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Abstract

People appear to excel at generalization: They require little experience to generalize their knowledge to new situations.
But can we confidently make such a conclusion? To make progress toward a better understanding, we characterize
human generalization by introducing three proposed cognitive mechanisms allowing people to generalize: applying
simple rules, judging new objects by considering their similarity to previously encountered objects, and applying
abstract rules. We highlight the systematicity with which people use these three mechanisms by, perhaps surprisingly,
focusing on failures of generalization. These failures show that people prefer simple ways to generalize, even when
simple is not ideal. Together, these results can be subsumed under two proposed stages: First, people infer what aspects
of an environment are task relevant, and second, while repeatedly carrying out the task, the mental representations
required to solve the task change. In this article, we compare humans to contemporary Al systems. This comparison
shows that Al systems use the same generalization mechanisms as humans. However, they differ from humans in the
way they abstract patterns from observations and apply these patterns to previously unknown objects—often resulting

in generalization performance that is superior to, but sometimes inferior to, that of humans.
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We never observe the same object in the same circum-
stances again, yet we easily recognize a known object
in a new scene. Although relatively simple for humans,
deep convolutional neural networks for object recognition
struggle to do so, for example, when human-imperceptible
noise is added to an image (Geirhos et al., 2018). Given
the relative ease with which humans solve such tasks,
Shepard (1987) famously argued that the first law of
psychology should be the law of generalization. Here,
we define generalization broadly as the use of previ-
ously acquired knowledge when responding to previ-
ously unobserved objects (see also Taylor et al., 2021).
The psychological literature on generalization can be
well characterized by separately analyzing (a) general-
ization within a known feature space (also called “in-
domain generalization”) and (b) out-of-category
generalization (also called “out-of-domain generaliza-
tion”). Although most branches of cognitive psychology
have been interested in in-domain generalization, the
fields of language, memory, and category learning have
additionally focused on out-of-domain generalization.
This distinction not only defines the scope of general-
ization but also allows us to highlight key differences

between humans and contemporary Al systems in their
abilities to generalize.

Generalization Within a Known
Feature Space

In the area of absolute identification, which studies
how people learn to identify objects and discriminate
one object from other objects, Shepard (1987) showed
that the probability of perceiving two stimuli as the
same increases monotonically with the psychological
similarity between the two stimuli. The same monotonic
relationship may not hold without a transformation of
the features describing the object from physical space
to psychological space. For example, the mental rep-
resentation of pitch is well described by a helical struc-
ture that integrates a linear dimension of pitch height
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with a circular dimension of pitch chroma, which
explains the increased generalization between tones
separated by an octave (see also Shepard, 1987).
Although identifying individual stimuli can be considered
a categorization task, the field of category learning has
traditionally focused on much broader categories.
Numerous studies have demonstrated that people can
learn to categorize individual training stimuli into their
respective categories based on their object properties.
Importantly, stimuli not observed during training are cat-
egorized during a transfer test, with accuracy well above
chance (e.g., Johansen & Palmeri, 2002; Nosofsky, 1986).

The results are again similar when the discrete case
of learning categories is extended to learning functions
that relate values from continuous feature dimensions
(e.g., dosage of a poison) to continuous outcomes (e.g.,
symptom severity). It has been shown that people gen-
eralize to unobserved stimuli with high accuracy in the
intrapolation range (i.e., values between observed val-
ues) and with performance well above chance in the
extrapolation range (i.e., values outside the observed
range; e.g., DeLosh et al., 1997). People behave simi-
larly in reinforcement learning tasks, in which they are
instructed to collect as many rewards as possible from
a limited number of choices. For example, Jagadish
et al. (2023) showed that participants learned to relate
response keys to rewards according to linear and peri-
odic functions. They furthermore showed that people
could generalize to the composition of these two func-
tions (i.e., adding a periodic function to a linear func-
tion) with remarkable accuracy on the first trial, with
practice only on the individual functions but no prac-
tice on the composite function.

