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How do people decide whether to try out novel options as opposed to tried-and-tested ones? We argue
that they infer a novel option’s reward from contextual information learned from functional relations and
take uncertainty into account when making a decision. We propose a Bayesian optimization model to
describe their learning and decision making. This model relies on similarity-based learning of functional
relationships between features and rewards, and a choice rule that balances exploration and exploitation
by combining predicted rewards and the uncertainty of these predictions. Our model makes 2 main
predictions. First, decision makers who learn functional relationships will generalize based on the learned
reward function, choosing novel options only if their predicted reward is high. Second, they will take
uncertainty about the function into account, and prefer novel options that can reduce this uncertainty. We
test these predictions in 3 preregistered experiments in which we examine participants’ preferences for
novel options using a feature-based multiarmed bandit task in which rewards are a noisy function of
observable features. Our results reveal strong evidence for functional exploration and moderate evidence
for uncertainty-guided exploration. However, whether or not participants chose a novel option also
depended on their attention, as well as reflecting on the value of the options. These results advance our
understanding of people’s reactions in the face of novelty.
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Novelty has charms that our minds can hardly withstand.
—William Makepeace Thackeray

As it is late, you are hungry, and your fridge is empty, you
decide to go out for dinner. As you make your way toward your
favorite restaurant in the area, you notice a new restaurant has just
opened down the street. How do you go about choosing between
this new option and the tried-and-tested one you have visited so
many times before? Our lives are full of choices that involve
countless options we have never experienced before. Yet we

frequently succeed in trying options that are both novel and good.
How do we construct expectations for such novel options? And
how do we decide whether or not to try them?

Humans and other animals often display a tendency to explore
novel and unfamiliar options. People prefer novel stimuli to pre-
dictable ones in a lab setting (Berlyne, 1970), novelty attracts
attention in both children and adults (Nunnally & Lemond, 1974)
and biases the retrieval of episodes from memory such that higher
value is attached to novel episodes (Carpenter & Schacter, 2016).
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In a consumer setting, people prefer newly packaged goods over
the same goods in old packaging (Steenkamp & Gielens, 2003),
and some consumers, so-called early adopters, tend to be the first
to try newly launched products (Mahajan, Muller, & Srivastava,
1990; Rogers, 2010). In animals, rats explore novel environments
in the absence of extrinsic motivators (Tolman & Honzik, 1930)
and can even withstand electroshocks (Nissen, 1930) or forgo
cocaine reward (Reichel & Bevins, 2008) to experience novel
options, and monkeys can trade reward for novel information
(Blanchard, Hayden, & Bromberg-Martin, 2015).

The tendency to seek out novel options can be beneficial: A
novel option’s reward is uncertain and may be higher than the
reward of familiar options. Thus, exploring novel options can help
you make better choices in the future. However, exploration comes
with a potential cost. If the option turns out inferior to familiar
options, you have foregone the opportunity for higher rewards.
This frames the well-known exploration-exploitation dilemma.
Should you choose an option that you know and currently like
best? Or should you be curious and try a more uncertain option to
learn about it?

The optimal resolution to this dilemma is tractable only in
restricted situations (e.g., through so-called Gittins indices; Gittins,
1979; Whittle, 1980). Heuristic solutions are therefore frequently
employed. Although not optimal, some heuristic strategies are
known to work well. One such heuristic strategy is to assign an
uncertainty bonus to options. This bonus is like a form of opti-
mism, inflating the expected reward of an option by its uncertainty.
This uncertainty bonus encourages exploration of lesser-known
options (e.g., Kakade & Dayan, 2002). This account resonates well
with empirical findings that novel stimuli activate dopaminergic
pathways in humans and other animals (Bunzeck & Düzel, 2006;
Schultz, 1998). And although early studies did not produce con-
sistent empirical evidence for an uncertainty bonus in human
decision making (e.g., Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006; Payzan-LeNestour & Bossaerts, 2011), recent studies
have provided converging evidence in favor of uncertainty-guided
exploration (Gershman, 2018; Knox, Otto, Stone, & Love, 2012;
Schulz, Wu, Ruggeri, & Meder, 2019; Speekenbrink & Konstan-
tinidis, 2015; Wilson, Geana, White, Ludvig, & Cohen, 2014).

Contrary to the many findings suggesting humans and animals
are keen to seek out novel options, there is also evidence for the
opposite behavior—a tendency toward novelty avoidance. One
example of this comes from research on wild rats who can go days
without food, avoiding to interact with newly introduced options
(Cowan, 1976). The mere exposure effect is another example:
People can prefer a repeatedly presented object over novel ones
(Zajonc, 2001). Similarly, in self-directed learning people tend to
choose options with known outcomes (Markant, Settles, & Gur-
eckis, 2016), and in supermarkets consumers are loyal to brands,
willing to pay a price premium for more familiar products (Ching,
Erdem, & Keane, 2013; Keller, 2002).

How can humans and animals be sometimes novelty-seeking
and sometimes novelty-averse? To explain the co-occurrence of
both phenomena, Teodorescu and Erev (2014) and Gershman and
Niv (2015) proposed that novel options are evaluated in the con-
text of general characteristics of the environment in which they
occur. If a novel option is introduced in an environment where
options are mostly rewarding, this leads to novelty seeking. If a

novel option is introduced in an environment where options are
mostly not rewarding, this leads to novelty avoidance. We expand
upon this account of seemingly disparate results. Specifically, our
account is informed by the observation that options in real-world
scenarios tend to come with features beyond their shared environ-
ment. Consider the example of encountering a newly opened
restaurant. If you are fortunate, then restaurants in town tend to be
of high quality. This might cause you to expect the new restaurant
to also be of high quality. However, if upon peeking through the
window, you see the restaurant has no customers, dirty tables, and
packages of microwave pizza in the kitchen, you will likely avoid
it. This is because you have learned from past experience that
unpopular and unhygienic establishments which use questionable
ingredients tend to provide a disappointing dining experience. On
the other hand, if you found the place spotless and bustling with
clientele, run by an award-winning chef using only fresh and
locally sourced ingredients, you would presumably not hesitate to
try it, even if most restaurants in town tend to be awful.

In rich-choice environments, where options come with many
features, knowledge about how these features relate to reward can
be generalized to novel options. If a novel option has features
which are similar to those of highly rewarding options, the novel
option is expected to be highly rewarding as well. This should lead
to novelty seeking. If the novel option is similar to nonrewarding
options, it can be expected to be of poor quality. This should lead
to novelty avoidance. Some of the features may be shared between
options, such as the general context in which the options are found.
Other features may be unique to options, allowing discrimination
between options that occur in the same context. Feature-based
generalization allows one to make predictions about the reward a
novel option provides. Feature-based generalization requires
agents to learn a function which relates features to rewards. People
are known to be adept function learners. The cognitive processes
underpinning this ability have been widely studied, both when the
outcome is a continuous variable (usually referred to as function
learning—see, e.g., Busemeyer, Byun, Delosh, & McDaniel, 1997;
Hammond, 1955; Kalish, Lewandowsky, & Kruschke, 2004;
Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2017; Speekenbrink & Shanks, 2010) and when it is a categorical
variable (usually referred to as category learning—see, e.g., Juslin,
Jones, Olsson, & Winman, 2003; Kruschke, 1992; Love, Medin, &
Gureckis, 2004; Medin & Schaffer, 1978; Nosofsky, 1984; Speek-
enbrink, Channon, & Shanks, 2008).

Normative considerations as well as empirical evidence suggest
that uncertainty may play a crucial role in how people choose
among novel and time-honored options. This role can go beyond
feature-based generalization. Suppose the newly opened restaurant
has live music. Based on your knowledge of the underlying reward
function, you might predict the quality of a meal to be similar to
other good restaurants in the area. However, because you have
never eaten in a restaurant with live music, you may be more
inclined to try it out to improve your knowledge of how live music
affects your dining experience. In essence, exploring options with
features for which your inferences are more uncertain will improve
your knowledge of the reward function. Functional knowledge
changes the nature of the exploration-exploitation dilemma—ex-
ploration can be geared toward reducing uncertainty about the
reward function, not just the reward of a specific option. In
information-rich environments, such functional uncertainty reduc-
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tion can have greater impact on long-term rewards. This impact is
based on the fact that functional knowledge can be generalized to
all options.

To explain the varying reactions toward novelty, we need a
theoretical framework that places functional knowledge at its
heart, while keeping the focus on uncertainty-guided choices. Put
differently, whether or not you should approach a novel option
should depend on whether your functional knowledge predicts that
the option is good or bad, and whether approaching it helps you to
improve your functional knowledge. In our previous work, we
have proposed a model that has these characteristics. This model
consists of (a) a Bayesian function-learning component which
relates features to expected rewards and (b) an uncertainty-guided
decision component which balances functional expectations of
rewards and the associated uncertainty of the acquired functional
knowledge (Schulz, Konstantinidis, & Speekenbrink, 2018; Stojic,
2016; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018, see also
Acuna and Schrater (2010) and Borji and Itti (2013) for related
earlier work on human structure learning and decision making).

In previous work, we provided evidence for the function-
learning component, examining various forms that features can
take. We have shown that people’s choices are guided by features
when they come as option-specific features, either explicitly pre-
sented (e.g., a restaurant’s rating on a popular review website or
how nicely it is decorated; Analytis, Kothiyal, & Katsikopoulos,
2014; Stojic, 2016; Stojic, Analytis, & Speekenbrink, 2015; Wu,
Schulz, Garvert, Meder, & Schuck, 2018) or implicitly embedded
in the location of options (e.g., located in a neighborhood with
good restaurants; Wu, Schulz, Speekenbrink, et al., 2018), as well
as when they come shared by all options but potentially influence
rewards in option-specific ways (e.g., the weather can affect how
you evaluate restaurants with or without a terrace Schulz et al.,
2018). We have also consistently found evidence for the
uncertainty-guided decision component, that is, that people use
intelligent choice strategies that take into account their uncertainty
about predicted rewards (Schulz et al., 2018; Stojic, 2016; Wu,
Schulz, Speekenbrink, et al., 2018).

In the present study, we use our modeling approach to derive
predictions about the behavior toward novel options suddenly
appearing in the choice set, situated in information-rich environ-
ments where options have observable features predictive of re-
wards. According to our model, people will exhibit both functional
generalization, such that they can distinguish between bad and
good novel options, and functional uncertainty guidance, such that
they will choose novel options more if their functional knowledge
is more uncertain. We compare our account with a model which is
insensitive to specific features, but learns about the general context
in which all options are encountered. The two models make
diverging qualitative predictions about reactions to novel options,
which we test in three preregistered experiments using a feature-
based multiarmed bandit task. To foreshadow our results, we find
strong evidence for functional generalization and moderate evi-
dence for functional uncertainty guidance. We also find that
whether or not participants choose the novel option depends on
attending to the novel option and on further reflection about
options’ values.

This work provides a bridge between human function learning
and reinforcement learning, which have previously been studied in
isolation. We believe that addressing both simultaneously is cru-

cial for advancing knowledge about both topics. Function learning
has hitherto been studied in prediction tasks where participants are
rewarded for making accurate predictions of a function’s output
from its inputs (e.g., DeLosh, Busemeyer, & McDaniel, 1997;
Helversen & Rieskamp, 2008; Speekenbrink & Shanks, 2010). To
do well in such tasks, participants should learn the function over
the whole space of possible inputs. By focusing on function
learning in a reinforcement learning context, by contrast, we can
discover how people learn functions when this is not the explicit
goal, when functional knowledge instead supports determining
good actions. Because most options come with observable fea-
tures, explaining how humans learn feature-reward functions and
generalize this functional knowledge to new situations is likely to
provide general insights into human experiential decision-making.
In realistic situations, knowledge of a function may only need to be
accurate in consequential regions, for instance for those feature
values which occur often, or as in this study, for feature values
which are predictive of high rewards. Because of the exploration-
exploitation trade-off—people can only learn about the reward
function from those options they choose—this may result in func-
tional knowledge which is purposefully biased toward consequen-
tial regions. Because resolving the exploration-exploitation di-
lemma in traditional reinforcement learning settings can lead to
predictable biases (Denrell & Le Mens, 2011; Le Mens & Denrell,
2011), we believe that understanding how people resolve the
dilemma in settings where options are characterized by features
can deepen our understanding of function learning, explain how
biased samples are constructed, and thus pave the way for studying
the implications of biased sampling in function learning settings
for human judgments (see Fiedler, 2000). Moreover, determining
how people learn and represent functions can advance our under-
standing of human reinforcement learning in information-rich en-
vironments. Functional knowledge can support the generalization
of effective behavior to novel situations. A current focal point in
artificial intelligence research is designing algorithms which can
usefully transfer learned reward functions to novel tasks (Hassabis,
Kumaran, Summerfield, & Botvinick, 2017). Although currently
difficult for machines, such generalization often appears effortless
to humans. Advancing our understanding of human function learn-
ing may then not only prove beneficial to understanding how
humans learn from their actions in complex tasks, but also to
designing effective artificial intelligence.

The Feature-Based Multiarmed Bandit Task

We study participants’ behavior in feature-based multiarmed
bandit tasks (FMABs). In a FMAB (Stojic, 2016; Stojic et al.,
2015), participants are presented with a set of options that each
have two observable features and offer an unknown stochastic
reward (see Figure 1). Participants repeatedly choose between the
same options with the goal of accumulating as much reward as
possible. The rewards associated with each option depend on the
observable features through an initially unknown function. This
function can be learned through experience. As in other multi-
armed bandit tasks, learning requires participants to trade off
between exploration and exploitation. Exploration in our task
means choosing options which reduce uncertainty about the func-
tion. Exploitation means choosing options that, given current
knowledge, are likely to produce high rewards.
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Crucially, after 40 trials of choosing between the same nine
options, we introduce a novel, tenth option (see Le Mens, Kareev,
& Avrahami, 2016, for a similar design). By manipulating the
features of the novel option, we can obtain empirical evidence for
functional generalization and functional uncertainty guidance in
participants’ choices.

The general version of this problem is known as a contextual
multiarmed bandit problem (e.g., Langford & Zhang, 2008; Li,
Chu, Langford, & Schapire, 2010). Scenarios in which the options
have option-specific feature values which are predictive of reward
through a single function (as in the FMAB problem), and scenarios
where the outcomes of different options are influenced by a shared
context through option-specific functions (e.g., the location of a
town, which affects the quality of seafood restaurants differently
than burger joints, as studied by Schulz et al., 2018) are special
cases of the general contextual multiarmed bandit framework. A
related choice task with multiple dimensions has also been used to
study the dynamics of attention in decision making (Niv et al.,
2015).

Two Strategies for Tackling the FMAB Task

How will participants react to the introduction of a novel op-
tion? Ultimately, their reaction will depend on the strategy they
apply. Our functional generalization account assumes that partic-
ipants will learn how the features relate to the observed rewards.
Additionally, their choices will be guided by functional uncertai-
nty—they will balance exploitation with feature-based exploration
to reduce their uncertainty about the reward function. We contrast
this to a sophisticated reward tracking strategy which—although it
ignores feature information altogether—can generalize from ex-
perienced rewards across options.

At first glance, it appears irrational to ignore feature informa-
tion. Yet, people might not be fully aware of the value of gener-
alization, or they might choose this reward tracking strategy be-
cause it is less cognitively taxing (Payne, Bettman, & Johnson,
1993). When there are relatively few options and many occasions
to choose among them, ignoring the features is relatively harmless.
A reward tracking strategy can still learn which options provide
high rewards by trying all of them. It can also generalize to novel
options by inferring the average reward over all options. However,
it cannot distinguish between different novel options. This is
because it expects all novel options to have a reward equal to the
overall mean.

