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ABSTRACT

How do people perceive and communicate structure? We investigate this question by letting

participants play a communication game, where one player describes a pattern, and another

player redraws it based on the description alone. We use this paradigm to compare two

models of pattern description, one compositional (complex structures built out of simpler

ones) and one noncompositional. We find that compositional patterns are communicated

more effectively than noncompositional patterns, that a compositional model of pattern

description predicts which patterns are harder to describe, and that this model can be used to

evaluate participants’ drawings, producing humanlike quality ratings. Our results suggest that

natural language can tap into a compositionally structured pattern description language.

INTRODUCTION

Humans see patterns everywhere, and eagerly communicate them to one another. However,

little is known formally about how we communicate patterns, what kinds of patterns are eas-

ier or harder to communicate, and how we reconstruct patterns from natural language. This

article seeks to bridge this gap by combining a pattern communication game with a mathemat-

ical model of pattern description (Quiroga, Schulz, Speekenbrink, & Harvey, 2018; Schulz,

Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017).

Consider the graphs shown in Figure 1, which plot time series of CO2 emission, air-

line passenger volume, and search frequency for the term “gym membership.” Experiments

suggest that humans perceive these graphs as compositions of simpler patterns, such as lines,

oscillations, and smoothly changing curves (Quiroga et al., 2018; Schulz, Tenenbaum, et al.,

2017). For example, there is seasonal variation in passenger volume (a periodic component

with time-dependent amplitude), superimposed on a linear increase over time.

As described in more detail in the next section, we can formalize this idea using a pattern

description language consisting of functional primitives and algebraic operations that com-

pose them together. By defining a probability distribution over this description language, we

can express an inductive bias for certain kinds of functions—in particular, functions that can

be described with a small number of compositions (Duvenaud, Lloyd, Grosse, Tenenbaum,

& Ghahramani, 2013; Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014; Schulz,

Tenenbaum, et al., 2017). In other words, the “mental” description length of a function relates

to the complexity of its encoding in the compositional pattern description language.
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Figure 1. Examples of compositional patterns. (a) Monthly average atmospheric CO2 concentra-
tions collected at the Mauna Loa Observatory in Hawaii from 1960 to 2010. (b) Number of airline
passengers from 1960 to 2010, originally collected by Box et al. (2015). (c) Google queries for
“Gym membership” from 2002 to 2012 in the city of London.

It is important to note that there are other ways to reduce description length besides en-

coding functions with a small set of compositions (what we will refer to as “compositional

functions”). For example, a standard assumption in machine learning is that functions are

smooth (Rasmussen & Williams, 2006). If we defined a probability distribution over func-

tions that prefer smoothness, then smooth functions would have short description lengths, in

the sense that the number of bits required to encode them would be smaller than nonsmooth

functions. However, a preference for smoothness does not seem to be an adequate account of

how humans encode functions: functions that are smooth but cannot be compactly described

by compositions are less easily encoded, as indicated by poorer memory and change detection

performance for these functions compared to compositional functions (Schulz, Tenenbaum,

et al., 2017; see additional analysis in the Supplemental Materials).

Here we extend this idea one step further, asking whether there is a correspondence

between the pattern description language and natural language descriptions of functions. We

proceed in three steps. First, we ask participants to describe functions sampled from compo-

sitional or noncompositional distributions. Second, we ask a separate group of participants to

redraw the original function using only the description. Third, we ask another group of par-

ticipants to rate how well each drawing corresponds to the original. We hypothesized that

compositional functions would be easier to reconstruct compared to noncompositional func-

tions, under the assumption that the former allow for a mental description that can be more

easily encoded into natural language and decoded back into the function space. We also rule

out several alternative explanations and map pattern-specific descriptions to compositional

components with the help of an additional experiment.

