16 unique sentences, where the the ambiguity of which token to predict next can only be solved
based on the previous context. With counterbalancing the order of the examples, we had 32 differ-
ent test cases, whose results are shown in Fig. 12, providing further evidence that adaptive induction
heads can infer which token to attend to from the context in ambiguous cases. We provide the
prompts that were used in Table 2.

13



Preprint. Under review.

# Prompt Correct Wrong
1 My cousins are David Chen and David Lee. I needed to speak with

the one whose last name is only three letters long, so I called David
. . .

Lee Chen

2 Both the Statute of Liberty in New York and the French Quarter in
New Orleans are famous tourist attractions. Because I love southern
cuisine, I decided to visit New . . .

Orleans York

3 The gift box contained an Apple Watch and an Apple iPhone. The
item designed to be worn on the wrist was the Apple . . .

Watch iPhone

4 The report was on the Bank of America and the Bank of Canada.
Since the focus was on Canadian financial institutions, I wrote about
the Bank of . . .

Canada America

5 The curriculum covered both World War 1 and World War 2. The
exam question was about the earlier of the two conflicts, which was
World War . . .

1 2

6 The hotel room had a king-size bed and a king-size pillow. The
large piece of furniture I slept on was the king-size . . .

bed pillow

7 I like reading both Stephen Hawking and Stephen King. Yesterday,
I felt more like reading fiction, so I read Stephen . . .

King Hawking

8 The lecture contrasted the composers John Lennon and John
Williams. I don’t like the Beatles, so I focused more on John . . .

Williams Lennon

9 I visited San Antonio and saw the Alamo, and San Francisco where
I saw the Golden Gate Bridge. After seeing the Alamo, I realized
how much I liked San . . .

Antonio Francisco

10 They had oat bar and oat milk for breakfast. I don’t like drinking
anything in the mornings, so I took the oat . . .

bar milk

11 My granddad likes flowers and my grandmum likes chocolate.
Therefore, I will gift these flower to my grand. . .

dad mum

12 He asked whether I like best of 5 or best of 3 matches more. I get
tired quickly, so I said best of . . .

3 5

13 Between the two, planet Fulty has less sunlight than planet Julty.
Because I like the sun, I like going to planet . . .

Julty Fulty

14 She could either practice her backhand or backspin. Since she al-
ready practices her backhand yesterday, today she worked on her
back. . .

spin hand

15 I split my time between Bad Tölz and Bad Homburg. I love Bad
Tölz in the winters. Since it is now July, I am in Bad . . .

Homburg Tölz

16 I like drinking caffè Americano in the morning and caffè mocha in
the afternoon. It is now 3 PM, and I would like to drink caffè . . .

mocha Americano

Table 2: The natural language prompts that were used to test the induction heads. Corresponding
correct and wrong answers are also provided.
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Figure 8: Adaptive induction heads attend to the correct tokens in ambiguous situations. Static
induction heads do not have such a preference.

B APPENDIX: REPLICATION WITH OTHER LANGUAGE MODELS

To assess the general validity of the proposed circuit, we investigated if other open-source LLM
families showed the signs of the same algorithmic implementation of hierarchical in-context learn-
ing. To this end, we conducted a subset of our experiments in exactly the same manner on four new
LLMs, Gemma2-2B (Team et al., 2024), Llama3.2-3B (Dubey et al., 2024), SmolLM3-3B (Bak-
ouch et al., 2025) and Qwen3-0.6B (Yang et al., 2025a). Specifically, we sought to assess 1) if these
models also have induction heads that learn in-context. 2) if these models have context matching
heads from which one can decode the latent generative contexts in our task. And 3), if these context
matching heads were causally involved in the in-context learning ability of the induction heads. To
evaluate the last point, we again ablated all context matching heads whose latent context decod-
ability was higher than 85%, and observed how this affected model accuracy and induction head
accuracy. We also ablated random heads as a control condition, exactly like in Section 4.1. The
results presented for the Qwen2.5 models generally reproduced with striking levels of consistency.
All models had induction heads that learned in-context, had heads that encoded the latent genera-
tive contexts, and that were causally linked to the in-context learning ability of the LLM and the
induction heads more specifically. The results are shown individually for each model below.
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Figure 9: Experimental evaluation on Gemma2-2B.

Figure 10: Experimental evaluation on Llama3.2-3B.
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Figure 11: Experimental evaluation on SmolLM3-3B.

Figure 12: Experimental evaluation on Qwen3-0.6B.
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