The difference between how the two strategies generalize also
affects how they explore. The reward tracking strategy predicts
that all novel options have the same associated uncertainty. By
contrast, the functional generalization strategy predicts that the
uncertainty about an option’s reward depends on the uncertainty
about the function at the feature values of that option. The pre-
dicted reward for a novel option with feature values similar to
already tried options will be less uncertain than for a novel option
with dissimilar feature values. Whereas exploration in a reward-
tracking strategy is geared toward learning the reward of a partic-
ular option, exploration in the function-based strategy is geared
toward learning the function. The acquired function knowledge
enables the function-based strategy to generalize to options with
similar feature values.

Functional Generalization and Uncertainty Guidance

Our model of functional generalization and uncertainty guid-
ance combines a flexible Bayesian framework for function
learning—Gaussian process (GP) regression (Rasmussen &
Williams, 2006; Schulz, Speekenbrink, & Krause, 2018)—with
an uncertainty-guided choice strategy— upper confidence–
bound sampling (UCB, Auer, Cesa-Bianchi, & Fischer, 2002).
This model is commonly called GP-UCB (Srinivas, Krause,
Kakade, & Seeger, 2012), a name which we adopt here as well.

Gaussian process regression is a Bayesian nonparametric ap-
proach toward function learning. It uses a Gaussian process to
define a prior distribution over possible functions. It then updates
the prior to a posterior distribution over possible functions based
on observed inputs (features) and outputs (rewards). Gaussian
process regression assumes that outputs y are generated from a
function f over (multidimensional) inputs x and additional noise �:

y � f(x) � � and � � N(0, ��).

As a Bayesian technique, prior beliefs about the function f are
formalized as a prior distribution over possible functions. The prior
distribution is defined as a Gaussian process:

f � GP(m(x), k(x, x� )),

where x and x= are two different inputs. A GP is parameterized by
a mean function m�x�:

m(x) � ��f(x)�, (1)

which defines the a priori expected value of the output at each
input value, and the kernel (or covariance) function k�x, x��:

Figure 1. Illustration of a single trial in the FMAB task. Participants
choose between options that are presented as red boxes, with the length of
horizontal and vertical lines representing feature values. The resulting
reward appears immediately below the chosen option. The reward function
was a negative linear function of the two features—the smaller the features,
the larger the rewards. The same nine options are presented for 40 trials and
a novel 10th option appears on the 41st trial in a randomly chosen position
that was previously empty. In the illustration, the novel option is Option B
which is transitioning from being transparent to opaque. There are 70 trials
in total. In addition to making choices, and before the feedback on the 41st
and 70th trial, participants have to estimate the expected rewards of each
option and express how confident they are in their estimates. See the online
article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.
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k(x, x� ) � ��(f(x) � m(x))(f(x� ) � m(x� ))�, (2)

which defines how the correlation between outputs changes as a
function of the difference between the inputs that generated them.
The flexibility of GP regression is driven by the kernel function.
Choosing a linear or a sinusoidal kernel, functions can be con-
strained to be linear or periodic. Choosing a radial basis function
kernel, functions are allowed to be less regular and more depen-
dent on the particular input values. Different kernels can be
thought of as defining different similarity metrics on the inputs.
For instance, linear kernels assess inputs as maximally similar
when they lie on a straight line. Given a radial basis function
kernel, the similarity decreases with Euclidean distance.

As a psychological model of function learning, GP regression
incorporates both traditional rule- and exemplar-based accounts of
function learning (Lucas, Griffiths, Xu, & Fawcett, 2009). Rule-
based accounts assume that people learn functions by assuming the
function belongs to a parametric family (e.g., linear, polynomial,
or periodic) and then estimating the parameters of the assumed
functional family (Brehmer, 1974; Carroll, 1963; Koh & Meyer,
1991; Speekenbrink & Shanks, 2010). Exemplar accounts assume
that people make functional predictions as a weighted average of
previously encountered outputs, where the weights depend on the
distance between the input for which a prediction is made and the
inputs of the previously encountered outputs (Busemeyer et al.,
1997; DeLosh et al., 1997; Kruschke, 1992; Nosofsky, 1986;
Speekenbrink & Shanks, 2010). The GP framework incorporates
both types of functional representation, either by viewing function
learning as a problem of choosing the appropriate kernel—for
example, a linear kernel for a rule-based and a radial basis function
kernel for a similarity-based account (Lucas et al., 2009), or as
finding the appropriate combination of kernels (Schulz et al.,
2017).

We use a radial basis function (RBF) kernel to derive a priori
predictions. An RBF kernel is defined as

k(x, x� ) � �f
2 exp�� �x � x� �2

2�2 �, (3)

where the signal variance �f
2 reflects the average distance of the

function away from its mean and the length-scale � reflects the
smoothness of the function (the magnitude of the correlation
between the outputs of two nearby inputs). A GP with the RBF
kernel has appealing theoretical properties—it is a universal func-
tion approximator which is able to learn a wide range of stationary
functions (Neal, 1996). Research determining human-like kernels
is still ongoing (Lucas, Griffiths, Williams, & Kalish, 2015; Schulz
et al., 2017; Wilson, Dann, Lucas, & Xing, 2015), so we opted for
the RBF kernel as a more flexible model of human function
learning, closer to exemplar-based learning. Although it is well-
known that people are biased toward assuming positive linear
functions (Busemeyer et al., 1997; Lucas et al., 2009), they can
rely on exemplar-type strategies as well (DeLosh et al., 1997;
Juslin, Olsson, & Olsson, 2003). All of our qualitative predictions
generalize reasonably well over different choices of kernel func-
tion. While effect sizes are affected by using a linear, RBF, or a
mixture kernel, the direction of our predicted effects is not. Our
choice of an RBF kernel is thus not a strong theoretical commit-
ment.

Based on a set of previously observed input-output pairs, Gauss-
ian process regression infers a posterior distribution over func-

tions. This distribution can be used to predict mean rewards as well
as the associated uncertainty in these predictions. Knowing about
predictions’ uncertainty is crucial to guide exploration. The vari-
ance of the posterior distribution over possible functions can be
used as a proxy for how much knowledge about the function can
be improved by trying an option (Krause, Singh, & Guestrin,
2008). If the function’s outputs for a particular input are relatively
uncertain, then observing the output for that input will improve
predictions not only for that particular input, but also for similar
input values. In the current context where the inputs are options
defined by feature values and the outputs are the rewards obtained
by choosing an option, this maps onto the value of exploring an
option.

The upper confidence bound choice rule implements functional
uncertainty guidance by adding a multiple of the posterior standard
deviation to the posterior mean reward, and choosing the option
with the highest resulting value. Let mj,t be the posterior predictive
mean for option j at time point t, and vj,t the posterior predictive
variance (the posterior predictive mean and variance are the mean
and variance of the posterior distribution over possible functions
based on all observations up to time t � 1). The UCB sampling
strategy assigns a value or utility uj,t to each option as

uj,t � mj,t � �	vj,t, (4)

for example, as the sum of the posterior predictive mean reward
and a multiple (�) of the uncertainty about the mean reward (the
posterior predictive standard deviation). For a normally distributed
variable, the second component corresponds to an upper confi-
dence bound; for example, with � � 1.96, the 95% upper confi-
dence bound.

When the goal is to maximize reward, choosing options with the
highest upper confidence bound is intuitive: if the upper confi-
dence bound of one option is larger than that of another, the
probability that this option is better than the other may be sub-
stantial, even when its posterior predictive mean reward is lower.

As the UCB rule adds a multiple of the uncertainty to each
option’s mean reward, it is also a formalization of the uncertainty
bonus account. This has been termed “directed exploration,” to
contrast it to “random exploration” (Gershman, 2018; Wilson et
al., 2014). In simple versions of random exploration, options are
chosen randomly according to differences in mean rewards or
simply a fixed proportion of the time (the so-called softmax and
epsilon-greedy methods, Sutton & Barto, 1998). More sophisti-
cated forms of random exploration take uncertainty into account,
for example by drawing a random sample from the posterior
predictive distribution of mean rewards (Thompson sampling,
Thompson, 1933) or the posterior predictive distribution of actual
rewards (Speekenbrink & Konstantinidis, 2015). Evidence sug-
gests that both directed and random exploration might work in
tandem (Gershman, 2018; Schulz, Wu, et al., 2019; Wilson et al.,
2014). Because we found strong evidence for the UCB rule in
previous feature-based multiarmed bandits (Schulz et al., 2018;
Stojic, 2016; Wu, Schulz, Speekenbrink, et al., 2018), we focused
on the UCB rule to derive our predictions.

To compute P(Ct � j), the probability that the choice C on trial
t is option j � {1, . . . ,K}, we assume a soft maximization:

P(Ct � j) �
exp(uj,t)


i�1
K exp(ui,t)

. (5)
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Note that the stochastic UCB choice rule reduces to a standard
Softmax choice rule (with temperature parameter equal to one) if
� � 0. In this case, an option’s current predictive uncertainty is not
taken into account and exploration essentially happens at random
(Sutton & Barto, 1998).

Hierarchical Reward Generalization and Exploration

We contrast the function learning strategy to a reward tracking
strategy which ignores the features altogether. The reward tracking
strategy assumes that each option is drawn from a common pop-
ulation and treats the rewards associated to each option as other-
wise independent from the other options. Following Gershman and
Niv (2015), we use a Bayesian hierarchical (BH) model which
assumes that people learn about the mean and variance of an
option’s rewards, while at the same time building up a higher-level
representation of the common distribution from which the options
were drawn. We again combine the reward tracking learning
model with the UCB choice rule, and refer to the resulting model
as the BH-UCB model.

Because options in our task provide continuous-valued rewards,
we use a hierarchical Gaussian model rather than the Bernoulli
model put forward by Gershman and Niv (2015). Our hierarchical
model assumes that the rewards of each option j are drawn from a
Normal distribution

Rj
t � N(	j, ��), (6)

with a common variance ��
2 but an option-specific mean �j. The

option-specific means are assumed to be drawn from a common
higher-level Normal distribution

	j � N(	, 
), (7)

where � is the average reward over all options, and 	2 the variance
of the option-specific means. The model is completed with prior
distributions for �, �, and 	, for which we used a N�0,10�,
half-Cauchy(0,10), and half-Cauchy(0,10) distribution, respec-
tively (half-Cauchy distributions were truncated below at 0). Hav-
ing observed rewards of the options, the model updates these to a
joint posterior distribution over the means �j, the common mean
�, and the variances �2 and 	2. At any time t, the joint posterior
distribution provides posterior predictive distributions of the av-
erage reward for each option.

Just as for the GP-UCB model, the posterior predictive mean
mj,t and variance vj,t are used to compute the UCB values (Equa-
tion 4), which are then used to compute choice probabilities using
the Softmax function (Equation 5). Given a novel option, the
model expects its mean reward to reflect the posterior distribution
of � (i.e., the expected reward for a novel option is thought to be
the posterior mean of �). We implemented the model using RStan
(Stan Development Team, 2018).

Participants can perform relatively well in the FMAB task if
they employ a reward tracking strategy. In practice, this strategy
corresponds to trying out each option a few times and then decid-
ing on the one with the highest expected reward. Because the
hierarchical model also infers the distribution from which options’
expected rewards are drawn, it is possible to generalize to novel
options with a simple rule—novel options are expected to produce
a reward that is equal to the mean of the inferred higher-level
distribution. Importantly, because the BH-UCB strategy com-

pletely ignores the features, it generates the same prediction for
any novel option. Gershman and Niv (2015) provided support for
a similar model, finding that people indeed generalize their prior
experience in a choice environment to make inferences about
novel options. This form of experience-based generalization shares
characteristics with normalization-based accounts in reinforcement
learning, which have been supported by previous research (Louie,
Khaw, & Glimcher, 2013; Palminteri, Khamassi, Joffily, & Cori-
celli, 2015; Rigoli, Friston, & Dolan, 2016). Ignoring the features,
while still being able to generalize, makes the BH-UCB model an
appropriate competitor to the GP-UCB model.

Experiment 1: Functional Generalization

The first preregistered experiment assessed functional general-
ization by introducing a novel option with features that indicated
either low or high rewards. The two strategies, embodied by the
GP-UCB and BH-UCB models, will treat these novel options
differently. The BH-UCB model is able to generalize in a limited
way, by assigning the same expected reward and uncertainty to
both novel options. By contrast, GP-UCB is able to distinguish
between the novel options and their expected rewards and uncer-
tainty.

We used a between-subjects design and a negative linear reward
function. In the FMAB low value condition, the novel option had
high feature values and a resulting low expected reward. In the
FMAB high value condition, the option had low feature values and
a resulting high expected reward.

The experiment had two additional conditions which were
equivalent to the FMAB conditions except that the options’ fea-
tures were invisible. This made the task identical to a classic,
noncontextual multiarmed bandit (MAB) task. The MAB low value
and MAB high value condition serve as control conditions as they
force participants to only learn by using a reward tracking strategy.

Method

Participants. We recruited 320 participants (166 female,
Mage � 37.1 and SDage � 10.5) through Amazon’s Mechanical
Turk (http: mturk.com) online labor market (Crump, McDonnell,
& Gureckis, 2013; Paolacci & Chandler, 2014). There were 97
participants in the FMAB high value and exactly as many in
FMAB low value condition, 68 in the MAB high value and 58 in
the MAB low value condition. We followed a sampling plan based
on Bayesian hypothesis testing of our main hypothesis (see Ap-
pendix A). Because our main stopping criteria were not met, we
stopped collecting the data when we reached the predetermined
budgetary limit. Participants were from the United States and had
an approval rate of 95% or higher. We rewarded participants with
a fixed payment of $0.70 and a performance-dependent bonus of
$1.40 on average. The experiment took 11.9 min on average. The
study was approved by the UCL Research Ethics Committee.

FMAB task. The task comprised 70 trials in total. The same
nine options, each characterized by two features, were provided as
a choice set until the 41st trial. We refer to these nine options as
the old options. On trial t� � 41, an additional option was added
to the choice set and thereafter remained available until the end of
the task. We refer to the newly introduced option as the novel
option. We chose to make the novel option appear on the 41st trial
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to allow for enough time to learn about the underlying function.
We chose to let participants sample for 30 more trials after the
novel option had appeared (i.e., giving them 70 trial in total), to
provide sufficient future opportunity to exploit the new option in
case it proved to be good. Furthermore, we settled on an interme-
diate number of options (i.e., 9 
 1 options) for which learning
functional relations would be feasible, but not overwhelming for
the participants who opt for a reward tracking strategy.

Every choice for option k on trial t produced a reward Rk
t

associated with that option. Rewards were a negative linear func-
tion of an option’s features xk � �x1,k, x2,k�:

Rk
t � f(xk) � �k

t

�35 � 20x1,k � 10x2,k � �k
t , (8)

where �k
t was drawn from a Gaussian distribution with a mean of

0 and a variance of 4. We chose a negative linear function to
ensure that participants’ choices reflect their acquired functional
knowledge rather than a potential prior for positive linear func-
tions, which people typically exhibit in function learning experi-
ments (Brehmer, 1974; Busemeyer et al., 1997).