A COMPOSITIONAL PATTERN DESCRIPTION LANGUAGE

Our model of pattern description is based on a Gaussian process (GP) regression approach to

function learning (Rasmussen & Williams, 2006; Schulz, Speekenbrink, & Krause, 2017). A

GP is a collection of random variables, any finite subset of which is jointly Gaussian. A GP

defines a distribution over functions. Let f : X → R denote a function over an input space X

that maps to real-valued scalar outputs. This function can be modeled as a random draw from

a GP:

f ∼ GP(m, k). (1)
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Themean function m specifies the expected output of the function given input x, and the kernel

function k specifies the covariance between outputs:

m(x) = E [ f (x)] (2)

k(x, x′) = E
[

( f (x)− m(x))( f (x′)− m(x′))
]

. (3)

We follow standard convention in assuming a prior mean of 0 (Rasmussen & Williams, 2006).

All positive semidefinite kernels are closed under addition and multiplication, allowing

us to create richly structured and interpretable kernels fromwell-understood base components.

We use this property to construct a class of compositional kernels (Duvenaud et al., 2013;

Lloyd et al., 2014; Schulz, Tenenbaum, et al., 2017). To give some intuition for this approach,

consider again the CO2 data in Figure 1. This function is naturally decomposed into a sum

of a linearly increasing component and a seasonally periodic component. The compositional

kernel captures this structure by summing a linear and periodic kernel.

Compositional GPs have been used to model complex time-series data (Duvenaud et al.,

2013), as well as to generate automated natural language descriptions from data (Lloyd et al.,

2014), an approach coined the “automated statistician” (Ghahramani, 2015). Although it

is frequently assumed that people will easily understand the generated description of the

“automated statistician,” it is not known whether compositional patterns are indeed more

communicable.

We follow the approach developed in Schulz, Tenenbaum, et al. (2017), using three base

kernels that define basic structural patterns: a linear kernel that can encode trends, a radial ba-

sis function kernel that can encode smooth functions, and a periodic kernel that can encode

repeated patterns (see Table 1). These kernels can be combined by either multiplying or adding

them together. In previous research, we found that this compositional grammar can account

for participants’ behavior across a variety of experimental paradigms, including pattern com-

pletions, change detection, and working, memory tasks (Schulz, Tenenbaum, et al., 2017). We

fix the maximum number of combined kernels to be three and do not allow for repetition of

kernels in order to restrict the complexity of inference (see next section).

We compare the compositional model to a noncompositional model based on a spec-

tral mixture of kernels (see Supplemental Materials, for further details). This model is derived

from the fact that any stationary kernel can be expressed as an integral using Bochner’s the-

orem. This model approximates functions by matching their spectral density with a mixture

of Gaussians. It has a similar expressivity compared to the compositional model, but does

Table 1. Base kernels in the compositional grammar.

Name Definition

Linear k(x, x′) = (x − θ1)(x
′ − θ1)

Radial basis k(x, x′) = θ2
2 exp

(

− (x − x′)2

2θ2
3

)

Periodic k(x, x′) = θ2
4 exp

(

− 2 sin2(π|x − x′|θ5)
θ2

6

)
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not encode compositional structure explicitly. This means that both models will make simi-

lar predictions given unlimited data; however, given a finite data regime, the compositional

kernel will have strong inductive biases for compositional functions, whereas the spectral

kernel will not show such inductive biases. Wilson, Dann, Lucas, and Xing (2015) have used

this model to reverse-engineer “human kernels” in standard function-learning tasks. We use

this kernel to assess if communication of patterns can be described well by a kernel that is

equally expressive as the compositional kernel but does not operate over structural building

blocks. Instead of optimizing its parameters to find humanlike kernels in traditional function-

learning tasks, we will optimize it based on the structure participants had to describe.1

MODELING FUNCTION LEARNING

Wemodel human pattern description using Bayesian inference over functions with a GP prior,

an approach that has been successfully applied to a range of experimental and observational

data (Griffiths, Lucas, Williams, & Kalish, 2009; Lucas, Griffiths, Williams, & Kalish, 2015;

Schulz et al., 2019; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Given an observed

pattern, D = {xn, yn}N
n=1, where yn ∼ N ( f (xn), σ2) is a draw from the latent function, the

posterior predictive distribution for a new input x∗ is also normally distributed, where

E[ f (x∗)|D] = k⊤
∗ (K + σ2I)−1y (4)

V[ f (x∗)|D] = k(x∗, x∗)− k⊤
⋆
(K + σ2I)−1k∗, (5)

are the mean and variance, respectively. The term y = [y1, . . . , yN ]
⊤, K is the N × N matrix

of covariances evaluated at each pair of observed inputs, and k∗ = [k(x1, x∗), . . . , k(xN , x∗)]

is the covariance between each observed input and the new input x∗.

