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Making good decisions requires people to appropriately explore
their available options and generalize what they have learned.
While computational models can explain exploratory behavior in
constrained laboratory tasks, it is unclear to what extent these
models generalize to real-world choice problems. We investigate
the factors guiding exploratory behavior in a dataset consisting
of 195,333 customers placing 1,613,967 orders from a large online
food delivery service. We find important hallmarks of adaptive
exploration and generalization, which we analyze using com-
putational models. In particular, customers seem to engage in
uncertainty-directed exploration and use feature-based general-
ization to guide their exploration. Our results provide evidence
that people use sophisticated strategies to explore complex,
real-world environments.

exploration | generalization | reinforcement learning | decision making

When facing a vast array of new opportunities, a decision
maker has two key tasks: to acquire information (often

through direct experience) about available options and to apply
that information to assess options not yet experienced. These
twin problems of exploration and generalization must be tack-
led by any organism trying to make good decisions, but they
are challenging to solve because optimal solutions are compu-
tationally intractable (1). Consequently, the means by which
humans succeed in doing so—especially in the complicated world
at large—have proved puzzling to psychologists and neurosci-
entists. Many heuristic solutions have been proposed to reflect
exploratory behavior (2–4), inspired by research in machine
learning (5, 6). However, most studies have used a small number
of options and simple attributes (7). To truly ascertain the limits
of exploration and generalization requires empirical analysis of
behavior outside the laboratory.

We study learning and behavior in a complex environment
using a large dataset of human foraging in the “wild”—online
food delivery. Each customer has to decide which restaurant
to pick out of hundreds of possibilities. How do they make a
selection from this universe of options? Guided by algorith-
mic perspectives on learning, we look for signatures of adap-
tive exploration and generalization that have been previously
identified in the laboratory. This allows us not only to char-
acterize these phenomena in a naturally incentivized setting
with abundant and multifaceted stimuli, but also to weigh in
on existing debates by testing competing theories of exploratory
choice.

We address two broad questions. First, How do people strate-
gically explore new options of uncertain value? Different algo-
rithms have been proposed to describe exactly how uncertainty
can guide exploration in qualitatively different ways, such as by
injecting randomness into choice or by making choices directed
toward uncertainty (8). However, results have been mixed, and
these phenomena remain to be studied under real-world con-
ditions. Second, how do people generalize their experiences
to other options? Modern computational theories make quan-
titative predictions about how feature-based similarity should
govern generalization, which can in turn guide choice. But again

it is unclear whether these theories can successfully predict
real-world choices.

Our results suggest that customers explore (i.e., order from
unexperienced restaurants) adaptively based on signals of restau-
rant quality and make better choices over time. Exploration
is indeed risky and leads to worse outcomes on average, but
people are more likely to explore in cities where this down-
side is lower due to higher mean restaurant quality. Moreover,
we show that customers’ exploratory behavior might take into
account not only the prospective reward from choosing a restau-
rant, but also the degree of uncertainty in their reward esti-
mates. Consistent with an optimistic uncertainty-directed explo-
ration policy, they preferentially sample lesser-known options
and are more likely to reorder from restaurants with higher
uncertainties.

Importantly, we apply cognitive and statistical modeling to
customers’ choice behavior and find that their choices are best
fitted by a model that includes both an “uncertainty bonus” for
unfamiliar restaurants and a mechanism for generalization by
function learning (based on restaurant features). People appear
to benefit from such generalization, as exploration yields better
realized outcomes in cities where features have more predictive
power. We also show that people generalize their experiences
across different restaurants within the same broad cuisine type,
defined both empirically within the dataset and by independent
similarity ratings. As predicted by a combination of similarity-
based generalization and uncertainty-directed exploration, good
experiences encourage selection of other restaurants within the
same category, while bad experiences discourage this to an even
greater extent.

To set the stage for our analyses of purchasing decisions, we
first review the algorithmic ideas that have been developed to
explain exploration in the laboratory.