For each participant, the feature values (x1,k and x2,k) for the old
options were randomly drawn from uniform distributions at the
start of the task. These distributions covered three different inter-
vals: U�.25, .35�, U�.45, .55�, and U�.65, .75�, yielding nine possi-
ble interval permutations. For example, features for one option
were drawn from the U�.25, .35� and U�.25, .35� intervals, for
another option from the U�.25, .35� and U�.45, .55� intervals, and
so forth. We randomly sampled feature values to include a wide
range of choice sets in our experiment, thus increasing the gener-
alizability of the results. The resulting expected rewards ranged
from 12.5 to 27.5. Participants’ goal was to maximize the cumu-
lative sum of these rewards during the entire task.

We manipulated (between-subjects) the novel option’s features
to indicate low or high expected rewards. In the low value FMAB
and MAB conditions, the novel option had both feature values set
to 0.95, resulting in a low expected reward of 6.5 points. In the
high value conditions, the feature values were both set to 0.05,
yielding a high expected reward of 33.5 points.

Estimation task. Our models also generate predictions about
options’ expected rewards and the associated uncertainty. Exam-
ining participants’ beliefs about these measures can therefore cor-
roborate the evidence for our predictions derived from the choice
data. Hence, in addition to the main task, participants also com-
pleted an estimation task on two occasions (see Figure 2), where
we asked them to estimate the mean reward for each option, as
well as rate their confidence in those estimates. We constrained the
range for the estimates to be between 0 and 50, while the confi-
dence ratings were entered on a scale from 1 (low confidence) to
10 (high confidence). To ensure that participants provided truthful
estimates and meaningful confidence ratings, we rewarded the accu-
racy of a single estimate at the end of the experiment, where the
chance that an estimate was selected was proportional to its confi-
dence rating relative to the other confidence ratings. The earnings
depended on accuracy as follows: max (0, 300 � 10 | E[Rk] � Ê
[Rk] | ), where E[Rk] denotes the true mean reward of option k, and
Ê[Rk] the estimate. This reward function was set such that partic-
ipants could earn a significant amount of money from the two
estimation tasks, up to about a third of the total earnings.

Functional knowledge task. In ongoing research using the
FMAB task, we found that a substantial proportion of participants
adopt a reward tracking strategy (about 40%, see Stojic, 2016).1 To
distinguish those who learned the function from those who only
tracked rewards, participants in the FMAB conditions completed a
functional knowledge task immediately after the main bandit task.
Achieving good performance in this task required participants to
generalize functional knowledge they had acquired during the
bandit task. Thus, we expected those participants who had learned
the function well to achieve better-than-chance performance in this
task. Accordingly, our preregistered classification procedure used
participants’ mean performance in the task to distinguish between
function learners and reward trackers.

The task consisted of 25 trials in which participants had to
choose between three options characterized by the same features as
options in the FMAB task (see Figure 3). Participants had to
choose between three new options on every trial and did not
receive feedback about the chosen options’ reward. For each of
these choice triplets, there was always a best, a medium, and a
worst option, assuming perfect knowledge of the underlying func-
tion (see Appendix A). We classified participants’ performance
using a one-tailed Bayesian t test. Participants who achieved
better-than-chance performance were classified as function learn-
ers. Participants who did not perform better than chance were
classified as reward trackers (see Appendix A).

Given the small number of trials in the functional knowledge
task, we expected the classification of function learners and reward
trackers to be rather coarse. Thus, the task was designed to be
sufficient for distinguishing between the two types of learners, but
not for precisely diagnosing participants’ knowledge. We per-
formed simulations to confirm that our classification procedure
was sufficiently sensitive (see Appendix A). For this, we simulated

1 This is based on experiments where reward functions were also linear,
but with different coefficients and feature values. These experiments had
similar sample sizes and used clustering methods and statistical tests to
classify participants into function learners and reward trackers.

Figure 2. Illustration of the estimation task for the FMAB conditions.
Participants completed the task on the 41st and the 70th trial, after their choice
but before receiving feedback on the reward. They had to estimate the ex-
pected reward of each option and express how confident they were in their
estimates. The task was identical for the MAB conditions, with the difference
that feature values were hidden. Note that the estimate of the mean reward has
been entered already in this illustration. See the online article for the color
version of this figure.
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function learners starting from perfect knowledge, that is, perform-
ing optimally in the functional knowledge task, and made them
progressively worse until random performance, that is, the ex-
pected performance level of pure reward trackers. The results of
this simulation showed that our classification procedure is suffi-
cient to correctly classify participants with moderate or better
functional knowledge as function learners (with 80% probability
and higher for mean rank of 1.5 and higher), whereas those with
poorer knowledge are likely to be misclassified as reward trackers
(Figure A1).

Procedure. Participants completed the experiment online.
The experiment was programmed in JavaScript and HTML, using
the jsPsych (Leeuw, 2015) and Psiturk (Gureckis et al., 2016)
libraries. We ensured that participants could only participate once
in our experiments by tracking their worker identification num-
bers.

Participants read the instructions after providing informed con-
sent. We explained that they had to choose between a set of options
70 times, with the goal to earn as many points as possible. We also
explained that although the rewards were noisy, the average re-
ward of the options would not change over time. This was done
through a metaphor in which each option can be thought of as a
bag of coins, and choosing an option means drawing a random coin
from the bag. Moreover, we informed participants that there would
be additional tasks (the estimation and functional knowledge task)
offering another opportunity to increase their earnings in the
experiment. Details of these tasks were not further specified in
advance. We did not explicitly mention the introduction of the
novel option on Trial 41. We did stress that the options would
remain available once they appeared. We explained in detail how
participants’ earnings would be determined and that each choice
would yield points which were later converted into money at a rate
of 1,800 points per $1. After reading the instructions, participants
completed an attention check questionnaire and were sent back to
the instructions if they had answered any of the questions incor-
rectly (see Appendix B for a brief exploratory analysis of how
attention is related to choice performance).

Participants had a maximum of 60 s on every trial to select an
option. Following each choice, reward feedback was displayed for
two seconds, after which the task automatically continued to the
next trial.2 Throughout the task, a counter positioned at the top of
the screen displayed the current trial and the total number of trials.
In the FMAB conditions, feature values were displayed in the form
of a horizontal and a vertical line starting from the lower left
corner of the squares representing the options (see Figure 1). For

example, a feature value of 0.1 would correspond to a short line,
while a value of 0.9 would correspond to a line almost spanning
the full length of the square. Which line (vertical or horizontal)
corresponded to which feature was determined at random for each
participant. The features (lines) were not displayed in the MAB
conditions. Participants in the FMAB condition were informed that
features might be helpful by the following sentence: “Options have
horizontal and vertical lines of different lengths drawn inside the
squares. The lines can help you predict the value of the coins in
each bag.” We did not inform participants about the underlying
function. Rather, participants had to infer this function by them-
selves. Each option had a randomly assigned label to further
facilitate their identification. The old options were randomly po-
sitioned in a 6 � 3 grid (column-by-row) before the start of the
task. The novel option appeared in one of the remaining nine cells,
selected at random, smoothly fading in over a period of three
seconds. This was to draw participants’ attention to the novel
option in case they were looking at other parts of the screen.

In the estimation task, two text input boxes appeared below each
option, one to estimate the expected reward and one to rate
confidence in the estimate (see Figure 2). We presented detailed
instructions for this task at the bottom of the screen. Participants
completed the task on the 41st and 70th trial, after their choice but
before receiving feedback about the reward earned through their
choice.

Participants in the FMAB conditions continued with the func-
tional knowledge task immediately after the bandit task (see Figure
3). Before the task began, we instructed them that they would have
to choose between new options on each trial and that they would
not receive reward feedback, but that their final earnings would
nonetheless be affected by the reward associated with the chosen
options in the same way as in the FMAB task. Each option was
placed randomly on a 5 � 1 grid on each trial and the options were
unlabeled.

At the end of the experiment, we informed participants about
their total earnings, and asked them to report their age, gender, and
whether they had noticed that a novel option appeared on the 41st
trial (see Appendix B for a brief exploratory analysis of the final
question).

Analyses. Detailed overview of statistical analyses can be
found in the Appendix A. We use Bayes factors to quantify the
relative evidence the data provides in favor of the null (H0) or the
alternative hypothesis (H1). We denote the Bayes factor that re-
flects the relative evidence for H0 compared with H1 as BF01, and
the Bayes factor that reflects the relative evidence for H1 as BF10.
Following (Jeffreys, 1961), we classify a Bayes factor between 3
and 10 as moderate evidence in favor of a hypothesis, and a Bayes
factor of 10 or larger as strong evidence. We mark a test of a
preregistered hypothesis with an asterisk; for example, BF� indi-
cates the Bayes factor for a preregistered hypothesis. Note that
hypotheses that we did not preregister are still often predicted by

2 The bandit task was supposed to have a 1-s delay in which participants
could not make a response after the trial begins, as outlined in the
preregistration. This delay was meant to slow down participants and
increase the chance of noticing the novel option appearing. Unfortunately,
because of a technical error there was no delay at all, and participants could
make a response immediately when the trial began.

Figure 3. Illustration of a trial in the functional knowledge task. This task
follows immediately after the bandit task and only in the FMAB condi-
tions. Features were always visible and rewards were governed by the same
function as in the FMAB task. On each trial, participants were asked to
choose between three new options and reward feedback was not provided.
Options were designed to examine whether participants have learned the
reward function—participants with such knowledge should be able to
achieve better-than-chance performance. See the online article for the color
version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.
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our model simulations: this will be understandable from the con-
text.

For hypotheses concerning participants’ choices of novel op-
tions on a single trial we used the contingency table Bayes factor
of Jamil et al. (2017), with an independent multinomial sampling
assumption and a default weak Dirichlet prior (a � 1) for H1. The
null hypothesis here was that the allocation of choices does not
depend on condition, whereas the alternative hypothesis was that
the choices differ between conditions. To estimate the probability
that participants in the FMAB conditions would choose a novel
option over the course of multiple trials, we used a Bayesian
binomial model: We used a noncentered probit parameterization
and our priors of group-level means and standard deviations were
determined by our model simulation results (exact prior specifica-
tions can be found in the Appendix A).

For hypotheses related to the estimation task and for classifying
FMAB participants into function learners and reward trackers, we
used a default Bayesian t test Morey and Rouder (2011); Rouder,
Speckman, Sun, Morey, and Iverson (2009), with the Jeffreys-
Zellner-Siow prior and scale set to 	2⁄ 2. Because our hypotheses
were directional, we used one-sided tests and truncated the prior
above or below zero, with the null hypothesis of no difference and
the alternative hypothesis of a difference in the predicted direction.
We used a symmetric, nontruncated prior whenever we had a
nondirectional hypothesis, and explicitly indicated when this was
the case.

Data and code availability. All project files are publicly
available at the Open Science Framework website: https://osf.io/
c8u9t/ (Stojic et al., 2018a, 2018c). This repository includes the
behavioral data, the code used for our model simulations and data
analysis, as well as links to all preregistrations.

Predictions

We generated a priori predictions by simulating the behavior of
both the GP-UCB and the BH-UCB model in our task. We then
took the most important patterns, formulated them as hypotheses,
and preregistered them before data collection commenced (Stojic,
Schulz, Analytis, & Speekenbrink, 2018b).

To apply the GP-UCB model to our task, we determined the
RBF hyperparameters (�2 and �2) on each consecutive trial by
maximizing the current marginal likelihood. We also subtracted
the true mean reward over all options (20 points) to set the prior
mean function to 0, simplifying posterior computations. We pres-
ent simulation results of a UCB choice rule with an exploration
parameter of � � 2 (see Figure 4). Simulations for other parameter
values (� � {0, 1, 3}) can be found in the preregistration docu-
ment (Stojic et al., 2018b).

The simulation results confirm that the GP-UCB model learns
the reward function during the first 40 trials and can therefore
correctly predict the mean reward of the novel option, resulting in
a tendency to choose the novel option when its features indicate
high rewards and to ignore it when its features indicate low
rewards (Figure 4a, left panels). This behavioral pattern cannot be
captured by the BH-UCB model. Furthermore, the GP-UCB model
has a higher level of uncertainty regarding the low value novel
option than for the high value option. This prediction results from
the interaction between function learning and the decision process,
because the goal of maximizing rewards biases decision makers to

have more experience with options in consequential regions with
features associated with high rewards. Consequently, knowledge
about good options will be better (more certain) than knowledge
about bad ones. After the 41st trial, the GP-UCB model keeps
selecting the high value novel option and its uncertainty reduces,
whereas it ignores the low value option for which uncertainty
remains at a high level. The resulting diverging levels of knowl-
edge constitute a novel prediction derived from our framework
which does not hold in traditional function learning tasks (Buse-
meyer et al., 1997; Juslin et al., 2003; Kruschke, 1992; Nosofsky,
1984; Speekenbrink & Shanks, 2010).

Because the BH-UCB model cannot distinguish between novel
options before they have been tried, it chooses the high and low
value option with the same probability (Figure 4a, right panels)
after it is introduced on Trial 41. It also assigns the same expected
reward and uncertainty to all novel options. If the high value novel
option is chosen, it chooses it more frequently thereafter. If the low
value novel option is chosen, it chooses it less often thereafter. It
is also evident that the BH-UCB model can catch up with the
GP-UCB model after a few trials. How rapidly the models con-
verge depends on the magnitude of the exploration parameter,
taking longer for smaller values of the exploration parameter (not
shown in Figure 4a, but see Stojic et al., 2018b).

The predictions of the GP-UCB model should hold for partici-
pants in the FMAB conditions employing a function learning
strategy. Participants in the FMAB conditions who ignore the
features and employ a reward tracking strategy, as well as partic-
ipants in the MAB conditions, are expected to behave in line with
the predictions from the BH-UCB model. We use the functional
knowledge task and our preregistered classification procedure to
identify function learners and reward trackers, to be able to exam-
ine the model predictions on these more appropriate subgroups of
the FMAB conditions.

Results

Choice proportions. One of our primary preregistered hy-
potheses concerned participants’ choices on the 41st trial (Stojic et
al., 2018b). Contrary to our hypothesis, participants in the FMAB
conditions did not choose the novel option in the high value
condition (3%) more frequently than in the low value condition
(4%) on Trial 41, BF10

* � 0.07.
Instead of emerging immediately on the 41st trial, the expected

difference arose from the 42nd trial onward (Figure 5a). On the
42nd trial, 30% of FMAB participants chose the high value option
and only 6% chose the low value option, BF10 � 2044. For the
MAB participants, those in the high value condition eventually
started choosing the novel option more often than participants in
the low value condition on Trial 47 (BF10 � 10.93) and onward
(Figure 5d). As predicted by our model simulations, the difference
in choice proportion between the high and low value option
emerged later than in the FMAB conditions. Moreover, 48.5% of
participants did not choose the novel option at all in the FMAB
low value condition, while only 21.6% of participants in the high
value condition never chose it; a substantial difference with
BF10 � 658.

Based on their performance in the functional knowledge task, 76
of 194 participants (39.2%) in the FMAB conditions exhibited
good knowledge of the function and were classified as function
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learners. The proportion of function learners was smaller than in
our earlier studies using the FMAB task, where it was closer to
60% (Stojic, 2016). Participants’ performance in the knowledge
task did not cluster around random performance (mean rank equal
to two). Instead, their scores spanned the whole range of possible
scores. In accordance with our classification simulations, most
participants classified as function learners had a good level of
performance with a mean rank below 1.5 (see Figure B1 in
Appendix B). The observed variability suggests that performance
in the functional knowledge task provided a good basis for clas-
sifying participants into function learners and reward trackers (see
Appendix B for additional exploratory analyses of our main hy-
potheses using performance in the functional knowledge task
directly rather than classification results).