We use a Bayesian model comparison approach to evaluate how well a particular ker-

nel captures the data, while accounting for model complexity. Assuming a uniform prior over

kernels, the posterior probability favoring a particular kernel is proportional to the marginal

likelihood of the data under that model. The log marginal likelihood for a GP with hyperpa-

rameters θ is given by:

log p(y|X, θ) := −
1

2
y⊤(K + σ2

n I)−1y −
1

2
log |K + σ2

n I| −
n

2
log 2π, (6)

where the dependence of K on θ is left implicit. The hyperparameters are chosen to maximize

the log-marginal likelihood, using gradient-based optimization (Rasmussen & Nickisch, 2010).

GENERATING PATTERNS

We use the same patterns as in Schulz, Tenenbaum, et al. (2017). These patterns were gener-

ated from both compositional and noncompositional (spectral mixture) kernels. The compo-

sitional patterns were sampled randomly from a compositional grammar by first randomly

sampling a kernel composition and then sampling a function from that kernel, whereas the

noncompositional patterns were sampled from the spectral mixture kernel, where the number

1 Note that although the spectral kernel could a priori be captured by sums of radial basis function (RBF) and
periodic kernels, the extracted (i.e., fitted) “human kernel” reported by Wilson et al. (2015) was more similar
to a mixture of a radial basis function and a linear kernel. We compare both of these types of mixture kernels to
our full compositional kernel in our lesioned model comparison in the Supplemental Materials.
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of components was varied between two and six uniformly. A subset of these sampled pat-

terns were then chosen so that compositional and noncompositional functions were matched

based on their spectral entropy and wavelet distance (Goerg, 2013), leading to a final set of

40 patterns.

PATTERN COMMUNICATION GAME

Our study assessed how well different patterns can be communicated in a free-form communi-

cation game (i.e., without any restrictions on participants’ description lengths or word usage).

The study consisted of three parts: description, drawing, and quality rating. Participants were

recruited from Amazon Mechanical Turk, and no participant was allowed to participate in

more than one part. The study was approved by Harvard’s institutional review board.

Part 1: Eliciting Descriptions

Thirty-one participants (6 female, mean age = 34.91, SD = 10.25) took part in the description

study. Participants sequentially saw six different patterns, represented as graphs that they had

to describe afterwards. Three of the patterns were randomly sampled from the 20 composi-

tional patterns without replacement, and three were sampled from the noncompositional pool

of patterns. The order of the presented patterns was determined at random. On every trial,

participants first saw a pattern for 10 s, after which the pattern disappeared. The pattern was

shown to them as 100 equidistant points indicating a function on a canvas (see Figure 2). After

the pattern disappeared, participants had to describe it using as many words as they liked.

Participants were told that we would pass on their descriptions to someone else who would

then have to redraw the patterns without ever having seen them.

Two judges independently rated the descriptions2 on a scale from 1 (bad descriptions)

to 5 (great descriptions). The agreement between the two judges was sufficiently high, with an

interrater correlation of r(29) = 0.46, t = 2.45, p = .02, BF = 3.8, and we validated their

judgments both statistically and using additional raters (see the Supplemental Materials). We

then retained the descriptions with an average rating higher than 3, giving 7 “describers” and

a total pool of 31 different patterns. Sixteen of these patterns were compositional, and fifteen

were noncompositional. All participants were paid $2 for their participation.

Part 2: Drawing the Patterns

We recruited 49 participants (21 females, mean age = 33.6, SD = 9.6) for the drawing part

of the experiment. In this part, participants only saw the descriptions of the patterns and had

to redraw them by placing dots on an empty canvas. Below the canvas, participants saw the

descriptions of the patterns, which they knew had been written by a past participant. Partici-

pants were told that they could place any number of dots onto the canvas, but had to place

at least five dots to draw a pattern before they could submit their drawings. Each participant

received the six descriptions written by a randomly matched participant from the description

part, that is, they were paired with one of the top seven “describers” from the first part of the

study. Participants were paid $2 for their participation.