Significance

We study how people make choices among a large num-
ber of options when they have limited experience. In a
large dataset of online food delivery purchases, we find evi-
dence for sophisticated exploration strategies predicted by
contemporary theories. People actively seek to reduce their
uncertainty about restaurants and use similarity-based gener-
alization to guide their selections. Our findings suggest that
theories of exploratory choice have real-world validity.
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Prior Work on the Exploration–Exploitation Dilemma
Uncertainty-Guided Algorithms. Most of what we know about
human exploration comes from multiarmed bandit tasks, in
which an agent repeatedly chooses between several options
and receives reward feedback (9, 10). Since the distribution of
rewards for each option is unknown at the beginning of the
task, an agent is faced with an exploration–exploitation dilemma
between two types of actions: Should she exploit the options she
currently knows will produce high rewards while possibly ignor-
ing even better options? Or should she explore lesser-known
options to gain more knowledge but possibly forego high imme-
diate rewards? Optimal solutions exist only for simple versions
of this problem (1). These solutions are in practice difficult to
compute even for moderately large problems. Various heuristic
solutions have been proposed. Generally, these heuristics coa-
lesce around two algorithmic ideas (8). The first one is that
exploration happens randomly, for example by occasionally sam-
pling one of the options not considered to be the best (11), or
by so-called soft maximization of the expected utilities for each
option—i.e., randomly sampling each option proportionally to its
value. The other idea is that exploration happens in a directed
fashion, whereby an agent is explicitly biased to sample more
uncertain options. This uncertainty guidance is frequently for-
malized as an uncertainty bonus (5) which inflates an option’s
expected reward by its uncertainty.

There has been considerable debate about whether or not
directed exploration is required to explain human behavior (12).
For example, Daw et al. (12) have shown that a softmax strategy
explains participants’ choices best in a simple multiarmed ban-
dit task. However, several studies have produced evidence for a
direct exploration bonus (4, 13). Recent studies have proposed
that people engage in both random and directed exploration
(2, 14). It has also been argued that directed exploration might
play a prominent role in more structured decision problems (15).
However, evidence for such algorithms is still missing in real-
world purchasing decisions, where other mechanisms such as
coherency maximization have been observed (7, 16).

Generalization. Multiple studies have emphasized the impor-
tance of generalization in exploratory choice. People are known
to leverage latent structures such as hierarchical rules (17) or
similarities between a bandit’s arms (18).

Inspired by insights from the animal literature (19), Gershman
and Niv (20) investigated how generalization affects the explo-
ration of novel options using a task in which the rewards for
multiple options were drawn from a common distribution. Some-
times this common distribution was “poor” (options tended to be
nonrewarding), whereas sometimes the common distribution was
“rich” (options tended to be rewarding). Participants sampled
novel options more frequently in rich environments than in poor

environments, consistent with a form of adaptive generalization
across options.

Schulz et al. (21) investigated how contextual information (an
option’s features) can aid generalization and exploration in tasks
where the context is linked to an option’s quality by an underlying
function. Participants used a combination of functional general-
ization and directed exploration to learn the underlying mapping
from context to reward (22).

Results
We looked for signatures of uncertainty-guided exploration
and generalization in a dataset of purchasing decisions from
the online food delivery service Deliveroo (see Materials and
Methods for more details), using both statistical and cogni-
tive modeling. Further analyses and details can be found in SI
Appendix. In the first two sections of Results, we provide some
descriptive characterizations of the dataset. In particular, we
show that customers learn from past experience and adapt their
exploratory behavior over time. Moreover, exploration is system-
atically influenced by restaurant features and hence amenable
to quantification. We then turn to tests of our model-based
hypotheses. We find that customers’ exploratory behavior can be
clustered meaningfully, exhibits several signatures of intelligent
exploration which have previously been studied in the laboratory,
and can be captured by a model that generalizes over restaurant
features while simultaneously engaging in directed exploration.

Learning and Exploration over Time. We first assessed whether cus-
tomers learned from past experiences, as reflected in their order
ratings over time (Fig. 1A). The order rating is defined as cus-
tomers’ evaluation on a scale between 1 (poor) and 5 (great).
Customers picked restaurants they liked better over time: There
was a positive correlation between the number of a customer’s
past orders and her ratings (r =0.073; 99.9% CI 0.070, 0.076;
see SI Appendix for further analyses).

Next, we assessed exploratory behavior by creating a variable
indicating whether a given order was the first time a customer
had ordered from that particular restaurant—i.e., a signature
of pure exploration (20). Fig. 1B shows the averaged probabil-
ity of sampling a new restaurant over time (how many orders a
customer had placed previously).

Customers sampled fewer new restaurants over time, lead-
ing to a negative overall correlation between the number of
past orders and the probability of sampling a new restaurant
(r =−0.139; 99.9% CI −0.142, −0.136). Exploration also comes
at a cost (Fig. 1C), such that explored restaurants showed a lower
average rating (mean rating = 4.257; 99.9% CI 4.250, 4.265) than
known restaurants (mean rating = 4.518; 99.9% CI 4.514, 4.522).