Because our predictions were geared toward function learners,
and because there are more reward trackers than function learners
in the FMAB conditions, we examined the function learners’
behavior separately from the other participants in the FMAB
conditions. Focusing solely on function learners, there again was
no evidence that the novel high option was chosen more frequently

than the novel low option on Trial 41 (BF10
* � 0.15). Instead, the

expected difference again arose from the 42nd trial onward (Figure
5b), with a larger effect than for the FMAB conditions overall—in
the 42nd Trial 46% of function learners chose the high value
option and only 3% chose the low value option (BF10 � 6482). By
contrast, reward trackers were much slower in exploring the high
value novel option, with strong evidence for a larger proportion of
choices allocated to the high value option (25%) than for the low
value option (0%) starting from Trial 52 onward (BF10 � 2978;
Figure 5c), a pattern strikingly similar to that observed in the MAB
conditions (Figure 5d).

As an alternative to examining single trials, we also estimated
the probability of choosing the novel option on all 30 trials after its
introduction (i.e., Trial 41 to 70), using a Bayesian binomial model
(Figure 5e and Appendix A). The resulting posterior distributions
of the probability that participants choose the high and low value
novel option showed a clear separation between the FMAB high
and low value conditions, with a median of 34.8% (95% credible
interval (CI) [23.2, 47.0]) for the high value condition and 2.4%
(95% CI [1.6, 3.3]) for the low value condition. Repeating the

a

b

Figure 4. Simulation results for the GP-UCB and BH-UCB model for Trials 41 to 70 in Experiment 1 (a) and
in Experiment 2 (b). For each experiment, we show the inferred reward (mean of the posterior predictive
distribution, top row) and uncertainty for the novel option (variance of the posterior predictive distribution,
middle row), as well as the probability of choosing the novel option (bottom row). Lines represent means across
100 simulations, whereas bands represent the standard errors of the means. The weight of the uncertainty term
was fixed to � � 2, a medium high value aimed to capture a representative participant. See the online article for
the color version of this figure.
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same analysis for just function learners yielded an even larger
difference, with a median of 64.4% (95% CI [53.1, 74.7]) for the
high value condition and 1.6% (95% CI [0.8, 2.5]) for the low
value condition. By contrast, the difference was substantially
smaller when comparing the MAB conditions, with a median of
12.9% (95% credible interval (CI) [5.3, 24.8]) for the high value
condition and 1.5% (95% CI [0.8, 2.4]) for the low value condi-
tion. We therefore conclude that there is strong evidence that
FMAB participants preferred the high value novel option over the
low value option.

Expected rewards and uncertainty. Our models also gener-
ated differing predictions about options’ expected rewards and the
associated uncertainty, as assessed in the estimation task on Trial
41 and 70.3 According to the GP-UCB model predictions, FMAB
participants—and function learners in particular—should estimate
the high value novel option to have higher reward than the low
value option on Trial 41 (Figure 4a, top left panel). By contrast,
following the BH-UCB model’s predictions, MAB participants
and reward trackers in the FMAB condition should evaluate both
novel options as roughly equal (Figure 4a, top right panel). As
expected, on Trial 41 FMAB participants correctly estimated the
value of the high value option (19.05) to be higher than the low
value (16.06) option (BF10

* � 30.86), while there was moderate
evidence that the estimates of the MAB participants were equal
(17.71 points in the high and 17.78 in the low condition,
BF01

* � 5.22, nondirectional H1). Function learners exhibited an
even stronger effect, estimating the value of the high value option

(21.88) to be higher than the low value option (14.37, BF10 �
4918), with estimates being closer to the true values of 6.5 and
33.5 points (Figure 6a, Trial 41 panel). By contrast, reward track-
ers behaved similarly to MAB participants, producing moderate
evidence that their estimates for both options were equal (16.99 in
the high value and 17.02 in the low value condition, BF01 � 5.10,
nondirectional H1). By Trial 70, as predicted by the BH-UCB
model simulations, MAB participants and reward trackers learned
about the novel options and exhibited the predicted differences in
valuations of the high and low value novel options (MAB: 24.79
and 15.72, BF10 � 5.74 � 108; FMAB reward trackers: 24.91 and
15.13, BF10 � 9.1 � 107; Figure 6a, Trial 70 panel). The differ-
ence in valuation between the two options increased further for the
FMAB participants in general and function learners in particular
(FMAB: 27.89 and 14.26, BF10 � 2.2 � 1027; FMAB function
learners: 31.95 and 12.71, BF10 � 8.6 � 1026).

The GP-UCB model predicts that function learners’ confidence
in their reward estimation on Trial 41 will be higher for the high
value novel option than the low value option (Figure 4a, middle

3 The estimation task data passed our preregistered sanity checks. We
expected that participants’ estimated values would be closer to the options’
actual expected rewards on trial 70 and that confidence ratings would be
higher the more frequently an option was chosen. This was indeed true for
both the FMAB (BF10

* � 2.3 � 109 and BF10
* � 3.6 � 1060; intercept-only

model as H0) and the MAB condition (BF10
* � 4.5 � 1011 and BF10

* �
3.0 � 1037; intercept-only model as H0).

a

d

b c

e

Figure 5. Proportions of choices allocated to the novel option from Trial 41 onward in Experiment 1. (a) From
Trial 42 onward, participants in the FMAB high value condition choose the novel option more often than those
in the FMAB low value condition (b). The same pattern, but with stronger magnitude, is evident when only
looking at function learners in the FMAB conditions (c). Reward trackers in the FMAB conditions choose both
the high and low value option in similar proportions at the beginning, but as predicted by the model simulations,
they learn over time and tend to choose the high options more frequently and the low value options less
frequently later on. (d) Participants in the MAB conditions make choices similar to reward trackers in the FMAB
conditions. In all four figures, lines reflect average choice proportions across participants, whereas filled bands
indicate the standard errors of the means (e). Densities of posterior distributions over the probability of choosing
the high or low value novel option in Trials 41 to 70, estimated with a Bayesian binomial model. Distributions
show a clear difference for both FMAB conditions as a whole and for the function learning subgroup. In contrast,
the difference between the MAB conditions is substantially smaller. FMAB � feature-based multiarmed bandit
tasks. See the online article for the color version of this figure.
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left panel). This expectation did not hold for all FMAB participants
(BF10

* � 0.21), but was confirmed for participants classified as
function learners, who indicated higher confidence for the high
value option (4.49) than the low value option (3.09), BF10 � 9.68
(Figure 6b, Trial 41 panel). By contrast, following the predictions
of the BH-UCB model, confidence was expected to be equal for
both novel options for MAB participants and reward trackers
(Figure 4a, middle right panel). Indeed, there was moderate evi-
dence that participants in the MAB conditions had equal confi-
dence ratings (high vs. low: 4.41 vs. 4.86), BF01

* � 3.25 (nondi-
rectional H1). Reward trackers in the FMAB conditions showed a
pattern resembling the MAB participants, providing confidence
ratings for the two options that were close to each other (high vs.
low: 4.30 vs. 4.90), with weak to moderate evidence that they were
equal (BF01 � 2.31, nondirectional H1). On Trial 70, as predicted
by simulations of both models, confidence in the high value option
increased and was higher than for the low value option (Figure 6b,
Trial 70 panel), more so for the FMAB participants (6.94 and 4.49,
BF10 � 7.5 � 107) and function learners (7.95 and 3.54, BF10 �
8.6 � 1011) than MAB participants (6.20 and 5.03, BF10 � 2.39)
and reward trackers (5.60 and 4.36, BF10 � 3.60).

Discussion

Experiment 1 produced evidence for the functional generaliza-
tion effect. Participants in the FMAB condition, and those relying
on a function learning strategy in particular, avoided the novel
option in the low value condition and chose it more frequently in
the high value condition. Participants’ beliefs about expected re-
wards further corroborated this result—they correctly believed that
the reward of the high value option was higher than that of the low
value option. Moreover, participants were more confident in their
predicted rewards in the high value than in the low value condition,
as again predicted by our model. By contrast, participants in the
MAB conditions and FMAB participants adopting a reward track-
ing strategy were not able to distinguish between the novel options.
Their beliefs about the expected rewards and their confidence in
those beliefs did not differ between the two options. Consequently,
although they eventually discovered the high value option, they did

so much later than FMAB participants and particularly function
learners.

A key preregistered hypothesis concerned the 41st trial, where
we expected FMAB participants to choose the high value option
more frequently than the low value option. This prediction was not
confirmed by the results, but we found a strong effect on the 42nd
trial, as well as when comparing all trials from the 41st trial
onward. Moreover, data derived from the estimation task under-
pinned these results further. Why did participants only start con-
sidering the novel option after the 41st trial? By the end of Trial
40, many participants might have already settled on their next
choice, registering it shortly after the feedback. At that point, the
novel option would still have been half-transparent, likely hinder-
ing its detection. After the estimation task asked participants to
reflect on the value of all options, both old and novel, the expected
effects did occur. The extent to which this can be attributed to
reflection elucidated by the estimation task, or to noticing the
novel option for the first time during the estimation task, is
unclear. We will turn to identifying whether attention or reflection
underpins the observed effects from 42nd trial onward in Experi-
ment 3.

To conclude, we found clear evidence for the predicted func-
tional generalization effect. Our results show the generative po-
tential of theories of function learning and suggest a previously
unrecognized mechanism explaining diverging reactions toward
novel options. Beyond that, our theory takes a probabilistic ap-
proach to function learning, enabling us to predict people’s con-
fidence in their expectations regarding how rewarding options are.
Participants’ confidence in their predictions has received little
attention in previous category and function learning studies, but in
a decision context, where an agent can choose what to observe and
learn about, confidence can be invaluable (Boldt, Blundell, & De
Martino, 2019; Folke, Jacobsen, Fleming, & De Martino, 2017).
We found evidence that function learners maintain a measure of
the uncertainty in their knowledge. When the goal is to maximize
rewards, choices are biased toward highly rewarding options, so
that relatively more information is obtained for more rewarding
options, resulting in more uncertainty in lower rewarding regions.

a b

Figure 6. Estimated reward of the novel option and associated confidence in Experiment 1 from the estimation task on
Trial 41 and 70. (a) Estimated reward of the novel option. On Trial 41, participants in the FMAB conditions, and function
learners (FMAB fl) in particular, expressed correct beliefs that the high valuenovel option is more rewarding than the low
option. MAB participants and reward trackers (FMAB rt) estimated both novel options to have an equal value (b).
Confidence in the estimated reward of the novel option. On Trial 41, function learners (FMAB fl), but not all FMAB
participants, were more confident about the high value novel option than the low option. Error bars in (a) and (b) are standard
errors of the means, whereas 41 and 70 are panels showing the estimation task’s data in those trials. FMAB � feature-based
multiarmed bandit tasks. See the online article for the color version of this figure.
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These findings pave the way for Experiment 2, where we exam-
ined whether people eagerly approach more uncertain options.

Experiment 2: Functional Uncertainty Guidance

The second preregistered experiment investigated functional
uncertainty guidance, that is, whether people explore options to
improve their functional knowledge, thereby preferring novel op-
tions with higher predictive uncertainty. We again used a between-
subjects design. One group was assigned a novel option with
feature values from within the experienced range. We will refer to
this group as the FMAB ordinary-novel condition. Another group
was assigned a novel option with feature values from outside the
experienced range. We will refer to this group as the FMAB
exotic-novel condition. We selected features such that the novel
options in both conditions had exactly the same reward in expec-
tation. However, uncertainty about the value of the exotic-novel
option was expected to be perceived as higher, because it had
feature values from outside the experienced range and so was less
similar to the old options than the ordinary-novel option.

As in Experiment 1, we used an MAB version of the task as a
control condition. Because both types of novel option had the same
expected reward, there was no differentiation between the novel
options in the MAB version. Thus, a single MAB condition suf-
ficed.

Method

We recruited 423 participants (207 female, Mage � 37.4 and
SDage � 10.9) through Amazon’s Mechanical Turk using the same
eligibility requirements as in Experiment 1. There were 182 par-
ticipants in the FMAB exotic-novel condition, 180 participants in
the ordinary-novel condition, and 61 participant in the MAB
condition. We followed the same sampling plan as in Experiment
1 and stopped after we had reached our budgetary limit (Appendix
A). We rewarded participants with a fixed payment of $0.70 and a
performance-dependent bonus of $1.40 on average. The experi-
ment took 12.6 min on average. The study was approved by the
UCL Research Ethics Committee.

The task in Experiment 2 was the same as in Experiment 1, with
the only difference being how the novel options were constructed.
In the FMAB ordinary-novel condition we set the novel option’s
features to x1,10 � 0.33 and x2,10 � 0.34, making it similar to the
already experienced options (i.e., the feature values were within
the U�.25, .35� range from which feature values of old options were
drawn), yielding a medium expected reward of 25 points. In the
FMAB exotic-novel condition, the novel option had feature values
from outside the experienced range, x1,10 � 0.01 and x2,10 � 0.98.
Crucially, the expected reward of this option was again 25 points.

The procedure was exactly the same as in Experiment 1. Par-
ticipants who had participated in Experiment 1 were not allowed to
participate in Experiment 2.

Predictions

We generated predictions by simulating the GP-UCB and BH-
UCB model and preregistered them before data collection com-
menced (Stojic et al., 2018b). The results of the simulation show
that after introduction of the novel option on the 41st trial, the

GP-UCB model chooses the exotic-novel option with a higher
probability than the ordinary-novel option (Figure 4D, left panels).
The GP-UCB model learns the underlying reward function during
the first 40 trials, allowing it to correctly predict the mean reward
of the ordinary-novel option, although it underestimates the mean
reward of the exotic-novel option. However, because predictions
for the exotic-novel option are more uncertain than predictions for
the ordinary-novel option, more information can be gained from
choosing the exotic novel option. The UCB rule takes into account
the informativeness of choices, and here the difference in uncer-
tainty outweighs the difference in predicted reward, resulting in a
small but reliable preference for the exotic-novel option compared
with the ordinary-novel option. As the uncertainty about reward
reduces with experience, this relative preference disappears within
five trials.

The predicted relative preference for the exotic-novel option
rests on both ingredients of the GP-UCB model: function learning
and uncertainty-guided exploration. A sophisticated reward-
tracking strategy, which also takes into account rewards and un-
certainty, such as instantiated by the BH-UCB model, is not
enough. The simulation of the BH-UCB model shows that it
allocates the same proportion of choices to both types of novel
option (Figure 4d, right panels). By ignoring the feature values,
this model is unable to differentiate between the novel options a
priori, assigning the same uncertainty to both. This shows that the
underlying representation from which uncertainty is derived mat-
ters. If options are represented as in the BH-UCB model, being
drawn from a common distribution but otherwise independent, this
results in different uncertainty than if options’ reward is repre-
sented as a function over feature values, consequently leading to
diverging choices. The functional uncertainty effect, where an
exotic-novel option is chosen more often than an ordinary novel
option because predictions are more uncertain for the former, is a
new prediction directly derived from our function learning account
of experiential decision making.