Theoretically, two mechanisms have been proposed
for how people generalize in these tasks. First, people
use simple rules to partition a feature space (e.g., Ashby
& Townsend, 1986). Such rules can often be repre-
sented by a simple or conjunctive conditional. For
example, a person may consider a new face to belong
to Family A if the nose is small or if the nose is small
and the hair color is red (Johansen & Palmeri, 2002).
Second, people compare the new face to all previously
encountered faces and use the overall similarity to pre-
viously encountered faces to categorize the new face.
Research has shown that people likely use both mecha-
nisms but tend to start generalizing using a simple rule
and then slowly shift to using similarity to stored exam-
ples as more of the same examples are presented
(Johansen & Palmeri, 2002; Nosofsky et al., 1994).
Although similarity in these examples focused on the
similarity of features of a single object, similarity can
be defined more broadly to include similarity in asso-
ciations between objects. For example, it has been
argued that similarity-based generalization occurs in

certain associative memory tasks even before people
are given a generalization test. Shohamy and Wagner
(2008) showed that when two faces (F1 and F2) share
one but not all associations with a set of stimuli (S1
and S2; i.e., F1-S1, F1-S2, and F2-S1 are associated) and
are therefore similar, the nonoverlapping association
(F2-S2) is still associated in memory. In addition to
these two mechanisms, studies have shown that the
precision of representations within a feature space
becomes more accurate with practice (Goldstone &
Steyvers, 2001; Thalmann et al., 2024). More accurate
representations help with generalization, especially for
objects close to a category boundary.

Neither of these mechanisms can be said to be
unique to humans. Although neural network models
have a bias toward classifying novel objects on the basis
of their similarity to previously observed examples, they
also use rule-based mechanisms for categorization
(Dasgupta et al., 2022). Moreover, modern artificial neu-
ral network models achieve superhuman performance
in each of the four introduced tasks (e.g., in visual
object recognition; van Dyck et al., 2021). Although
these observations show that Al systems outperform
humans in each modality (e.g., visual, verbal), there are
two differences between human and machine general-
ization. First, humans perform reasonably well on all
tasks involving stimuli from multiple modalities (e.g.,
object recognition, language understanding), but most
Al systems are modality-specific; for example, systems
that are good at object recognition often cannot easily
process language. Second, humans and neural networks
likely have different internal representations. For exam-
ple, although humans learn an object’s representation
by observing it from different angles and interacting
with it in various task contexts, an Al system may excel
at object recognition for entirely different reasons. For
instance, a neural network might “recognize” cows sim-
ply because they are consistently presented against a
green background (Ilyas et al., 2019). In this sense, it
has been argued that modern AI systems excel at
extracting statistical regularities from data but lack the
ability to form internal models of the world (Vafa et al.,
2024; but for a different perspective, see Gurnee and
Tegmark, 2024). Another way to look at this debate is
that AI systems learn an internal model to perform well
at the task they are trained on. However, this model
does not necessarily match the human model, for exam-
ple, because humans interact with the same object in
several different tasks and contexts.

Out-of-Category Generalization

In the domain of language, it has been suggested that
abstract knowledge (e.g., structuring a sentence in
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terms of noun units and verb units) facilitates both
language comprehension and production. Supporting
this claim, G. F. Marcus et al. (1999) demonstrated that
infants as young as 7 months old can recognize abstract
sequential patterns (i.e., an ABA sequence in which A
and B represent syllable placeholders) in a transfer
sequence composed of previously unobserved sylla-
bles. Abstract sequential patterns also play a crucial
role in memory. Wu et al. (2023) showed that humans
extract abstract knowledge from patterned sequences,
which enhances their short-term memory performance
for sequences following the same pattern but consisting
of novel items. Similarly, in the field of category learn-
ing, Goldwater et al. (2018) found that people can learn
to infer categories based on the relationships between
stimuli. For instance, participants learned that three bars
of different lengths formed distinct categories when
aligned monotonically in increasing length compared
with when they were aligned nonmonotonically.
Crucially, the participants also generalized this rule
when categorizing a new set of previously unobserved
objects (i.e., the luminance of circles). The results from
these three areas, together with anecdotal evidence,
such as mathematicians deriving general laws by refer-
ring to variables rather than individual data points,
show that people can abstract patterns from a set of
concrete observations and apply them to previously
unobserved objects. Although traditional neural net-
works were unable to apply abstracted knowledge to
feature domains that were not varied during training
(G. Marcus, 2020), newer approaches mimic human-like
generalization and sometimes generalize better than
humans in such cases (Lake & Baroni, 2023).