Part 3: Rating the Quality of the Drawings

We recruited 104 participants (35 females, mean age = 37.7, SD = 8.6) to rate the quality of

participants’ performance in the previous parts. Participants were told the rules of the game the

2 All descriptions can be found online: https://ericschulz.github.io/comcompresps.pdf.
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previous participants had played. They then had to rate 30 randomly sampled drawings, where

the drawings were always presented right next to the original pattern. Participants did not see the

descriptions that led to the eventual drawings, but rather only had to evaluate how much the

drawing resembled the original, that is, how well they thought two participants performed in

one round of the game. They did this by entering values on a slider from 0 (bad performance)

to 100 (great performance). We paid participants $1 for their participation.

RESULTS

Figure 2 shows three examples of participants’ descriptions and drawings for both composi-

tional and noncompositional patterns. We first assessed whether participants in the description

Figure 2. Examples of descriptions and drawings. Figures show the three best (based on the quality ratings) unique drawings for both
compositional (upper panel in orange) and noncompositional (lower panel in blue) patterns. The upper rows always show the original pattern,
the middle rows show the descriptions, and the bottom rows show the redrawn patterns.
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part of the study entered longer descriptions for the compositional than the noncompositional

patterns. This analysis revealed no significant difference between the two kinds of patterns,

t(30) = 0.15, p = .88, d = 0.03, BF = 0.2. Next, we assessed whether participants in the

drawing part of the study used more dots to redraw compositional than noncompositional pat-

terns. This also showed no difference between the two kinds of patterns, t(49) = 1.00, p = .32,

d = 0.14, BF = 0.2.

Although one might conclude from these analyses that the descriptions and redrawings

were relatively similar across the two pattern classes, inspection of which words frequently ap-

peared in the compositional descriptions but not the noncompositional ones (and vice versa)

revealed that compositional descriptions often included more abstract words such as “moun-

tain,” “repeat,” or “valley” (Figure 3a), whereas noncompositional descriptions used words

such as “starts,” “bottom,” or “top,” likely describing exactly how to draw a particular shape

(Figure 3b). Furthermore, we assessed the descriptions’ lexical diversity, defined as the sum of

the unique words used divided by all words used in a description (McCarthy & Jarvis, 2010).

Compositional descriptions showed a higher lexical diversity than noncompositional descrip-

tions, t(30) = 4.22, p < .001, d = 0.76, BF > 100, Figure 3c.

We next analyzed the quality of participants’ drawings. In order to compare the two, we

used polynomial smoothing splines to connect the dots. The splines were forced to go through

every point on the canvas such that the original and redrawn patterns have the same length.

Our results also hold even if we just use the raw points or other methods of extracting the

patterns such as generalized additive models (see the Supplemental Materials). We then cal-

culated the absolute difference (absolute error) between the original and the redrawn patterns.

This difference was larger for noncompositional than for compositional patterns (Figure 4a;

t(49) = 2.43, p = .01, d = 0.34, BF = 4.1), indicating that participants were more accurate at

redrawing compositional patterns.

The absolute distance between two patterns might not be the best indicator of perfor-

mance, because two patterns can look alike but still show a large absolute difference (e.g.,

if the redrawn pattern is smaller than the original, or if one pattern is just slightly shifted to

either side). We therefore also applied a distance measure that takes into account these pos-

sible deviations by assessing the similarity of two patterns based on their differences after

performing a Haar wavelet transform. The idea behind this similarity measure is to replace

Figure 3. Linguistic characteristics of function descriptions. (a) Frequency of words that were
used more than twice in the compositional but not the noncompositional descriptions. (b) Fre-
quency of words that were used more than twice in the noncompositional but not the compositional
descriptions. (c) Lexical diversity of compositional and noncompositional descriptions.
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Figure 4. Difference between compositional and noncompositional functions. Colors indicate
the type of pattern. Red dots show the mean, along with the 95% confidence interval. (a) Absolute
error between original and redrawn patterns. (b) Wavelet distance between original and redrawn
patterns. (c) Rated quality shown as 100-rating to transform it to a distance measure (i.e., lower
values are better).