The predicted difference in choice proportions between the
exotic-novel and ordinary-novel option is not as large as the
predicted difference between the high value and low value novel
options in Experiment 1 (see Figure 4). Looking at the expected
reward of the novel options, we can see that this is mostly attrib-
utable to the GP-UCB model underestimating the reward for the
exotic-novel option as compared with the ordinary-novel option.
This is a direct consequence of using an RBF kernel—predictions
outside the experienced feature space tend to reverse back to the
overall prior mean value. As indicated earlier, we do not make a
strong theoretical commitment to the RBF kernel. Participants may
not solely rely on a mechanism of generalization which mirrors
this kernel. Instead, they may extrapolate by either assuming
longer-distance dependencies (Wilson et al., 2015), employing
rule-based learning (Busemeyer et al., 1997) or compositional
learning (Schulz et al., 2017). Such alternative learning mecha-
nisms would yield a smaller difference in predicted rewards while
leaving the uncertainty difference relatively intact, leading to an
increased relative preference for the exotic-novel option. As such,
the difference between the exotic-novel and the ordinary-novel
option could turn out to be larger than in our preregistered simu-
lation.

As in Experiment 1, the GP-UCB predictions should hold for
function learners in the FMAB conditions, and the FMAB condi-
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tions as a whole if enough participants are indeed function learn-
ers. The predictions of the BH-UCB model should hold for the
MAB conditions and reward trackers in the FMAB conditions.

Results

Choice proportions. Having preregistered the hypotheses for
Experiment 1 and 2 simultaneously, the primary hypothesis for the
second experiment again concerned the 41st trial. As in Experi-
ment 1, there was again no evidence for the expected difference in
choice proportions on the 41st trial, neither for participants in the
FMAB conditions (6.6% in exotic-novel and 6.7% in ordinary-
novel condition, BF10

* � 0.07), nor for function learners (14.3% in
exotic-novel and 8.1% in ordinary-novel condition, BF10

* � 0.25).
In the MAB condition, 4.9% of the participants chose the novel
option on Trial 41.

Because the procedure was the same as in Experiment 1, the
same issues with participants’ attention to the novel option arose in
Experiment 2. We therefore proceeded to explore participants’
behavior from the 42nd trial onward. On the 42nd trial, partici-
pants in the FMAB exotic-novel condition chose the novel option
more frequently (18.1%) than participants in the ordinary-novel
condition (7.2%), BF10 � 11.74. According to the GP-UCB model
simulations, this difference was predicted to vanish rapidly. The
behavioral data shows differences in choice proportions ranging
from 4% to 12% over a longer period until Trial 52, when the

differences disappear. This relative preference over a prolonged
period of time is likely due to participants exhibiting slower
learning rates than the GP-UCB model (Figure 7a). However, for
most of these trials, statistical evidence of a difference was rela-
tively weak, with BF10 � 3.

Based on performance in the functional knowledge task, we
classified 144 of 362 participants (39.8%) in the FMAB conditions
as function learners, a similar proportion as in Experiment 1. On
the 42nd trial, function learners showed a similar preference for the
exotic-novel option (25.7%) compared with the ordinary-novel
option (12.2%) as FMAB participants more generally, however
resulting in a smaller Bayes factor of BF10 � 1.36, likely owing to
the smaller sample size. As predicted by our models, on Trial 70
there was no difference between the conditions in how often
participants chose the novel option, ranging from 12.2% in the
FMAB ordinary-novel condition to 19.7% in the MAB condition
(BF01 � 31.7).

As a final analysis of the choice data, we again estimated the
probability of choosing the novel option across more than a single
trial using a Bayesian binomial model. Because model simulations
predicted effects to diminish over trials, we focused our analysis
on the first 15 trials after introduction of the novel option (i.e.,
Trial 41 to 55). The posterior distributions over the probability of
choosing the novel option showed a small but consistent separation
between the FMAB conditions (Figure 7e). For the exotic-novel

a

d

b c

e

Figure 7. Proportions of choices allocated to the novel option from Trial 41 to Trial 55 in Experiment 2. (a)
Participants in the FMAB exotic-novel condition start choosing the novel option more often than participants in
the FMAB ordinary-novel condition on Trial 42, but as predicted by the model simulations the difference starts
decreasing soon after that, from Trial 52 onward (b). Function learners show a similar pattern, with a greater
difference in choice proportions. Note that choice proportions are noisier due to a smaller number of participants
(c). By contrast, reward trackers in the FMAB conditions initially choose both novel options in similar
proportions, starting with low allocations to novel options and increasing slowly (d). Participants in the MAB
conditions make choices similar to reward trackers in FMAB conditions. In all four figures lines are mean
proportions across participants, whereas bands are standard errors of the means (e). Densities of posterior
distributions of probabilities of choosing the novel option in Trials 41 to 55 in the FMAB exotic-novel and
ordinary-novel conditions and MAB novel condition, estimated by a Bayesian binomial model. The estimated
posterior probabilities show a small but robust difference for both FMAB conditions as a whole and the function
learning subgroup, whereas the estimated probability for the MAB condition is substantially smaller. FMAB �
feature-based multiarmed bandit tasks. See the online article for the color version of this figure.
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condition the median was 9.3% (95% CI [6.5, 12.6]) and for the
ordinary-novel condition it was 6.9% (95% CI [5.1, 9.0]), with
91% of the samples from the posterior distribution for exotic-novel
condition being larger than the ordinary-novel estimate and a mean
difference of 2.5%. Repeating the same analysis for function
learners only showed a smaller difference—the median for the
exotic-novel condition was 12.7% (95% CI [7.4, 19.4]) and 10.6%
(95% CI [6.9, 14.9]) for the ordinary-novel, with 73% of samples
for the exotic-novel condition larger than the ordinary-novel esti-
mate and a mean difference of 2.2%. By contrast, for participants
in the MAB condition the median probability of choosing the
novel option was 3.8% (95% CI [1.3, 7.9]), with 98% of the
samples for the FMAB exotic-novel condition being larger than
those for the MAB condition and a mean difference of 5.4%.

Expected rewards and uncertainty. Next, we examined
whether participants’ beliefs elicited in the estimation task aligned
with their choices (Figure 8a and 8b).4 Participants in the FMAB
conditions estimated the ordinary-novel option to have a higher
mean reward (18.54) than the exotic-novel option (15.75), BF10 �
24741. This was in line with the GP-UCB model’s predictions.
This difference was even larger when focusing solely on function
learners (19.49 for the ordinary-novel and 15.37 for the exotic-
novel option, BF10 � 1637). For reward trackers, there was no
evidence that estimates of their expected rewards for the exotic-
novel option (17.89) were equal to those for the ordinary-novel
option (15.99), BF01 � 0.20, nondirectional H1.

As expected, participants in the FMAB conditions were less
confident in their predictions for the exotic-novel option (3.84)
than for the ordinary-novel option (4.74), BF10

* � 80.54. This
difference was again larger for function learners (3.13 for the
exotic-novel and 4.96 for the ordinary-novel option, BF10 �
2291). For reward trackers, there was moderate evidence that their
confidence ratings for the exotic-novel option (4.59) were equal to
the ratings for the ordinary-novel option (4.29), BF01 � 4.43, as
predicted by our model simulations.

Participants’ confidence for the exotic-novel option increased
substantially from Trial 41 (3.84) to 70 (5.55), BF10 � 7.3 � 106,
indicating that once they had tried out the exotic-novel option,
their knowledge of its value improved. As predicted by our model
simulations, the differences between the FMAB conditions disap-
peared by the end of the task, in both estimated expected rewards
(20.37 in the exotic-novel and 20.27 in the ordinary-novel condi-
tion, BF01 � 8.45, nondirectional H1) and confidence ratings (5.55
in the exotic-novel and 5.37 in the ordinary-novel condition,
BF01 � 6.97, nondirectional H1; Trial 70 in Figure 8a and 8b).

It is conceivable that the observed patterns in estimated rewards,
confidence, and choices might not hold on the level of individual
participants, but were due to averaging in the conditions. This
could occur if a subset of participants in the exotic-novel condition
shows the expected pattern in the estimation task (lower estimated
value and lower confidence) but actually does not choose the novel
option, while another subset does not show this pattern (for in-
stance valuing the novel option higher than any of the old options),
but does choose the novel option. We performed an additional
analysis to determine whether this was the case. For each partic-
ipant in the FMAB exotic-novel condition, we calculated the
difference in estimated value and confidence between the subjec-
tively best old option (the old option which received the highest
rating in terms of expected reward) and the novel option. For

participants who believed that the novel option had a higher value
than any of the old options, this difference would be negative for
their estimated value. Similarly, for participants who were more
confident in their estimation of the novel option than any of the old
options, this difference would be negative for their rated confi-
dence. Looking at those participants who chose and did not choose
the novel option on Trial 42, we found that both groups showed
positive difference scores. Participants who chose the novel option
rated its value as lower than an old option (mean difference 9.27,
SE � 1.59; BF10 � 2.03 � 104, H0 smaller than or equal to zero)
and also had lower confidence in their estimation for the novel
option than the best old option (mean difference 3.70, SE � 0.65;
BF10 � 1.5 � 104). Participants who did not choose the novel
option on Trial 42 showed the same pattern, reporting that the
novel option was of lower value than the best old option (mean
difference 9.56, SE � 0.47; BF10 � 1.21 � 1042) and that they had
lower confidence in their rating of the novel option than the best
old option (mean difference 3.40, SE � 0.25; BF10 � 7.1 � 1024).
This confirms that the uncertainty-guidance effect is not an artifact
of aggregating individual data.

Discussion

Experiment 2 revealed moderate evidence that participants pre-
ferred the exotic-novel over the ordinary-novel option in the period
soon after the novel option was introduced. Analyzing choice
proportions, we found a moderate preference for the exotic-novel
option on the 42nd trial, and a small overall preference in the
period from the 41st to the 55th trial. Similar to Experiment 1, our
hypothesis concerning the 41st trial was not confirmed. Impor-
tantly, participants’ beliefs about average rewards and their con-
fidence in these beliefs provided further evidence for functional
uncertainty guidance: exploration of novel options to gain func-
tional knowledge.

Beyond that, our findings more closely followed the simulations
with a Radial Basis Function kernel than what would have been
expected if participants had extrapolated more linearly (e.g., Buse-
meyer et al., 1997; Hoffmann, von Helversen, & Rieskamp, 2016).
Using an RBF kernel, our model predicted a relatively small
difference in choice proportions between the exotic-novel and
ordinary-novel options, but the difference could have been larger
if extrapolation relied on a different kernel which does not under-
estimate the average reward of the exotic-novel option. Although
our previous research showed that a similarity-based kernel such
as the RBF kernel describes participants’ learning well (Schulz et
al., 2018; Stojic, 2016), that evidence was not sufficiently strong to
discard the possibility that humans also incorporate linear extrap-
olation. The finding that participants did indeed underestimate the
value of the exotic-novel option suggests that their function learn-
ing was predominantly driven by a similarity-based representation
of the function.

Although our results indicate that participants integrated uncer-
tainty into their decision process, it may have played a less
prominent role than in our models, leading to moderate rather than

4 The estimated mean values and confidence ratings again passed our
preregistered sanity checks, both in the FMAB conditions (BF10

* �
6.6 � 1025 and BF10

* � 6.6 � 10101) and in the MAB conditions (BF10
* � 46

and BF10
* � 6.4 � 1017).
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strong differences in choice proportions between the exotic and the
ordinary novel option. Indeed, contrary to predictions from the
BH-UCB model, participants rarely ever chose the novel option in
the MAB condition. A decreased probability of choosing the novel
option can be accounted for by relatively smaller values of the �
parameter in the UCB choice rule, which would dampen the
exploration of uncertain options. However, it is unclear whether
this also holds for the FMAB conditions. Because past research has
shown that participants can adapt the extent to which they rely on
uncertainty to the encountered environments (e.g., Behrens, Wool-
rich, Walton, & Rushworth, 2007), it is likely that uncertainty
guidance played a more important role in the FMAB condition
where directed exploration can lead to better knowledge about the
underlying function and thereby improve future decisions.

Experiment 3: Attention and Reflection

Given the results of Experiment 1 and 2, the following question
remained: Why did the predicted effects only occur after the 41st
trial, and not—as expected—on the 41st trial? At least two inter-
pretations are conceivable. First, this could have been an attention
effect: Participants may have already settled on choosing an old
option before the start of the trial and therefore did not notice the
slowly appearing novel option on Trial 41. Second, the estimation
task could have triggered further reflection on all options, includ-
ing the novel one, such that participants only decided to choose or
ignore the novel option after explicitly evaluating it.

One source of evidence for what might have driven this effect is
to look at RTs. We therefore analyzed the time participants took to
make a choice in trials around the 41st trial in Experiment 1 and 2
to glean initial evidence about these two hypotheses. In the five
trials preceding the 41st trial, FMAB participants were making
choices typically in under a second (Experiment 1: 0.73s, SE �
0.04; Experiment 2: 0.79s, SE � 0.03). Participants’ choice times
were similar on the 41st trial (Experiment 1: 0.85s, SE �
0.07, BF01 � 2.3; Experiment 2: 0.86 s, SE � 0.05, BF01 � 5.3,
nondirectional H1; excluding the estimation task time), which was
indeed too fast for the novel option to become fully visible (since

this took 3s in total). By contrast, participants took much longer to
choose an option on the 42nd trial relative to the five trials
preceding the 41st trial (Experiment 1: 1.87 s, SE � 0.12, BF10 �
3.8 � 1026, nondirectional H1; Experiment 2: 1.84 s, SE �
0.08, BF10 � 1.9 � 1033, nondirectional H1). In comparison with
the 42nd trial, participants speeded up again in the five subsequent
trials (Experiment 1: 0.79 s, SE � 0.04, BF10 � 1.3 � 1032,
nondirectional H1; Experiment 2: 0.81 s, SE � 0.03, BF10 � 4.9 �
1034, nondirectional H1). The increase in choice time on the 42nd
trial could be a result of considering to choose the novel option, but
it could also be attributable to the estimation task that appeared on
the previous trial. For brevity we do not report results for the MAB
conditions in either experiment, which were qualitatively similar,
and we collapsed the analysis across FMAB conditions, as results
were also similar.

These choice time analyses seem to suggest that the one-trial
delay of the expected effects in Experiments 1 and 2 was attrib-
utable to participants’ quick decision making and failing to attend
to the novel option. However, these results are inconclusive on
their own. Participants could have become aware of the novel
option because it was fully visible during the estimation task. But
the estimation task itself could also have caused them to further
reflect on all options, which in turn led them to either choose or
avoid the novel option. We tried to further disentangle these
explanations in Experiment 3. In Experiment 3a and 3b, we ex-
amined whether drawing participants’ attention more clearly to the
appearance of the novel option is sufficient to remove the delayed
response to novelty, which would provide support to the attention
explanation. In Experiment 3c, we examined whether further re-
flection on all options is also necessary, which would provide
support for the reflection hypothesis.