Although the former cases referred to the abstraction
of feature domains within one modality (e.g., visual),
multimodal large language models can process informa-
tion from multiple modalities. For example, they can
answer textual questions about images. Therefore, they
have the potential to surpass human performance in
multiple modalities and to generalize abstract patterns
across modalities, as humans do. Schulze Buschoff
et al. (2025) set out to test the latest multimodal models
on three tasks that require the use of an abstract rule
to be successful: logical reasoning, intuitive physics, and
intuitive psychology. However, the models performed
significantly worse than humans on all three tasks.

In summary, humans use simple rules, similarity to
previously encountered objects, and abstract rules to
generalize. Modern Al systems use the same mecha-
nisms, perform better at a given task within a particular
modality, but are mostly modality-specific. More recent
multimodal models, however, do not yet generalize on
par with humans. Thus, because humans generalize rea-
sonably well in most of these tasks and across different

feature domains, the evidence presented so far sets high
expectations for human generalization abilities. However,
there are some circumstances in which humans system-
atically fail to generalize, which we discuss below.

Systematic Failures of Generalization

Studies in the area of category learning have shown
that humans oversimplify structure. For example,
Vermaercke et al. (2014) trained humans and rats on a
rule-based and an information-integrating category
structure (see Fig. 1). The latter cannot be solved with
a simple one- or two-dimensional rule. Given sufficient
training, humans and rats learned both structures
equally well. When rats were prompted to categorize
unobserved transfer stimuli, performance remained
roughly the same for both structures. Performance,
however, dropped substantially for humans on the
information-integration structure but not on the rule-
based structure. In a similar information-integration
category learning task, about a third of the participants
in a study by Donkin et al. (2015) relied on a rule-based
categorization strategy, even though this strategy was
clearly not the best representation of the category struc-
ture. Taken together, the Donkin et al. (2015) and
Vermaercke et al. (2014) studies suggest that people
make systematic errors when asked to infer the category
of unobserved objects: They rely too heavily on rules.

Evidence from the field of function learning speci-
fies this systematicity: People tend to prefer simple rules
to complicated ones (see also Chater & Vitanyi, 2003).
For example, they learn linear functions faster than
quadratic functions (Brehmer, 1974), and they simplify
more complicated functions, for example, by approxi-
mating a quadratic function with a linear function
(DeLosh et al., 1997; Little & Shiffrin, 2009).

In the area of cognitive training, a large corpus of
studies has shown that despite large performance gains
on trained tasks, performance on similar untrained
tasks does not improve. For example, despite large
improvements in performance on a working memory
task, performance on very similar untrained working
memory tasks is unaffected (De Simoni & von Bastian,
2018). This lack of generalized training gains (e.g.,
Melby-Lervig et al., 2016) is somewhat surprising given
the large positive correlation between working memory
and fluid intelligence (e.g. De Simoni & von Bastian,
2018). It has been assumed that training gains in work-
ing memory tasks should therefore generalize to other
tasks requiring reasoning or fluid intelligence.