the original pattern by its wavelet approximation coefficients, and then to measure similarity

between these coefficients (Montero & Vilar, 2014; see the Supplemental Materials). Techni-

calities aside, this measure is robust to scaling and shifting of the patterns. We have previously

verified that it corresponds well with participants’ similarity judgments when comparing two

patterns (Schulz, Tenenbaum, et al., 2017). Analyzing participants’ performance using this

measurement (wavelet distance) showed an even stronger advantage for compositional pat-

terns (Figure 4b; t(49) = 3.02, p = .004, d = 0.43, BF = 11.7).

Next, we looked at the quality ratings collected in the third part of our study. We esti-

mated a linear mixed-effects model with random effects for a compositional vs. noncompo-

sitional contrast for raters, describer-drawer pairs, and for the items (patterns). We compared

this model to another model that also included a compositional vs. noncompositional contrast

as a fixed effect (following the logic of Barr, Levy, Scheepers, & Tily, 2013). The results of this

analysis showed that adding the compositional contrast as a fixed effect moderately improved

the overall model fit (BF = 4.6). Compositional patterns were rated more highly than non-

compositional patterns (Figure 4c), resulting in a posterior estimate of 39.61 (95% HDI [high

density interval]: 39.03, 40.19) for the compositional patterns and a posterior estimate of 33.31

(95% HDI: 32.69, 33.93). Interestingly, the rated quality was not influenced by the length of

the descriptions (BF = 0.01).

We also assessed how well both models captured the difficulty of communicating the

different patterns, as well as participants’ quality ratings. First, we assessed whether the likeli-

hood of each model, when fitted to the original patterns, was predictive of how communicable

that pattern was. The idea behind this analysis was that, if participants were really using one

of the two models to extract and compress patterns, then how well this model can compress

the patterns (as measured by the likelihood given the data) should be related to how well

people can communicate it. We therefore fitted a set of multilevel regression models with the

previously used error measures as the dependent variables, and the log-likelihood for each

pattern as estimated by both compositional and noncompositional models as the indepen-

dent variables. We also included a random intercept and a random slope for each of the two

models’ likelihoods, as participants might vary in their ability to redraw the described pattern

and how well they are predicted by the different models. The resulting fixed effects regression

coefficients (Table 2) showed the same pattern for both error measurements: there was a sig-

nificant effect for the compositional but not the noncompositional log-likelihoods. Moreover,
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Table 2. Results of regression analyses.

Absolute Error Wavelet Distance Quality Ratings

Intercept 27.59∗∗ 3.26∗∗ 35.83∗∗

(0.63) (0.07) (2.38)

Compositional −1.39∗ −0.19∗∗ 6.73∗∗

(0.54) (0.06) (2.12)

Noncompositional −0.83 −0.08 −4.03

(0.53) (0.06) (3.15)

Note. Columns show the standardized fixed effects regression estimates for
modeling the absolute error, the wavelet distance error, or participants’ qual-
ity ratings as the dependent variable. Standard errors of the coefficients are
displayed below each coefficient in brackets.

**p < .001, *p < .01

we directly compared two mixed-effects regressions solely using either the compositional or

the noncompositional log-likelihoods as the independent variable. This comparison strongly

favored the compositional log-likelihoods for modeling both the absolute error (BF > 100) and

the wavelet distance (BF > 100). This means that patterns that were easier to compress by the

compositional model were also easier to communicate for participants. This was not true for

the noncompositional model.

Finally, we applied the same regression approach, using the log-likelihood as the inde-

pendent variable (both as a fixed and a random effect), to predict the quality ratings collected

in the third part of the study. The idea behind this analysis is that if participants were indeed

using one of the two models to evaluate the quality of the drawings, then they should evaluate

the likelihood of the drawing to have been produced by the same generative process as the

original drawing. Only the compositional model significantly predicted participant’s ratings

in part 3 (Table 2 and Figure 4c) and the direct comparison between the compositional and

the noncompositional model strongly favored the compositional model (BF > 100). This sug-

gests that participants assessed the quality of the drawings based on how well they could be

described by similar compositions as the original patterns.