We focused on the FMAB high and FMAB low value conditions
from Experiment 1. The expected and observed effects were stron-
gest for these conditions, allowing us to efficiently test our hy-
potheses. As before, we preregistered all of the experiments on the
OSF website: Experiment 3a at https://osf.io/h5uqr/ (Stojic,
Schulz, Analytis, & Speekenbrink, 2019a), Experiment 3b at https://

a b

Figure 8. Estimated reward of the novel option and associated confidence in Experiment 2 for the estimation
task on Trial 41 and 70. (a) Estimated average reward of the novel option. FMAB participants and function
learners in FMAB conditions (FMAB-fl) underestimate the exotic-novel option on Trial 41 but the difference
disappears by Trial 70. Reward trackers (FMAB-rt) also underestimate the exotic-novel option on Trial 41, but
not on Trial 70. (b) Confidence in the estimated reward of the novel option. As predicted, FMAB participants
and function learners are less confident about the exotic-novel option than the ordinary-novel option on Trial 41.
This difference disappears by Trial 70. Error bars in (a) and (b) are the standard errors of the means, whereas
41 and 70 are panels showing the data from the estimation task on those trials. FMAB � feature-based
multiarmed bandit tasks. See the online article for the color version of this figure.
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osf.io/37ayn/ (Stojic, Schulz, Analytis, & Speekenbrink, 2019b),
and Experiment 3c at https://osf.io/tg5kc/ (Stojic, Schulz, Analytis,
& Speekenbrink, 2019c).

Method

We recruited 419 participants (170 female, Mage � 37.8 and
SDage � 11.8) through Amazon’s Mechanical Turk using the same
eligibility requirements as in Experiment 1 and 2. There were 117
participants in Experiment 3a (57 in the FMAB high value and 60
in the low value condition), 181 participants in Experiment 3b (90
in the FMAB high value and 91 participants in the low value
condition),5 and 121 participant in Experiment 3c (61 in the
FMAB high value and 60 participants in the low value condition).

We followed the same sampling plan as in Experiment 1 and 2
(Appendix A). We rewarded participants with a fixed payment of
$1.00 and a performance-dependent bonus of $1.60 on average.
The experiments took 13.2 min on average. All studies were
approved by the UCL Research Ethics Committee.

Methods and procedure for Experiment 3 were similar to the
two FMAB conditions in Experiment 1, except for some key
modifications. One modification concerned all three experiments.
We implemented a period of two seconds in which participants
could not choose an option at the start of each trial and this period
was clearly marked by surrounding all options with a thick black
border. Participants could register their choice only after this
period had ended, which was marked by the removal of the
borders. This was done to prevent rapid choices and increase the
chance of noticing the novel option appearing. Other modifications
were specific to each experiment, and concerned the way in which
the novel option was introduced, and the presence or absence of
the estimation task.

In Experiment 3a, instead of slowly becoming opaque, we made
the novel option appear on Trial 41 by flickering four times over
a period of 1 s. In addition, the text below the options changed into
a simple message stating “A new option has been added. Every-
thing else about the task is the same as before and all options will
remain available until the end of the game.” These modifications
were designed to make the introduction of the novel option highly
noticeable. Moreover, there was no estimation task in Trial 41 and
70, so participants were not explicitly invited to reflect on all
options. This experiment was thus designed to test whether in-
creased attention to the novel option alone would be sufficient to
induce approaching or avoiding the novel option.

The results of Experiment 3a suggested that strongly directing
participants’ attention to the novel option might have had unantici-
pated effects on functional generalization. Hence, in Experiment 3b
the novel option appeared on Trial 41 by slowly becoming opaque
over a period of time, similar to Experiment 1 and 2. We reduced the
time of this fading-in process from 3 s to 2 s, to match it to the period
in which participants could not register a response. As in Experiment
3a, there was no estimation task in Trial 41 and 70. This experiment
was designed to assess how a more subtle way to draw participants’
attention to the novel option affects their feature-based choices.

Finally, in Experiment 3c, we assessed how making participants
explicitly reflect on each option influenced their feature-based choices
of the novel option. In this experiment, the estimation task appeared
at the beginning of Trial 41 before participants made a choice, rather
than after the choice as in Experiment 1 and 2. Crucially, the novel

option was simply added to the estimation task, without any accom-
panying visual effects.

In addition to these larger modifications, we also made several
minor changes. We clarified the instructions further, mainly in the
attempt to improve readability and style, and increased the payoffs
slightly. In Experiment 3b and 3c, we also added six questions at the
end of the experiment, alongside demographic questions, to probe
participants’ knowledge of the reward function and the appearance of
the novel option. In each of the three experiments, we followed the
same sampling plan as in Experiment 1, but with a budget stopping
rule of $300. Finally, participants who had participated in Experiment
1 and 2 were not allowed to participate in Experiment 3.

All model-based predictions for Experiment 3a, 3b, and 3c were
identical to those for Experiment 1 (Figure 4a).

Results

In Experiment 3a, the novel option appeared in a salient flickering
manner in an attempt to ensure that participants noticed it. A high
proportion of participants chose the novel option on the 41st trial in
both the high value (63.2%) and the low value (70%) condition. These
proportions were much higher than what we had found in Experiment
1 on the 42nd trial (30% and 6%). There was no evidence for the
expected difference in choice proportions allocated to the novel option
on the 41st trial (63.2% in high value and 70% in low value condition,
BF10

* � 0.29). The same holds for 64% of participants that were
classified as function learners (76.5% chose novel option in high
value and 73.2% in low value condition, BF10

* � 0.26). As in
Experiment 1, here we found the predicted difference after the 41st
trial (Figure 9a); however, this was largely attributable to participants
in the low value condition substantially decreasing the frequency of
choosing the novel option.

The results of Experiment 3a revealed that strongly directing
participants’ attention to the novel option can affect the way in
which they use the option’s features to guide their choices. We
found no evidence for the expected difference between the high
and low value condition on the 41st trial. Instead, many more
participants chose the novel option in Experiment 3a than in
Experiment 1, independent of its features. It is possible that par-
ticipants interpreted the flickering as indicating that the novel
option was in some sense special or different to the old options
beyond the differing feature values. They could have also inter-
preted the flickering as an additional feature. In either case, this
means the feature-reward function governing the old options
would not apply to the novel option. This would increase the
uncertainty about the novel option’s reward, likely making it an
attractive choice regardless of the value of the two original fea-
tures. Since such effects are outside the scope of our current
theory, in Experiment 3b we considered a subtler approach to
ensuring participants noticed the novel option upon its introduc-
tion. We reasoned that the original way of introducing the novel
option in Experiments 1 and 2 would reduce the chances of
interpreting the visual effects accompanying the appearance of the
novel option as a new feature. However, by reducing the time of
the fade-in to two seconds, equaling the time of the forced holdout

5 We added 54 participants from a pilot; details can be found in the
preregistration document (Stojic et al., 2019b).
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in which participants could not register their choice, the chance of
failing to notice the novel option should also be low.

In Experiment 3b, the proportions of choosing the novel option
indeed decreased in comparison to Experiment 3a: on the 41st
Trial 41.1% of participants chose the novel option in the high value
and 31.9% in the low value condition. Although in the expected
direction, there was only negligible evidence for the expected
difference between the conditions (BF10

* � 0.4). Function learners
(64% of participants) showed a stronger difference (46.2% in the
high value and 29.4% in the low value condition), but there was
only weak evidence for the expected effect (BF10

* � 1.18). Similar
to Experiment 3a, the difference was more substantial after the
41st trial (Figure 9b). These results indicate that bringing the novel
option to attention in a subtler way was not sufficient to generate
the expected effect on the 41st trial. We therefore tested whether
further evaluation of all options was necessary for the expected
effect in our final Experiment 3c.

Experiment 3c examined whether introducing the estimation
task before participants made their choice on the 41st trial would
bring about the expected effect. Here, we found convincing evi-
dence for the expected difference between the conditions. On the
41st trial, 39.3% in the high value condition and 8.3% in the low
value condition chose the novel option, BF10

* � 731. As expected,
function learners (58% of participants) showed a larger difference:

52.5% in the high value and 3.3% in the low value condition chose
the novel option (BF10

* � 1.2 � 104). This pattern was followed by
a further increase in difference in the remaining trials (Figure 9c).6

Discussion

Experiment 3 provided further clarification on why the effects
predicted by our theory did not emerge on the 41st trial in Exper-
iment 1 and 2. Specifically, we put forward and assessed two
possible explanations. The first was that participants failed to
notice the appearance of the novel option before registering their
choice. The second was that the additional reflection and evalua-
tion induced by the estimation task made them attend to the novel
option and realize its value, thereby affecting their choice. We
found support for the second explanation. The estimation task
made participants not only aware of the novel option, but also
required them to explicitly reflect upon the options’ values. This
evidence suggests that our theory is supported when participants
are aware of the novel option and reflect on the options in the
consideration set before making a choice.

6 Because of a technical error, the estimation task data on trial 41 was not
recorded. We do not report the results of the estimation task from the 70th
trial here, because they are less informative.

a

b

c

Figure 9. Proportions of choices allocated to the novel option from Trial 41 onward in Experiment 3a (a),
Experiment 3b (b) and Experiment 3c (c). The left column shows the results for the FMAB condition, whereas
the middle and right columns show results of the FMAB conditions decomposed into function learners and
reward trackers. In all figures, lines are average choice proportions across participants, whereas filled bands are
standard errors of the means. FMAB � feature-based multiarmed bandit tasks. See the online article for the color
version of this figure.
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The manipulations to increase participants attention to the novel
option of Experiment 3a and 3b were not sufficient to produce the
expected effect. Although the more subtle introduction in Exper-
iment 3b produced an effect in the expected direction, no statisti-
cally meaningful differences emerged. The salient flickering visual
effect in Experiment 3a on the other hand led the large majority in
both conditions to choose the novel option, irrespective of whether
the feature values indicated high or low rewards. It seems that the
visual effect not only drew attention to the novel option, but may
have also been interpreted as a new feature or a change to the
feature-reward function altogether, thereby increasing the uncer-
tainty of the option’s reward which overwhelmed the functional
generalization effect. It is possible that visual effects in Experi-
ment 3b, despite being subtler, were still interpreted in that man-
ner, albeit less strongly. Such effects of salience and attention are
currently beyond the scope of our GP-UCB model, which assumes
perfect attention to all options and that a novel option is perceived
as “just another option” governed by the same feature-reward
function. Alternatively, attention per se can bias choice (Krajbich,
Armel, & Rangel, 2010; Shimojo, Simion, Shimojo, & Scheier,
2003) and recent work showed that attending to an option can even
amplify its value (Smith & Krajbich, 2019). Hence, exogenously
drawing attention to the novel option and thereby diminishing
attention for all other options could explain results in Experiment
3a and 3b, without any effect at the function learning level. A
fruitful future direction therefore would be to extend our model to
allow for the addition of new features or to incorporate attention
dynamics.

Although the estimation task is sufficient to draw participants’
attention to the novel option and make them reflect upon its value
in relation to the other options, we do not believe it is necessary to
produce the expected effects. There may well be other ways in
which people will notice and reflect on novel options without
asking them to provide explicit ratings of expected reward and the
associated uncertainty. In experimental tasks such as the feature-
based bandit task used here, participants make relatively rapid and
repeated choices in a simple and highly constrained environment.
In daily life, choice sets may be less clearly defined, and a
particular choice task will be interspersed with many other tasks.
In such situations, people may naturally pay attention to novel
options and take time to reflect on the value of all options in the
consideration set (Knox et al., 2012). Interestingly, the proportion
of function learners was approximately 60% in Experiment 3a–3c,
which is substantially higher than the 40% obtained in Experi-
ments 1 and 2. It is likely that the response delay of two seconds
in Experiment 3 already pushed participants to reflect more on the
task and their approach to it, at least initially. Although further
increasing the response delay could make participants reflect on all
options also on Trial 41, it may also have an adverse effect,
making people disengage with the task during a prolonged forced
holdout period. We leave such fine-tuning of task parameters to
future studies.

General Discussion

As people sample options in their environment, they face a
steady stream of choice dilemmas between novel and tried-and-
tested options. Traditional models of reinforcement learning do not
cope well with such problems, as they lack a mechanism for

identifying promising options in a sea of novel possibilities. None-
theless, people manage to navigate the exploration-exploitation
trade-off in realistic and information-rich settings, identifying and
choosing options that are not only novel but also good. How is this
adaptive feature of human intelligence accomplished?

We have put forward a model that combines functional gener-
alization with uncertainty guidance to describe participants’ re-
sponses in the face of novelty. We believe that our model can
explain parts of this puzzle. The model does not only explain why
participants sometimes seek out and sometimes avoid novel op-
tions—they generalize their functional knowledge—but it also
tells us why they might prefer novel options by default—they are
curious about options that they perceive as more uncertain. We
used simulations of our model to generate qualitative predictions
about people’s behavior in a feature-based multiarmed bandit task,
contrasting it with a competing model which lacks the function
learning component. We tested our predictions in three preregis-
tered experiments. In the first experiment, we found that functional
generalization can lead to both seeking out and shunning away
from novel options if their features indicate either high or low
expected rewards. In the second experiment, we showed that
uncertainty guidance can lead to a small but detectable preference
for novel and exotic options which are dissimilar to known options
compared with ordinary novel options that have feature values
inside the experienced range. In the third experiment, we further
assessed the role of attention and reflection in functional general-
ization. The results showed that functional generalization to novel
options requires participants to pay attention to a novel option and
reflect on values of the options.

We found further support for functional generalization and
uncertainty guidance by analyzing participants’ estimates of ex-
pected rewards and their uncertainty about all the options. In
particular, confidence ratings in Experiment 1 supported an inter-
esting prediction from our theory, that participants will be confi-
dent about their knowledge in consequential, highly rewarding
region of the feature space, whereas they would be less knowl-
edgeable about low-rewarding feature values. Interestingly, partic-
ipants’ estimates in Experiment 2 seemed to correspond more
closely to those of a similarity-based function learning model than
to a rule-based function learning model. When they made predic-
tions for options with features from outside the experienced range,
these predictions seemed to revert back to the prior mean, much
more than what would be expected if extrapolation relied on a
linear function. The resulting underestimation of the reward of the
exotic-novel option can explain why, albeit reliable, the uncer-
tainty guidance effect was small. Additionally, the magnitude of
uncertainty bonuses (as formalized by the � parameter in the UCB
rule) might have been smaller than assumed in the model simula-
tions, which would also reduce the observable effects of uncer-
tainty guidance.

A clear discrepancy between our preregistered hypotheses and
the observed behavior in Experiment 1 and 2 was that some of the
predicted effects did not occur immediately on the 41st trial in
which the novel option was first introduced. Rather, they occurred
a trial later, that is, on the 42nd trial. We investigated this issue
further in Experiment 3, using the FMAB conditions from Exper-
iment 1. We obtained weak evidence for the predicted effect when
we matched the fading-in time of the new option to the two second
period during which participants could not register their choice.
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Visual effects likely interfered with functional generalization, sug-
gesting that future theories of novelty should explicitly take into
account attention dynamics. When the estimation task occurred
simultaneously with the introduction of the novel option, and
before participants could register their choice, we found strong
evidence of the expected effect on the 41st trial. These results
indicate that our predictions hold when participants are both aware
of the novel option and reflect on the options in the consideration
set before making a choice.

How Is Functional Generalization and Uncertainty
Guidance Implemented?