These systematic failures of generalization cast doubt
on the proposition that mastery of a task seamlessly
generalizes to performance on new objects within the
same task or to performance on similar tasks. So how
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Fig. 1. Three commonly studied category learning structures. Note that both dimensions in the information-integration structure
must be considered at the same time for the accurate categorization of an object. Sequentially applying two simple rules will result

in suboptimal performance.

can we understand these divergent results about
remarkable generalization abilities and systematic gen-
eralization failures (for a summary, see Table 1)? In
what follows, we introduce two stages that determine
how well humans generalize and whether practice in
one task can be expected to transfer to other tasks.
These two stages will moreover allow us to integrate
evidence for and against good human generalization
abilities.

Two Stages of Human Generalization

We propose that generalization is primarily a function
of mental representations acquired through engage-
ment with a task. These representations emerge at both
the task level and the level of individual objects or

feature dimensions. We further suggest that these rep-
resentations are formed during learning episodes that
can be roughly divided into two partially overlapping
stages (see Fig. 2).

Constraining the task representation

When people are given a task, they need to constrain
the dimensionality of the problem space. Although
experimenters often try to constrain the possible task
representations through instructions, there are typically
several ways to derive them. For example, Mason et al.
(2022) argued that people generate hypotheses about
which aspects of a task environment are relevant. They
showed that small changes in instructions and stimulus
presentation affected people’s task representations. This

Table 1. Evidence for and Against Good Generalization Abilities

Evidence

Domain For

Against

Absolute identification

Psychological similarity predicts whether stimuli —

are considered to be the same stimulus

Category learning

Function and reinforcement
learning

extrapolation)

Memory and language

Above-chance generalization of category
knowledge to unobserved stimuli

Above-chance generalization of function
knowledge to unobserved stimuli (inter- and

Preference for rules, even if not favorable

Preference for simple rules (e.g., representing a
quadratic function with a linear function)

Use of abstracted patterns in concrete space —

(e.g., words, chunks) and in abstract space

(e.g., nouns vs. verbs, motifs)
Cognitive training —

Absence of transfer in the face of large
performance gains in trained tasks
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Fig. 2. Two stages of human generalization. A participant in a category learning experiment considers (a) Features A through
D to be potentially relevant in the experiment. Feature A represents sequential information about the presented stimuli (e.g.,
whether every n'" object belongs to a certain category). The person considers Feature B irrelevant and Features C and D likely
relevant. After extensive learning, representations of (b) feature values on Features C and D become more precise. That is,
two stimuli that differ from each other according to a fixed distance in objective feature space are psychologically less similar

after learning.

idea is consistent with Feldman’s (1992) proposal that
people focus on dimensions that they expect to be task
relevant given their background knowledge but ignore
dimensions that they expect to be task irrelevant. As a
consequence, individual differences in task representa-
tions arise because people differ in the features they
consider task relevant. Difficulties in finding task-
relevant feature dimensions can be exacerbated in real-
world tasks. For example, John Snow’s discovery that
cholera outbreaks were associated with the use of a
particular well in London is similar to finding a needle
in a haystack. Although much research has focused on
how people make decisions on a small set of feature
dimensions, more work is needed to understand how
people generate hypotheses about which dimensions
are relevant in a task.

This tendency to generate hypotheses about what
information is relevant in a given task and how that
information helps solve a task can slow down learning
or even lead to what are known as learning traps. For
example, when there is a change in which stimulus
dimensions are task relevant, humans have a hard time
disengaging from the previously relevant dimensions
(Kruschke, 1996). This differs from Al systems, which can
instantly assign an experimenter/engineer-defined error
signal to the relevant feature dimension(s). Al systems
can directly exploit statistical regularities in the data

without needing to form hypotheses about which features
are important, and they do so across a myriad of dimen-
sions without human limitations of attentional capacity.