Customers learned from the outcomes of past orders. Fig. 1D
shows their probability of reordering from a restaurant as a
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Fig. 1. Learning and exploration over time. (A) Average order rating by number of past orders. (B) Probability of sampling a new restaurant in dependency
of the number of past orders. Dashed black line indicates simulated exploratory behavior of agents randomly exploring available restaurants. (C) Distribution
of order ratings for newly sampled and known restaurants. (D) Average probability of reordering from a restaurant as a function of reward prediction error.
Means are displayed as black squares and error bars show the 95% confidence interval of the mean.
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Fig. 2. Factors influencing exploration. (A) Effect of relative price. The relative price indicates how much cheaper or more expensive a restaurant was
compared with an average restaurant in the same city. (B) Effect of standardized (z-transformed) estimated delivery time. (C) Effect of average rating. (D)
Effect of a restaurant’s number of past ratings (certainty). Means are displayed as black squares and error bars show the 95% confidence interval of the
mean.

function of their reward prediction error (RPE, the difference
between the expected quality of a restaurant, as measured by
the restaurant’s average rating at the time of the order, and the
actual pleasure customers perceived after they consumed the
order, as indicated by their own rating of the order). RPEs are
a key component of theories of reinforcement learning (23),
and we therefore expected that customers would update their
sampling behavior after receiving either a positive or a neg-
ative RPE. Confirming this hypothesis, customers were more
likely to reorder from a restaurant after an experience that
was better than expected (positive RPE: p(reorder) = 0.518,
99.9% CI 0.515, 0.520) than after an experience that was
worse than expected (negative RPE: p(reorder) = 0.394, 99.9%
CI 0.391, 0.398). The average correlation between RPEs and
the probability of reordering was r =0.110 (99.9% CI 0.107,
0.114).

Determinants of Exploration. In the next part of our analysis, we
focused on what factors were associated with the decision to
explore a new restaurant. In particular, we assessed whether
exploratory behavior was systematic and therefore looked at the
following four restaurant features that were always visible to cus-
tomers at the time of their order: the relative price (i.e., how
much cheaper or more expensive a restaurant is compared with
the average within the same country) of a restaurant, its stan-
dardized estimated delivery time, the mean rating of a restaurant
at the time of the order, and the number of people who had rated
the restaurant before.

Customers preferred restaurants that were comparatively
cheaper (Fig. 2A): The correlation between relative price and
the probability of exploration was negative (r =−0.059; 99.9%
CI −0.0641, −0.0548). There was a nonlinear relationship
between a restaurant’s estimated delivery time and its probabil-
ity of being explored (Fig. 2B): Exploration was most likely for
standardized delivery times between 1 and 2.5 (0.288; 99.9% CI
0.285, 0.292), and less likely for delivery times below 1 (0.288;
99.9% CI 0.285, 0.292) or above 2.5 (0.252; 99.9% CI 0.229,
0.274). This indicates that customers might have taken into
account how long it would take to plausibly prepare and deliver a
good meal when deciding which restaurants to explore. The aver-
age rating of a restaurant also affected customers’ exploratory
behavior (Fig. 2C): Higher ratings were associated with a higher
chance of exploration (r =0.038; 99.9% CI 0.0337, 0.0430). The
number of ratings per restaurant also influenced exploration
(Fig. 2D), with a negative correlation of r =−0.188 (99.9%
CI −0.192, −0.183). This may have a mechanical component
because restaurants that have been tried more frequently are
intrinsically less likely to be explored for the first time. We there-
fore repeated this analysis for all restaurants that had been rated
more than 500 times, yielding a correlation of r =−0.034 (99.9%
CI −0.042, −0.026).

We standardized and entered all of the variables into a mixed-
effects logistic regression modeling the exploration variable as
the dependent variable and adding a random intercept for each
customer (see SI Appendix for full model comparison). We
again found that a smaller number of total ratings (β=−0.475),
a higher average rating (β=0.086), and a lower price (β=
−0.014) as well as a quadratic effect of time (βLinear =−0.025,
βQuadratic =0.015) were all predictive of customers’ exploratory
behavior (Table 1). In summary, exploration in the domain
of online ordering is systematic, interpretable, and amenable
to quantification. We next turned to an examination of our
model-based hypotheses concerning directed exploration and
generalization.