Our theory of experiential decision making in information-rich
environments purports that people rely on functional generaliza-
tion and uncertainty guidance. Functional generalization in differ-
ent environments requires a flexible way to represent and learn
functional relations from limited observations. We believe that
Gaussian process regression is a useful working model for how
people may approach such function learning. GP models can learn
a wide variety of functional forms, by using different kernels (e.g.,
an RBF or linear kernel), and even combining different kernels.
Questions such as whether the brain performs computations that
correspond to those of a GP regression model, and how a kernel for
generalization is chosen and/or learned, are important but beyond
the scope of the current contribution. Of interest in Experiment 1
was whether people use functional generalization at all when
encountering novel options. We designed our experiment to an-
swer this question, not to contrast a GP-based function learning
model to other models of function learning. Similarly, Experiment
2 was concerned with the question whether people are guided by
functional uncertainty when they explore novel options. Whereas
our model implemented such guidance through the UCB rule,
other forms of uncertainty-guided exploration, such as Thompson
sampling, would have made qualitatively similar predictions. Ex-
periment 2 was designed to identify functional uncertainty guid-
ance, not to arbitrate between different implementations of it. Prior
research has shown that a GP-UCB model describes people’s
behavior better than other models in a variety of contextual bandit
tasks (e.g., Schulz et al., 2018; Wu, Schulz, Garvert, et al., 2018).
Having found evidence for both functional generalization and
uncertainty guidance, we leave determining the more precise de-
tails of these processes to future research.

Redefining Novelty

Positioning novelty within our functional generalization and
uncertainty guidance framework may provide new insights into the
very concept of novelty. Rather than a binary distinction between
novel and old options, novelty is a more gradual construct. When
are options perceived as more novel? According to our theory,
novelty is related to functional uncertainty: when people are more
uncertain in generalizing their functional knowledge to new op-
tions they experience them as more novel, as compared with when
they are less uncertain (the distinction between exotic and ordinary
in our paradigm). Because all options were governed by the same
feature-reward function, it could be argued that the novel options
in our experiments were never really truly novel. We believe that
the same can be said about other studies addressing novelty, where

novel options are introduced within the same experimental context
as old options. Novelty, in our view, depends on the extent to
which prior experience is expected to have a bearing on newly
introduced options. The set-up in our experiments is akin to a new
beer appearing alongside familiar ones on the shelve of your
supermarket; a new instance of a familiar category.

How would we react to an instance of a new category appearing,
or how would we interpret a completely new feature? From a
functional generalization perspective, we are likely to find the
most similar categories, features, or experiences, and transfer as
much knowledge as we can from them (Lucas, Sterling, & Kemp,
2012). We have not addressed how knowledge of a function in one
domain may be generalized to form expectations and inform
learning new functions in different domains. The question of how
learning can be transferred across tasks is currently at the frontier
of machine learning research (e.g., Santoro, Bartunov, Botvinick,
Wierstra, & Lillicrap, 2016; Wang et al., 2016) and constitutes an
exciting extension of our framework. Developments in this direc-
tion could also be useful for explaining the results of Experiment
3a. When the novel option was introduced with a salient flickering
visual effect, the large majority of participants chose it, regardless
of its feature values. If people consider novel options to have
additional novel features, the old feature-reward function would
not hold for the novel option, making transfer of learning a
relevant mechanism of how knowledge is transferred to options
which only partly share features with other options.

Individual Differences and Strategy Selection

Based on past results using the FMAB paradigm (Stojic, 2016),
we expected to find that some participants would not learn the
feature-reward function. Indeed, roughly 60% of participants in
Experiment 1 and 2, and 40% in Experiment 3 were classified as
reward trackers by our functional knowledge task. Not every
participant classified as reward tracker might have lacked func-
tional knowledge completely. Because of the coarseness of our
preregistered classification procedure, function learners with some
but relatively poor functional knowledge were likely misclassified
as reward trackers. Although imperfect, we believe that our clas-
sification procedure allowed us to detect qualitatively different
strategies. As predicted, the behavior of the function-learning
subgroup corresponded more to the GP-UCB model simulations
than the behavior of participants in the FMAB conditions taken as
a whole. Moreover, behavior of the reward-tracking subgroup
matched the behavior of our control MAB conditions, further
supporting our conclusion that different strategies, and not just
degrees of functional knowledge, explain our results.

This result leaves us with an important open question: Why and
how do people opt for either a function-learning or a reward-
tracking strategy? One possibility is that such strategy selection
reflects stable individual differences, for example, in participants’
working memory or IQ. Examining this explanation seriously
would require longitudinal studies that additionally examine the
relevant traits. However, a similar explanation of people’s strategy
selection has been insufficient in other domains (Bröder, 2012).
Another possibility is that people engage in a cost-benefit arbitra-
tion between different strategies, trading off the cognitive costs of
applying strategies with their expected benefits. This explanation
has been more successful in other domains (Kool, Gershman, &
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Cushman, 2017; Payne et al., 1993). If the initial choice set is
small and stable, functional generalization may not be worth the
cognitive effort. Ignoring the feature values while trying options
may even reduce loss if prior beliefs about the reward function are
incorrect (Stojic, 2016). However, if the choice set is large, as in
cultural goods markets populated with an immense number of
movies or books (Analytis, Stojic, & Moussaïd, 2015; Salganik,
Dodds, & Watts, 2006), a function-learning strategy would work
much better. In fact, in such environments people would likely
expect novel options to constantly appear and correspondingly
expect a need to generalize. How would people resolve this trade-
off? They might learn which strategy has the best cost-benefit
trade-off (Lieder & Griffiths, 2017; Rieskamp & Otto, 2006;
Stojic, Olsson, & Speekenbrink, 2016) or arbitrate between strat-
egies based on the relative uncertainty with which these strategies
predict rewards (Daw, Niv, & Dayan, 2005). Regardless of the
exact mechanism, identifying why and when some people employ
a function-learning strategy while others a reward-tracking strat-
egy is a valuable line of future research.

While we have focused on a qualitative distinction between
function learners and reward trackers, it is likely that function
learners themselves differed in their ability to learn the reward
function. Such differences can be captured within our GP-UCB
model. Differences in perceptual and memory noise (i.e., perceiv-
ing differences between visually presented feature values and
recalling experienced rewards) can be modeled as differences in
the noise variance ��

2, whereas differences in prior assumptions can
be reflected by the choice of kernel (e.g., whether a linear or RBF
kernel, as well as parameters of particular kernels, such as the
length scale � of the RBF kernel), or by adapting the initial mean
function (e.g., a positive linear initial mean function). Identifying
such individual differences may provide more insight into why not
everyone who employs a function learning strategy has the same
level of functional knowledge. Although our theoretical frame-
work is sufficiently rich to characterize individual differences, we
designed our experiments to be mainly sensitive to differences
between function learners and reward trackers, not between more
subtle differences within the group of function learners. Assessing
people’s prior beliefs about feature-reward functions, and differ-
ences in their learning, will require studies tailored to these goals.

Task Horizon Effects

People’s exploration is affected by the task horizon: people
normally decrease the amount of exploration with the number of
choices left. This is predicted by rational models (Wilson et al.,
2014). Currently, the GP-UCB model does not incorporate such a
dynamic exploration policy. It is straightforward to include it in a
heuristic manner, by decreasing the exploration parameter (�) over
time. Future studies could explore this modification. Another way,
closer to an optimal solution, would be to combine our model with
recently developed approximate approaches to Bayesian planning
under model uncertainty (Gonzalez, Osborne, & Lawrence, 2016;
Guez, Silver, & Dayan, 2013). Planning optimally in nontrivial
tasks is notoriously difficult and approximations are generally
necessary. Stochastic planning by Monte Carlo tree search
(Browne et al., 2012; Guez et al., 2013) has firmer normative
grounds than simply decreasing an exploration parameter over
time. Notably, Krusche, Schulz, Guez, and Speekenbrink (2018)

and Opheusden, Galbiati, Bnaya, Li, and Ma (2017) found empir-
ical evidence for such strategies in challenging decision making
tasks.

Function Learning in the Wild

Our work goes beyond traditional function learning paradigms,
and introduces a new—yet commonly encountered—setting for
function learning, where people need to balance acquiring new
information with choosing rewarding options. In traditional func-
tion learning paradigms, people are passive information gatherers,
learning from stimuli selected by the experimenters. As such, it is
unclear how well extant findings generalize to real-life settings
where people choose the stimuli (options) to learn about, while
simultaneously being concerned with how those stimuli serve
other goals (i.e., obtaining rewards). Research on active forms of
information gathering has mostly focused on purely exploratory
settings where the goal is solely to maximize information (Bram-
ley, Lagnado, & Speekenbrink, 2015; Nelson, 2005; Nelson, McK-
enzie, Cottrell, & Sejnowski, 2010), or where information acqui-
sition and utility maximization are cast as competing goals
(Markant & Gureckis, 2012; Meder & Nelson, 2012). In our
reinforcement learning paradigm, function learning supports utility
maximization, and exploration and maximization are not compet-
ing, but rather compatible goals (see Rich & Gureckis, 2018;
Zhang & Angela, 2013, for similar arguments). Our results indi-
cate that in such a setting, people are motivated by both short-term
utility gains and the long-term consequences of information gains,
instead of focusing exclusively on one or the other. As a result,
people gain more experience in consequential regions where fea-
ture values are likely to be rewarding. Accordingly, people are
confident about their functional knowledge in that region of the
feature space, whereas they remain less knowledgeable about
low-rewarding feature values. Our results suggest that functional
knowledge in the wild is likely to be skewed in systematic ways by
choices and goals, potentially resulting in phenomena such as
polarization of beliefs (Bénabou & Tirole, 2016) or illusory cor-
relations (Denrell & Le Mens, 2011; Hogarth, Lejarraga, & Soyer,
2015).

Understanding Consumer Behavior

Many consumer choice settings match well with the problem
we have studied—the choice set is commonly large, products
have multiple features, and consumers make purchases repeat-
edly. As of the late 1980s, marketing scholars have developed
formal learning models to capture consumer behavior in such
settings (Roberts & Urban, 1988). Typically, people are as-
sumed to have initial expectations about the quality of products
that they update on the basis of word of mouth or their direct
experiences with the product (e.g., Ching et al., 2013). Learning
models in marketing can capture effects, such as brand loyalty,
that are hard to accommodate for their nonlearning counterparts
(e.g., Guadagni & Little, 1983). However, they tend to assume
either too much or too little of human cognition. For instance,
they lack a clear mechanism for integrating cues (Lin, Zhang, &
Hauser, 2014) or they purport that people plan deep in the
future (Erdem & Keane, 1996), an assumption that has received
little empirical support in behavioral studies (e.g., Gabaix,
Laibson, Moloche, & Weinberg, 2006).
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Going beyond learning models in marketing, the GP-UCB
model provides a psychologically founded account of how people
integrate different features and use functional generalization and
uncertainty to guide their decisions in consumer choice settings.
Further, the model can be adequately specified against real world
data. A recent study by Schulz, Bhui, et al. (2019) provides
evidence that the model can capture consumer behavior when
people choose repeatedly among different options in the wild. The
authors analyzed a large real world data set of customers’ online
food delivery orders and showed that the GP-UCB model de-
scribes well how people allocate choices among numerous restau-
rants.

The GP-UCB model and the results from our experiments can
be used to predict when a consumer will explore a new product
(Hirschman, 1980; Riefer, Prior, Blair, Pavey, & Love, 2017).
Uncertainty may be a crucial factor to tempt customers to try a
novel product. Companies could aim at building products that
strike a good balance between evoking evaluations of high quality
and enticing consumers because of their original design. What is
more, our modeling account can capture other key empirical phe-
nomena in consumer choice such as variety seeking and brand
loyalty (Kahn, 1995). In fact, these two phenomena may be ac-
counted for by a single learning process—that is, how people use
features to form expectations and uncertainty to balance the
exploration-exploitation trade-off. This is a simpler and more
elegant explanation than extant formal approaches that often as-
sume that people directly derive utility from seeking a variety of
options (McAlister & Pessemier, 1982; Ratner, Kahn, & Kahne-
man, 1999).

Finally, our results in Experiment 3 suggest that attention likely
plays an important role over and above functional generalization
and uncertainty guidance. Experiment 3a, in particular, suggests
that increasing the salience of an option directly increases the
probability of testing it, regardless of its expected quality. Thus, it
may have captured the effect of aggressive advertising of novel
options that people experience in every day life. Our GP-UCB
model currently assumes perfect attention and cannot explain such
attentional effects. Incorporating attention dynamics in the model
would likely lead to substantial increase in explanatory power of
the model. This theoretical development can be guided by the
recent work focusing on interplay between attention and reinforce-
ment learning (Leong, Radulescu, Daniel, DeWoskin, & Niv,
2017; Niv et al., 2015; Radulescu, Niv, & Ballard, 2019; Stojic,
Orquin, Dayan, Dolan, & Speekenbrink, 2020).

Concluding Remarks

In summary, we believe that our theory offers a powerful and
expressive account of human behavior in the face of novelty. The
core claim of our theory is that people use functional generaliza-
tion and are guided by uncertainty when confronted with novel
options. Our results do not make specific claims about the precise
implementation of these mechanisms (i.e., an RBF kernel com-
bined with UCB sampling). Instead, they strongly suggest that an
account of people’s behavior requires both a model of functional
generalization and an exploration strategy that attempts to reduce
uncertainty about those generalizations. Beyond novelty, integra-
tion of function learning and decision making allows revisiting
familiar problems from a new perspective and opens up new

avenues of research. Studying how people use generalization and
uncertainty to guide their choices in complex decision-making
tasks will continue to revise our picture of human intelligence. For
this, we need to keep exploring.

Context of the Research

This work evolved within a broader research program that aims
to understand how people use generalization to efficiently explore
their environments in the search for rewards (Schulz et al., 2018;
Stojic et al., 2015; Wu, Schulz, Speekenbrink, et al., 2018). In our
earlier work, we have shown that participants can apply function
learning to guide their search in contextual bandits (Schulz et al.,
2018; Stojic et al., 2015), in bandits with spatial correlations
between rewards (Wu, Schulz, Speekenbrink, et al., 2018), and in
bandits with no explicit relation between features and rewards
(Schulz, Franklin, & Gershman, 2018; Stojic, 2016). We thought
that the same approach can be used to improve our understanding
of novelty. In contrast to our previous research, rather than relying
on model fitting, in this study we aimed to design our experiments
to allow for a direct test of key theoretical predictions. This was a
first experiment with preregistrations for all of us. We found the
process very valuable, even if we originally did not consider all
possibilities such as the delayed notice of the novel option. Pre-
registering our hypotheses forced us to think through the modeling,
predictions, and experimental design in greater detail. We also
found presenting our to-be-preregistered ideas at conferences re-
warding, allowing us to obtain advice for improving the study,
even before data collection commenced. In future work, we aim to
extend our model to assess the neural correlates of generalization
and uncertainty-guided exploration, test how people track their
uncertainty in other domains that require functional knowledge (cf.
Stojic, Eldar, Bassam, Dayan, & Dolan, 2018), as well as extend
our model further to real world decision making such as consumer
behavior.
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Appendix A

Functional Knowledge Task

Participants in the FMAB conditions completed an additional
functional knowledge task (Figure 3). Here we provide details on
constructing the stimuli for that task.

We designed the choice triplets such that there was always a
best, a medium, and a worst option. With perfect knowledge of the

function, participants should be able to identify the options as
such. There were three types of items – five easy, 10 difficult, and
10 special weight comparison items with choice triplets designed
to detect whether people have learned which feature has a greater
impact on rewards. Denoting the best, medium and worst option as
x, y, and z, the feature values were generated as follows:

• In the easy triplets, the best option had lower (better) feature
values on both dimensions than the medium option, and the
medium option had lower (better) feature values on both
dimensions than the worst option. To construct these triplets,
we first randomly drew the feature values for the best option.
After this, the intervals for sampling the feature values of the
medium option were generated. We constructed the feature
values of the worst option in analogous way.