Representational change

The more experience people have with a task, the more
they tend to solve it and generalize using information
about individual stimuli (i.e., exemplars; Johansen &
Palmeri, 2002). In particular, people use the perceived
similarity between a representation of a novel stimulus
and representations of previously observed stimuli to
respond to the novel stimulus (Nosofsky, 1986).
Furthermore, as people perform a task, their represen-
tations of task-relevant objects change over time. First,
representations of individual stimuli become more pre-
cise with repeated exposure (Goldstone & Steyvers,
2001; Thalmann et al., 2024). Second, repeated expo-
sure to the same sequences of items (e.g., F-B-I) leads
to the emergence of chunks, and these chunks are used
in novel situations and tasks to deal more efficiently
with limited working memory capacity (Thalmann
et al., 2019). Finally, people learn more abstract repre-
sentations, for example, to categorize nouns as subjects
and objects. They use sequential regularities at the
abstract level (e.g., subject-verb-object) to generalize
efficiently. That is, they handle previously unobserved
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sequences that follow the same regularities with relative
ease (e.g., G. F. Marcus et al., 1999; Wu et al., 2023).

Although we consider the evidence that mental rep-
resentations change with practice to be substantial, the
literature on cognitive training provides strong evidence
that cognitive processes cannot be trained (Melby-Lervag
et al., 2016). We therefore propose that successful gen-
eralization between tasks primarily depends on whether
participants can use the same representations—rather
than merely relying on identical cognitive processes—
across both tasks. These representations might include,
for instance, a deeper understanding of the musical notes
relevant to both flute and piano playing, a series of let-
ters learned as a cohesive chunk that applies to two
different memory tasks, or an abstract representation of
a sequence of items common to memory tasks that differ
in their stimulus domain (e.g., verbal and visual).

How to Compare Generalization
in Humans and AI Systems

Over the past decades, the training corpora of Al sys-
tems have become larger and larger. Decoupling gen-
eralization from experience has therefore become
challenging. The same problem, however, also applies
to human participants. Psychologists have made an
effort to use objects, often artificially created and dif-
ferent from the ones participants already know, to
decouple generalization from experience. We are con-
vinced that this principle will continue to play an impor-
tant role. Decoupling generalization from experience
will allow us to make stronger, valid claims about gen-
eralization abilities—compared with task performance—
in humans, in Al systems, and in how the two differ. We
envision a future in which the abilities of humans and
Al systems are compared in a more systematic way—
founded on the principles of measurement theory. First,
an ability should be defined clearly, including a concise
statement about its measurement. Second, the measure-
ment of an ability should be based on a set of tasks
from different domains to decouple the measurement
from domain-specific experience. Third, the tasks should
be unknown to the agents to decouple the ability from
mere memory recall. A first step in such a direction is
the abstract reasoning corpus by Chollet (2019).

Conclusion

Humans have been portrayed as excellent at generaliza-
tion, especially compared with deep neural networks. In
this work, we presented a more detailed view and showed
that humans often systematically fail tests of generaliza-
tion. We then argued that successful generalization
depends on two factors: discovering and learning an

adequate task representation and learning accurate,
efficient, and abstract representations of the objects
involved in a task. If an experimenter sets up a com-
plicated, multidimensional, nonlinear task structure,
people may end up solving the task with an incorrect
simple rule because they have a strong preference for
such simple rules; or they may need thousands of train-
ing examples and feedback to eventually approximate
the complicated function and generalize accordingly.
In contrast, when the task requires the execution of a
one-dimensional simple rule on a salient feature dimen-
sion, humans are likely to perform and generalize well
immediately because they can use their lifetime of
experience to quickly constrain the problem space.
Thus, the true art of human generalization lies not in
a universal ability to generalize but in the well-formed
craft of using adapted, efficient representations in the
face of limited processing capacity.

Recommended Reading

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
& Madry, A. (2019). (See References). Shows that neural
network models pick up those regularities that are most
relevant within a given training data set (and must not
necessarily be the features humans use).

Johansen, M., & Palmeri, T. J. (2002). (See References). Shows
that people initially use rules to generalize to unobserved
objects but later on change to exemplar-based processing.

Nosofksy, R. M. (1986). (See References). Explains how
the same principles of exemplar-based processing can
explain generalization in absolute identification and cat-
egory learning.
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mapping from representations/descriptions of objects in
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evaluating generalization in absolute identification tasks.
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