Signatures of Uncertainty-Directed Exploration
We probed the data for signatures of uncertainty-directed explo-
ration algorithms that attach an uncertainty bonus to each
option. One such signature is that directed and random explo-
rations make diverging predictions about behavioral changes
after either a positive or a negative outcome. Whereas random
(softmax) exploration predicts no difference between the extent
of sampling behavior change following a better-than–expected
outcome and that following a worse-than–expected outcome,
directed exploration predicts a stronger increase in sampling
behavior after a worse-than–expected outcome (SI Appendix).
This is due to the properties of algorithms that assess an option’s
utility by a weighted sum of its expected reward and its SD. After
a bad experience, the mean and SD both go down, whereas after
a good experience the mean goes up but the SD goes down. Thus,
there should be greater change in customers’ sampling behavior
after a bad than after a good outcome.

We verified this prediction by calculating the Shannon entropy
of customers’ next four purchases after having experienced
either a better-than– or a worse-than–expected order. The cal-
culated entropy was higher for negative RPEs (Fig. 3A; 1.112;
99.9% CI 1.109, 1.115) than for positive RPEs (1.082; 99.9% CI
1.081, 1.084), in line with theoretical predictions of a directed
exploration algorithm.

We calculated each restaurant’s relative variance, i.e., how
much more variance in its ratings a restaurant possessed

Table 1. Results of the mixed-effects logistic regression

Estimate SE z value Pr(> |z|)

Intercept −0.663 0.008 −82.01 <0.001
Relative price −0.014 0.006 −2.27 0.02
Time linear −0.0246 0.008 −3.22 0.001
Time quadratic 0.015 0.004 3.89 <0.001
Average rating 0.086 0.006 13.85 <0.001
No. of ratings −0.475 0.007 −70.27 <0.001
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Fig. 3. Signatures of uncertainty-directed exploration. (A) Entropy of the next four choices in dependency of RPE. (B) Probability of reordering from a
restaurant in dependency of RPE, shown for restaurants with high and low relative variance. (C) Probability of choosing a novel restaurant in dependency
of its difference from an average restaurant within the same cuisine type for restaurants with high and low relative variance. (D) Probability of choosing a
novel restaurant in dependency of its relative price for restaurants with high and low relative variance.

compared with the average variance per restaurant within the
same cuisine type (although customers cannot see the actual esti-
mate of a restaurant’s variance in ratings, they can access all
past rating as well as a summary that shows the distribution over
ratings). We then compared the reorder probability for restau-
rants with a high vs. low relative rating variance, based on a
median split (Fig. 3B). This probability was higher for restaurants
with high relative variance than for restaurants with low relative
variance for both negative and positive RPEs. Thus, customers
were more likely to return to restaurants with higher relative
uncertainty.

We also assessed customers’ exploratory behavior in depen-
dency of the differences in ratings for a given restaurant com-
pared with the average of all restaurants within the same cuisine
type (value difference). The probability of exploring a new
restaurant increased as a function of the restaurant’s value dif-
ference (Fig. 3C; r =0.05; 99.9% CI 0.045, 0.056). Additionally,
a restaurant’s relative variance also correlated with its probabil-
ity of being explored (Fig. 3C; r =0.05; 99.9% CI 0.045, 0.056).
Comparing restaurants with a high vs. a low relative variance
in their ratings revealed a shift of the choice function toward
the left. In other words, restaurants with higher relative uncer-
tainty (0.344; 99.9% CI 0.341, 0.349) are preferred to restaurants
with lower relative uncertainty (0.319; 99.9% CI 0.317, 0.321), as
predicted by uncertainty-directed exploration strategies (2). This
difference can also be observed when repeating the same analy-
sis using a restaurant’s price (Fig. 3D): As restaurants get more
expensive, they are less likely to be explored (r =−0.017; 99.9%
CI −0.023, −0.013). This function is again shifted for restaurants
with higher relative uncertainty: Given a similar price range, rel-
atively more uncertain restaurants are more likely to be explored
than less uncertain restaurants.

To further validate these findings, we fitted a mixed-effects
logistic regression, using the exploration variable as the depen-
dent variable. For the independent variables, we used the mean
difference in ratings between the restaurant and the average
restaurant within the same cuisine type, a restaurant’s relative
price, and its relative uncertainty (Table 2). The average value
difference (β=0.114), the relative price (β=−0.0876), and the
relative uncertainty (β=0.084) all affected a restaurant’s prob-
ability to be explored. Thus, even when taking into account a
restaurant’s price and its ratings, customers still preferred more
uncertain options. This provides further evidence for a directed
exploration strategy.