1. x1 � U�0.2, 0.6�, x2 � U�0.2, 0.6�

2. y1 � U�x1 � 0.05, 0.7�, y2 � U�x2 � 0.05, 0.7�

3. z1 � U�y1 � 0.05, 0.8�, z2 � U�y2 � 0.05, 0.8�

• We constructed the difficult triplets in a similar manner, but
the intervals for sampling the features of the medium and
worst option were closer to the features of the best option,
making the medium and worst option more similar to the best
option than in the easy type.

(Appendices continue)
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Figure A1. Results of simulating participants with different levels of
functional knowledge (expressed here through their mean choice rank) and
assessing the sensitivity of our preregistered procedure for classifying
participants as function learners (denoted as P[function learner]). Results
show that our classification procedure is reasonably likely to correctly
classify participants with moderate and better knowledge, whereas those
with poorer knowledge are likely to be misclassified as reward trackers.
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1. x1 � U�0.2, 0.6�

2. y1 � U�x1 � 0.05, 0.7�, y2 � U�0.2, 0.6�

3. x2 � U�y2 � 0.05, min�0.7, y2 �
w1

w2
�y1 � x1���

4. z1 � U�max�x1, y1� � 0.05, 0.8�

5. z2 � U�max�x2, y2� � 0.05, 0.8�

• The weight comparison items consisted of a best option with
a small value of the feature with the largest weight and a large
value of the other feature. The medium option had exactly the
opposite pattern, thereby creating a diagnostic pair for detect-
ing whether people have learned which feature is more pre-
dictive. The worst option had two large feature values.

1. x1 � U�0.25, 0.35�, x2 � U�0.7, 0.8�

2. y1 � U�0.7, 0.8�, y2 � U�0.25, 0.35�

3. z1 � U�0.7, 0.8�, z2 � U�0.7, 0.8�

To achieve good performance in this task, participants had to
use their functional knowledge acquired in the bandit task. Our
preregistered classification procedure uses participants’ mean per-
formance in the task to classify participants who achieved better-
than-chance performance as function learners, and participants
who performed at chance-level or worse as reward trackers. Our
classification procedure was to classify participants as function
learners if the Bayes factor comparing a model in which the true
mean rank is better (lower) than chance performance (mean rank
2) with a model in which this equals chance performance provided
substantial evidence (BF � 10) for the first model.

We performed simulations to examine the sensitivity of our
classification procedure. We simulated function learners starting
from perfect knowledge, performing optimally in the functional
knowledge task, to progressively worse performing function learn-
ers until random performance, the performance level of reward
trackers. More precisely, for all simulated participants, we drew
predicted reward values for each option from a Normal distribution
centered on the actual expected reward of each option (as derived
from the feature-reward function). To vary the level of functional
knowledge, we varied the standard deviation (from 0 to 220 in
steps of 1) of these distributions. Increasing the level of noise
(standard deviation) from which predictions were drawn results in
progressively worse performance. We simulated 100 participants
for each knowledge level, applying our classification procedure to
the choices of each simulated participant. Figure A1 shows the
proportion of simulated participants for which the Bayes factor
was greater than 10 (our classification criterion), indicating the
probability of classifying a participant as function learner (denoted
as P[function learner]) as a function of their score in the functional
knowledge test. These simulation results show that our classifica-
tion procedure is reasonably likely to correctly classify participants

with moderate or better functional knowledge as function learners,
whereas those with poorer knowledge are likely to be misclassified
as reward trackers. Note also that if reward trackers are choosing
randomly, the chance of falsely classifying them as function learn-
ers was very low (0.65% for 10,000 simulated random choices), as
with random choices it is unlikely to reach a good enough mean
rank to be classified as a function learner.

Data Analysis

We followed the recommendations of Wagenmakers, Wetzels,
Borsboom, Maas, and Kievit (2012) with regard to data collection
and analysis, and relied on Bayesian statistics throughout.

Recorded variables. For the sake of full transparency, we
recorded the following variables in our experiments: (a) partici-
pants’ choices and response times in the bandit task and functional
knowledge task; (b) estimates, confidence ratings and response
times in the estimation task; (c) age, gender, and whether they had
noticed the appearance of the novel option in a questionnaire at the
end of the experiment (Experiment 3b and 3c included additional
exploratory questions probing participants’ knowledge of the re-
ward function).

Sampling plan. We planned to collect a minimum of 60 partic-
ipants in each of the four between-subject condition. Thereafter, we
evaluated the Bayes factor of the tests of our main hypotheses con-
cerning the proportion of choices allocated to the novel option on 41st
trial. We proceeded with data collection iteratively, collecting batches
of 5 additional participants in each FMAB condition, stopping as soon
as we reached strong evidence (and continuing data collection other-
wise). We defined strong evidence as a Bayes factor of 10 or larger in
favor of either the null or alternative hypothesis (Jeffreys, 1961). We
derived the minimum by performing the main hypothesis tests on
simulated data with predicted differences. Given our main hypothesis,
we increased the number of participants only in the FMAB condi-
tions. We also planned to stop the experiments in case we run out of
funds, which corresponded to a maximum of approximately 750
participants.

Statistical tests. We use Bayes factors to quantify the relative
evidence the data provides in favor of the null (H0) or the alter-
native hypothesis (H1). The Bayes factor quantifies the probability
of the data under H0 relative to the probability of the data under H1

(e.g., Kass & Raftery, 1995). We denote such a Bayes factor as
BF01. For example, a BF01 of 10 indicates that the data are 10
times more likely under the H0 than under the H1. When compar-
ing the H0 hypothesis relative to the H1, we express the evidence
as BF10. We conducted all tests by using the BayesFactor package
implemented in R (Morey & Rouder, 2015; R Core Team, 2016).

For hypotheses concerning participants’ choices in a single trial,
the dependent variable was the proportion of participants in a
condition who choose the novel option, whereas the independent
variable was the experimental condition. We used a version of the
contingency table Bayes factor test of Jamil et al. (2017), with an
independent multinomial sampling assumption and a default weak
Dirichlet prior (a � 1 Morey & Rouder, 2015).

(Appendices continue)
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We used a Bayesian binomial model to estimate probability that
participants in a condition would choose a novel option over the
course of multiple trials—from trial 41 to 70 in the FMAB con-
ditions in Experiment 1 and from trial 41 to 55 in Experiment 2. It
is a hierarchical model that treats participants as members of a
group, taking into account the group’s probability distribution
when estimating individual probabilities (e.g., Kruschke, 2014).
This leads to more realistic posterior distribution of the group-wise
probabilities we are interested in. We used a non-centered probit
parameterization which facilitates Markov chain Monte Carlo
(MCMC) sampling when there are small number of observations
per participant (Betancourt & Girolami, 2015). We defined the
priors of group-level means and standard deviations based on our
model simulation results. In Experiment 1 for the FMAB condi-
tions (and function learner subgroups), we assigned priors based
on simulations for trials 41 to 70, � 
 N(�2.19, 1) (corresponding
to a mean probability of p � 0.01) for the low value and � 

N(2.21, 1) (p � 0.99) for the high value condition. For the MAB
conditions, the same priors were � 
 N(�1.83, 1) (p � 0.03) for
the low value and � 
 N(2.75, 1) (p � 0.99) for the high value
condition. In Experiment 2, for the FMAB conditions (and func-
tion learner subgroups) priors were based on our simulation results
for trials 41 to 46 where models showed a difference, � 

N(�0.38, 1) (p � 0.35) for the exotic-novel and � 
 N(�0.61,1)
(p � 0.27) for the ordinary-novel condition. For the MAB condi-
tions the priors were � 
 N(0.20, 1) (p � 0.58) for the exotic-
novel and � 
 N(0.12, 1) (p � 0.55) for the ordinary-novel
condition. We used the same half-cauchy prior for the group-level
standard deviations in all conditions, � 
 C (0,1). We estimated
the model with the NUTS-MCMC algorithm implemented in Stan
(Stan Development Team, 2018). We initialized four chains with
randomly generated starting values and collected 60000 samples
for each chain, after discarding the first 40,000 samples as burn-in.

We confirmed that all chains had successfully converged by visu-
ally inspecting them and examining the R̂ statistic. We also con-
firmed that we correctly implemented the model with parameter
recovery studies on simulated data.

For hypotheses related to the estimation task, we used the
Bayesian t-test for independent samples proposed by Morey and
Rouder (2011); Rouder et al. (2009), with the Jeffreys-Zellner-
Siow prior and scale set to 	2⁄ 2. We truncated the prior above or
below 0 for directional hypotheses (our default H1 hypotheses),
and used a symmetric prior for non-directional hypotheses (explic-
itly indicated when used). We used the same default one-sided
t-test to classify participants as “function learners” or “reward
trackers” based on their performance in the functional knowledge
task. We compared the mean rank of participants’ choices (rank 1
being the best and 3 being the worst) across all 25 choices in the
task with the mean rank of a person choosing fully at random,
which would equal a rank of 2. The null hypothesis was that there
was no difference, whereas the alternative hypothesis was that
the mean rank was lower than 2. If there was strong evidence
(BF10 � 10) that a participant’s mean rank was below 2, we
classified the participant as a function learner, and as a reward
tracker otherwise.

Further sanity-check hypotheses involved testing the rela-
tionship between the number of times an option was chosen and
the accuracy of participants’ estimates and their confidence.
Here, we used linear regression and computed the Bayes factor
for the model with a single predictor (the number of times the
option had been chosen) against an intercept-only model, again
with a Jeffreys-Zellner-Siow prior and scale set to 	2⁄ 2 (Liang,
Paulo, Molina, Clyde, & Berger, 2008; Rouder & Morey, 2012).
We used the same approach to test hypotheses about a depen-
dence between choice performance and the number of failed
attention checks.

Appendix B

Attention Check Analysis

Participants had to complete a simple attention check after
reading instructions and before they could proceed to the bandit
task. They had to correctly answer all four questions in the atten-
tion check to proceed, otherwise they were returned to the begin-
ning of instructions. Here we examined if participants that needed
more attempts to pass the attention check performed worse in the
bandit task. There was moderate evidence that failing the attention
questions is correlated with performance in the FMAB conditions
in Experiments 1 and 2. We assessed this by regressing the number
of failed attention checks onto the sum of earned points until trial
40 (BF10 � 3.10, with an intercept-only model as H0). We found no
evidence of such an effect in the MAB conditions (BF10 � 0.27).

Analysis of the Postexperiment Questionnaire

In the questionnaire at the end of the experiment we asked “Did
you notice that a new option appeared in the 41st trial, just before
the estimation task interrupted the game?” For Experiment 1 and 2,
we explored the difference in choosing the novel option on trial 41
between those participants who indicated they had noticed the
novel option on that trial (29% in Experiment 1 and 27% in
Experiment 2) and those who indicated they had not noticed it. In
Experiment 1 there was no evidence for a difference between these
groups (BF10 � 0.12), whereas there was strong evidence for a
difference in Experiment 2 (BF10 � 1.8 � 104).

(Appendices continue)
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Because our hypotheses about choosing the novel option 41st
trial in Experiment 1 and 2 potentially failed because participants
failed to notice the novel option, we also examined the choices
only of participants who indicated at the end of the experiment that
they had noticed the novel option on 41st trial. Focusing only on
these participants, in Experiment 1 we found no evidence for a
difference in choice proportions on 41st trial between the FMAB

high value condition and FMAB low value condition (BF10 �
0.28). Similarly, in Experiment 2 we found no evidence for a
difference in choice proportions on 41st trial between the FMAB
exotic-novel and FMAB ordinary-novel condition (BF10 � 0.22).

Because we did not preregister any predictions for this measure
and because it was likely hard to precisely remember when one
noticed the novel option, we did not analyze this response further.

(Appendices continue)

Figure B1. Histograms and densities of performance in functional knowledge task in Experiment 1 and
Experiment 2. We classify each participant as a function learner if the mean rank of chosen options is
significantly below random performance level of 2 (dashed vertical line), and as a reward tracker otherwise.
Overall, performances of participants do not cluster around random performance, instead they span the whole
range and the densities of the two groups show a good level of separation, suggesting that classification is
meaningful. FMAB � feature-based multiarmed bandit tasks. See the online article for the color version of this
figure.
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Functional Knowledge Task Performance and
Choosing the Novel Option

In the main text, we used a binary classification of function
learners and reward trackers and analyzed the behavior of these
two groups separately where needed. An alternative analysis is to
correlate performance on the functional knowledge task with out-
comes such as choosing the novel option. We chose not to focus on
this alternative analysis for various reasons. For example, we
aimed to describe qualitative differences between people employ-
ing a function learning and people employing a reward tracking
strategy and preregistered tests to compare the behavior of these
groups. The functional knowledge task was designed with this goal
in mind and not to reliably detect small differences in participants’
functional knowledge.

Nevertheless, we conducted an analysis to assess the impact
of functional knowledge in a more fine-grained manner. In this
analysis, we focused only on participants in the FMAB condi-
tions, and we estimated a Bayesian logistic model (Bürkner,
2017), where we regressed mean choice rank from the func-
tional knowledge task onto a binary variable denoting whether
participants chose the novel option in trial 42. We used fairly
uninformative Normal priors on both the intercept and slope
(N[0, 10]) and estimated the model separately for each FMAB
condition in Experiment 1 and 2. We examined the results of
both models after checking that there were no convergence
issues in the MCMC chains (four chains in total, 10,000 burn-in
samples, 20,000 samples per chain).

For Experiment 1, in the FMAB high-value condition, there clearly
was an effect of functional knowledge on choosing the novel option.
The slope of the mean rank was negative, indicating a larger prefer-
ence for the novel option with more knowledge (lower rank), with a
posterior mean of �1.89 and 95% HPDI [�3.10, �0.77]. In the

FMAB low-value condition, the slope was not clearly different from
0, with a posterior mean of �0.96 and 95% HPDI [�2.93, 0.88]. The
results for Experiment 2 were similar. In the exotic-novel condition,
preference for the novel option was clearly stronger for participants
with more functional knowledge. The posterior mean of the slope of
mean choice rank was �1.41 and 95% HPDI [�2.34, �0.53]. In the
ordinary-novel condition, the slope was not clearly different from 0,
with a posterior mean of �0.67 and 95% HPDI [�1.94, 0.51].

These results were mostly consistent with our a priori model
simulations. In the low value condition, we cannot reliably predict
an effect of functional knowledge on avoiding the novel option, as
even coarse functional knowledge would allow identifying the
novel option as a poor choice. In the high value condition, deter-
mining that the novel option is better than the best old option
requires much more precise functional knowledge. Predictions of
the effect of functional knowledge on choosing the novel option in
Experiment 2 are less clear. People with perfect functional knowl-
edge would be able to designate the novel option as worse than the
best old option. For obvious reasons, the uncertainty guidance
effect can be predicted only for people who are at least somewhat
uncertain about the feature-reward function. To what extent small
differences in functional knowledge are related to small differ-
ences in people’s ability to assess a reasonable level of uncertainty
in generalization of that functional knowledge is also not imme-
diately obvious. For that reason, we report these analyses for the
interested readers here, but place more emphasis on our preregis-
tered binary classification, as predictions are more straightforward
when comparing function learners to reward trackers which are
assumed to have no functional knowledge at all.
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