Controlling for Individual Components

Given that both the compositional and the noncompositional kernel can—in the limit of infi-

nite data—capture any function but, differ in their inductive biases given finite data, we also

analyzed if any individual structure (for example, periodicity or linearity) might have driven

the differences between compositional and noncompositional patterns’ communicability. We

therefore analyzed the differences between compositional and noncompositional patterns’

wavelet distances while controlling for how well different single-component kernels described

the patterns, as measured by the log-likelihoods produced by either a periodic, a linear, or an

RBF kernel taken on their own. We regressed the individual components’ log-likelihoods as a

fixed and a random effect onto the wavelet distances first. Additionally, we added a dummy

indicating whether or not a pattern was compositional to that regression as a random effect.

Afterward, we added the same dummy variable as a fixed effect to assess if compositionality

added something to communicability over and above the simple components. This analysis

showed that adding the dummy factor improved a regression that only contained the periodic
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(BF = 20.7), the RBF (BF = 28.9), or the linear (BF = 15.6) log-likelihoods. Thus, the ad-

vantage of compositional patterns’ communicability did not solely arise from single structures,

persisting even when controlling for each of the individual components of the compositional

grammar.

Controlling for Pattern Memorability

One concern with our current analysis is that participants saw the patterns and then had to

describe them from memory. Thus, differences in the final quality could have also arisen from

differences in participants’ memory capacity for different patterns. To rule out this alternative

explanation, we also assessed by how much, if at all, the compositional model’s predictions

captured communication quality better than just pattern memorability. We therefore ran an

additional experiment in which 51 participants (37 male, mean age = 31.91, SD = 11.8)

sequentially saw patterns for 10 s (just like in part 1 of our main experiment) and then had

to immediately redraw it (using the same canvas setup as in part 2 of our main experiment).

We let participants do this for six patterns in total. Three of these patterns were compositional

and three were noncompositional. We then measured how well the different patterns could

be remembered by calculating the wavelet differences between the original and the redrawn

patterns and averaging them for each pattern individually, leading to an item-specific measure

of memorability. Next, we assessed by how much our previous regressions improved by addi-

tionally entering the compositional model’s log-likelihoods as a fixed effect while controlling

for the item-specific memorability score (both as a random and fixed effect) and the composi-

tional model’s log-likelihoods as random effect. This revealed that the compositional model’s

likelihood substantially improved the regression model for the absolute error (BF = 8.9), the

wavelet distance measure (BF = 8.3), and the quality ratings (BF > 100). Thus, there are

strong reasons to believe that the differences in communication qualities did not solely arise

from pattern memorability.

Relating Composition-Specific Words to Compositional Descriptions

We were also interested in how specific features of participant language mapped onto spe-

cific compositions in the patterns. We therefore conducted another experiment in which we

showed an additional group of participants single components of the compositional model. In

this experiment, 50 participants (24 males, mean age = 34.25, SD = 11.96) saw six different

patterns sequentially. Each pattern was presented to them for 10 s after which it disappeared

and they had to describe it, exactly as in part 1 of our earlier experiments. However, this time

we sampled patterns from single kernels of the compositional model. Thus, each participant

had to describe two patterns that were sampled from a periodic kernel, two patterns sampled

from an RBF kernel, and two patterns sampled from a linear kernel, presented to them in ran-

dom order. We then extracted the top 10 words for each single component, that is, the words

that were more frequently used to describe patterns from a particular component compared to

the other two components. The resulting words were intuitively plausible; for example, com-

mon words for periodic patterns were “peak,” “time,” and “wave,” whereas frequent words

for linear patterns were “linear,” “straight,” and “steady.” We then assessed how often the

extracted, composition-specific words appeared in the descriptions elicited in part 1 of our

earlier experiment. Figure 5a shows how much more often the extracted words appeared in

the descriptions of compositional as compared to noncompositional descriptions in our first

experiment (calculated by subtracting the frequency of occurrences in the noncompositional