Signatures of Generalization. Having observed how exploratory
behavior changes with experience, we investigated how general-
ization might affect exploration in several ways. First, we looked
for evidence of information spillovers by analyzing changes in
exploration within cuisine clusters. These seven clusters were

defined in a data-driven manner based on patterns of consecu-
tive explorations, that is, how one exploratory choice predicted
the next one (Fig. 4A and Materials and Methods). This was
also related to a subjective understanding of similarity; the
frequency of switching between cuisine types was strongly corre-
lated with similarity ratings provided by 200 workers on Amazon
Mechanical Turk (r =0.78; Fig. 5A). Hinting at strategies of
directed exploration as before, we found that bad outcomes had
a larger effect than good outcomes compared with a baseline
of average switches (Fig. 4B)—customers were especially averse
to exploring other restaurants in the same cluster after a worse-
than–expected outcome (−5.19%), more than they favored such
exploration after a better-than–expected outcome (+2.27%).
This suggests that uncertainty-modulated exploration takes into
account experiences with different restaurants of similar types.
Intriguingly, we also observed that customers tended to switch
to exploring “unhealthy” cuisines after bad experiences with any
other type (+2.72%). This may reflect people balancing differing
goals across successive choices (24).

Second, we analyzed how exploration is modulated by the
distribution of restaurant quality in a city. Gershman and Niv
(20) showed that participants explore novel options more fre-
quently in environments where all options are generally good.
We found evidence for this phenomenon in our data (Fig. 5B):
There was a positive correlation between a city’s average restau-
rant rating and the proportion of exploratory choices in that
city (r =0.32; 99.9% CI 0.21, 0.49; see SI Appendix for par-
tial correlations). Moreover, there was also a positive corre-
lation between a city’s variance of ratings and the proportion
of exploratory choices (r =0.48; 99.9% CI 0.37, 0.59), indicat-
ing that higher uncertainties in ratings were linked to more
exploration.

Third, we examined how the success of exploration depended
on the predictability of individual ratings from restaurant fea-
tures (price, delivery time, mean rating, and number of rat-
ings). Customers gave higher ratings to explored restaurants
in cities where ratings were generally more predictable (r =
0.73; Fig. 5C, 99.9% CI 0.53, 0.84). Thus, exploration seemed
to be enhanced by the degree to which features permitted a
reduction in uncertainty, similar to findings in contextual bandit
tasks (21).

Table 2. Results of mixed-effects logistic regression

Estimate SE z value Pr(> |z|)

Intercept −0.342 0.007 45.81 <0.001
Value difference 0.114 0.0135 8.47 <0.001
Relative price −0.087 0.007 −11.67 <0.001
Variance difference 0.084 0.003 24.13 <0.001
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Fig. 4. Clusters and changes of exploration. (A) Clusters of exploration between different cuisine types within customers’ consecutive explorations. Green
rectangles mark clusters of exploration. (B) Moves between clusters after better-than–expected (positive RPE) and worse-than–expected (negative RPE)
outcomes compared with a restaurant-specific mean baseline. Centers of radar plots indicate a change of −5%, and outermost lines indicate a change of
+5%. A change of 1% roughly translates to 500 orders.

In an attempt to test algorithms of both directed exploration
and generalization simultaneously, we compared three mod-
els of learning and decision making based on how well they
captured the sequential choices of 3,772 new customers who
had just started ordering food and who had rated all of their
orders. The first model was a Bayesian mean tracker (BMT) that
estimates the mean quality for each restaurant independently.
The second model was an extension of the BMT model (Gaus-
sian process regression) that estimates mean quality as a function
of observable features (price, mean rating, delivery time, and
number of past ratings). The shared feature space allows this
model to generalize across restaurants. Gaussian process regres-
sion is a powerful model of generalization that has been applied
to model how participants learn latent functions to guide their
exploration (15, 21, 22). It can be seen as a Bayesian variant
of similarity-based decision making, akin to economic theories
of case-based decision making (25) and psychological formula-
tions of similarity judgments (26). This model was paired with
two different policies: stochastic sampling of actions in propor-
tion to their estimated mean quality (Gaussian process with
a mean-greedy sampling strategy [GP-M]) or with a directed
exploration strategy that sampled based on both the mean and