descriptions from the frequency of occurrences in the compositional descriptions). This re-

vealed that many of the compositional words appeared more frequently in the descriptions of
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Figure 5. Composition-specific words. Colors indicate the type of pattern. Error bars show the
standard error of the mean. (a) Frequency counts of word occurrences. Words were extracted from
an additional experiment asking participants to describe single patterns. Counts show how often the
extracted words appeared in compositional vs. noncompositional patterns in our main experiment.
For example, positive numbers show that a word extracted for a particular component appeared
more frequently in the descriptions for compositional patterns than in the descriptions for non-
compositional patterns. (b) Probability that a word extracted from the single-component descriptions
would be used in a description of a compositional or noncompositional function.

compositional patterns than in the descriptions of noncompositional patterns. This can also be

seen when calculating—for each set of words—the probability that at least one of the words

appeared in the description (Figure 5b). This probability was higher for compositional patterns

overall, t(30) = 2.65, p = .005, d = 0.54, BF = 7.47. Moreover, both words describing pe-

riodic, t(30) = 4.14, p < .001, d = 0.74, BF > 100, and linear, t(30) = 3.92, p < .001,

d = 0.70, BF = 63.3, patterns were more frequently used to described compositional than

noncompositional patterns. This difference was not present for words describing RBF patterns,

t(30) = −0.96, p = .34, d = 0.17, BF = 0.3. This is intuitive because noncompositional

patterns might also contain smooth parts. Indeed, the compositional model more frequently

interprets patterns sampled from the noncompositional kernel as having RBF components than

linear or periodic components (cf. Schulz, Tenenbaum, et al., 2017).

Finally, we calculated for each component the probability of being present in each of

the described functions. This can be approximated by dividing the summed log-likelihood of

kernels containing a particular component by the sum of all log-likelihoods. We then regressed

the resulting values onto a binary variable that indicated whether or not a composition-specific
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description was present for each description, including a random intercept over participants.3

For example, one would expect that participants might be more likely to use RBF-specific

words the more likely it actually was that an RBF component was part of the seen pattern. This

showed that linear words were somewhat more likely to be used the more likely linear patterns

were to be present in the data, β = 0.13, z = 2.71, p = .007, BF = 3.8, 95% HDI: 0.04, 0.22,

and that the same was also true for RBF-specific, β = 0.13, z = 2.64, p = .008, BF = 5.2, 95%

HDI: 0.01, 0.26, and periodic-specific words, β = 0.12, z = 2.32, p = 0.02, BF = 4.1, 95%

HDI: 0.02, 0.23.

DISCUSSION

We investigated how people perceive and communicate patterns in a pattern communication

game where one participant described a pattern and another participant used this descrip-

tion to redraw the pattern. Our results provide evidence that compositional patterns are more

communicable, that a compositional model better captures participants’ difficulty in commu-

nicating patterns, and that participants’ quality ratings when evaluating the performance of

other participants are also best captured by a compositional model. Taken together, these re-

sults suggest that there is an interface between natural language and the compositional pattern

description language uncovered by our earlier work (Schulz, Tenenbaum, et al., 2017).

We are not the first to study how patterns are transmitted from one person to another.

Kalish, Griffiths, and Lewandowsky (2007) let participants learn and reproduce functional

patterns in an “iterated learning” paradigm. In this paradigm, participants drew functions that

were then passed on to the next person, who then had to redraw them, and so forth. The re-

sults of this study showed that participants converged to linear functions with a positive slope,

even if they started out from linear functions with a negative slope or just random dots. A

key difference from our study is that Kalish et al. (2007) did not ask participants to gener-

ate natural language descriptions. Another difference is that in iterated-learning studies, the

object of interest is typically the stationary distribution, which reveals the learner’s inductive

biases (Griffiths & Kalish, 2007; Kirby & Hurford, 2002). We have not attempted to simu-

late a Markov chain to convergence, so our study does not say anything about the stationary

distribution. Here we ask whether particular pattern classes are more or less communicable.

Schulz, Tenenbaum, et al. (2017) provide a systematic investigation into the nature of inductive

biases in function learning, supporting the claim that these inductive biases are compositional

in nature.

Our approach ties together neatly with past attempts to model compositional structure in

other cognitive domains. Language (Chomsky, 1965) and object perception (Biederman, 1987)

have long traditions of emphasizing compositionality. More recently, these ideas have been

extended to other domains such as concept (Feldman, 2000) and rule learning (Goodman,

Tenenbaum, Feldman, & Griffiths, 2008). Our results add to these attempts by linking compo-

sitional function representation to linguistic communication.

There are four important limitations of the current work, which point the way toward fu-

ture research. First, we do not have a computational account of how patterns are encoded into

natural language. Based on work in machine learning (Lloyd et al., 2014), one starting point is

3 We did not include a random slope over participants into this model comparison, because there was no
evidence for a random slope improving model fits for the regression focusing on RBF-specific words, BF = 0.02,
the regression focusing on linear-specific words, BF = 0.08, as well as the regression focusing on periodic-
specific words, BF = 0.02.
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to assume that people first infer a structural description of the pattern, and then “translate” this

structural description into natural language. Although the work of Lloyd et al. (2014) shows

how to do this for the compositional GP model, the natural language descriptions are highly

technical, and therefore a rather poor match for lay descriptions of patterns. As the word fre-

quencies in Figure 3a–b illustrate, people seem to make use of more metaphorical language

when describing compositional functions—a property not captured by the austere statistical

descriptions of Lloyd and colleagues. What we need is a kind of pattern “vernacular” that maps

coherently (though perhaps approximately) to the structural description.

The second limitation of our work is that we do not have a computational account of

how descriptions are decoded into patterns for redrawing. One natural hypothesis is that this

is essentially a reverse of the process described above: natural language descriptions are first

translated into structural descriptions, which can then be plugged into the GP model to gen-

erate the mean function or sample from the posterior.

Both of these limitations might be addressed in a data-driven way by using machine

learning tools to find invertible mappings from structural descriptions to natural language. In

particular, we could treat this as a form of structured output prediction, a supervised learning

problem in which the inputs and outputs are both multidimensional. Modern structured output

prediction algorithms have developed a variety of ways to exploit the structured nature of

linguistic data (e.g., Daumé, Langford, & Marcu, 2009; Tsochantaridis, Joachims, Hofmann,

& Altun, 2005). These algorithms have not yet been applied to human pattern description.

The third limitation of our work is that we have investigated a fairly small set of functions.

This set was chosen based on our past work (Schulz, Tenenbaum, et al., 2017) so as to minimize

low-level perceptual confounds. However, further work will be required to verify that our

results generalize to a broader range of functions.

The final limitation is that it is currently hard to draw a clear distinction between com-

positional and noncompositional patterns. Given that both the compositional and the non-

compositional model can capture almost any pattern given enough data, the main differences

between the two models can be derived from their predictions under a finite data regime.

The two models’ inductive biases differ substantially given the number of data points we have

applied here. Take as an example patterns that exhibited a linear trend. Even though the non-

compositional kernel could eventually capture a linear trend, it would require a large number

of noncompositional parts to interpolate trends and yet would still struggle to extrapolate be-

yond the encountered data; this is because it lacks the required inductive biases to express

trends efficiently.

CONCLUSION

The idea that concepts are represented in a “language of thought” is pervasive in cognitive

science (Fodor, 1975; Piantadosi, Tenenbaum, & Goodman, 2016), and we have previously

shown that human function learning also appears to be governed by a structured “language”

of functions (Gershman, Malmaud, & Tenenbaum, 2017; Schulz, Tenenbaum, et al., 2017).

Specifically, people decompose complex patterns into compositions of simpler ones, ulti-

mately producing a structural description of patterns that allows them to effectively perform a

variety of tasks, such as extrapolation, interpolation, compression, and decision making. The

results in this article suggest that the availability of a structural description can also be used

to communicate patterns in natural language. Because noncompositional functions are less

effectively encoded into a structural description, they are disadvantaged in terms of accurate
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pattern communication. This finding provides new insight into how a language of thought

might mediate translation between vision, language, and action.
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