an uncertainty bonus (formally, an option’s upper confidence
bound; Gaussian process with an upper confidence bound sam-
pling strategy [GP-UCB]). We treated customers’ choices as
the arms of a bandit and their order ratings as their util-
ity and then evaluated each model’s performance based on
its one-step-ahead prediction error, standardizing performance
by comparing to a random baseline. Since it was not possible
to observe all restaurants a customer might have considered
at the time of an order, we compared the different models
based on how much higher in utility they predicted a customer’s
final choice compared with an option with average features
out of all of the restaurants available in that customer’s city.
As Fig. 5D shows, the BMT model barely performed above
chance (r2 =0.013; 99.9% CI 0.005, 0.022). Although the GP-M
model performed better than the BMT model (r2 =0.231;
99.9% CI 0.220, 0.241), the GP-UCB model achieved by far
the best performance (r2 =0.477; 99.9% CI 0.465, 0.477). Thus,
a sufficiently predictive model of customers’ choices required
both a mechanism of generalization (learning how features
map onto rewards) and a directed exploration strategy (com-
bining a restaurant’s mean and uncertainty to estimate its
decision value).
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Fig. 5. Signatures of generalization. (A) Probability of switches between cuisine types and rated similarities between the same types. (B) Average rating
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Discussion
We investigated customers’ exploratory behavior in a large
dataset of online food delivery purchases. Customers learned
from past experiences, and their exploration was affected
by a restaurant’s price, average rating, number of ratings,
and estimated delivery time. Our results further provide evi-
dence for several theoretical predictions: People engaged in
uncertainty-directed exploration, and their exploration was
guided by similarity-based generalization. Computational model-
ing showed that these patterns could be captured quantitatively.

Of course, drawing causal inferences from large datasets is dif-
ficult (27, 28). Thus, although we believe that our results provide
evidence that people use sophisticated strategies in complex, nat-
uralistic environments, these effects nonetheless deserve further
investigation, for example by conducting online experiments.

Furthermore, our model does currently not explain all possi-
ble intentions customers might have when ordering food such as
maintaining a healthy diet or balancing different goals over suc-
cessive choices like saving money and trying out expensive food
(24). These could hypothetically be incorporated into the kernel
function.

Taken together, our results advance our understanding of
human choice behavior in complex real-world environments. The
results may also have broader implications for understanding
consumer behavior. For example, we found that customers fre-
quently switch to unhealthy food options after bad experiences.
A potential strategy to increase the exploration of healthy food
might thus be to increase healthy restaurants’ relative uncer-
tainty by grouping them with other frequently explored options
such as Asian restaurants, which showed a comparatively lower
relative uncertainty per restaurant.

While we have focused on using cognitive models to predict
human choice behavior, the same issues come up for the design
of recommendation engines in machine learning. These engines
use sophisticated statistical techniques to make predictions about
behavior, but do not typically try to pry open the human mind
(29). This is a missed opportunity, since one could generate

better recommendations of which restaurants to try next, based
on a particular customer’s estimated values and uncertainties; as
models of human and machine learning have become increas-
ingly intertwined, insights from cognitive science may help build
more intelligent machines for predicting and aiding consumer
choice.

Materials and Methods
The Deliveroo Dataset. The data consisted of a representative random sub-
set of customers ordering food from the online food delivery service
“Deliveroo.” The dataset contained 195,333 fully anonymized customers.
These customers placed 1,613,968 orders over 2 months (February and
March 2018) in 197 cities. There were 30,552 restaurants in total, leading
to an average of 155 restaurants per city. We arrived at this dataset by
filtering out customers with fewer than 5 orders (too few data points to
analyze learning) and more than 100 orders (likely multiple people shar-
ing an account). The study was granted ethical approval by the Committee
on the Use of Human Subjects at Harvard University. All participants con-
sented to participation through an online consent form at the beginning of
the survey.

Clustering Analysis. Cuisine tags were manually defined by Deliveroo. We
analyzed for each cuisine type how much exploring this type on a time point
t was predictive of exploring another cuisine type on a time point t + 1,
using a linear regression model. Repeating this analysis for every combina-
tion of cuisine types led to the graph shown in Fig. 4A. We then analyzed
the resulting matrix of r2 values using hierarchical clustering. This cluster-
ing excluded the cuisine type “European” as it was found to contain little
information about customer choice behavior.

Similarity Judgments. To elicit similarity ratings between different cuisine
types, we asked 200 participants on Amazon’s Mechanical Turk to rate the
similarities between two randomly sampled types out of the 20 types used
for the clustering analysis reported above. Participants were paid $1 and
had to rate 50 pairs of cuisine types on a scale from 0 (not at all similar) to
10 (totally similar).
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