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We never observe the same object in the same circum-
stances again, yet we easily recognize a known object 
in a new scene. Although relatively simple for humans, 
deep convolutional neural networks for object recognition 
struggle to do so, for example, when human-imperceptible 
noise is added to an image (Geirhos et al., 2018). Given 
the relative ease with which humans solve such tasks, 
Shepard (1987) famously argued that the first law of 
psychology should be the law of generalization. Here, 
we define generalization broadly as the use of previ-
ously acquired knowledge when responding to previ-
ously unobserved objects (see also Taylor et al., 2021). 
The psychological literature on generalization can be 
well characterized by separately analyzing (a) general-
ization within a known feature space (also called “in-
domain generalization”) and (b) out-of-category 
generalization (also called “out-of-domain generaliza-
tion”). Although most branches of cognitive psychology 
have been interested in in-domain generalization, the 
fields of language, memory, and category learning have 
additionally focused on out-of-domain generalization. 
This distinction not only defines the scope of general-
ization but also allows us to highlight key differences 

between humans and contemporary AI systems in their 
abilities to generalize.

Generalization Within a Known 
Feature Space

In the area of absolute identification, which studies 
how people learn to identify objects and discriminate 
one object from other objects, Shepard (1987) showed 
that the probability of perceiving two stimuli as the 
same increases monotonically with the psychological 
similarity between the two stimuli. The same monotonic 
relationship may not hold without a transformation of 
the features describing the object from physical space 
to psychological space. For example, the mental rep-
resentation of pitch is well described by a helical struc-
ture that integrates a linear dimension of pitch height 
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Abstract
People appear to excel at generalization: They require little experience to generalize their knowledge to new situations. 
But can we confidently make such a conclusion? To make progress toward a better understanding, we characterize 
human generalization by introducing three proposed cognitive mechanisms allowing people to generalize: applying 
simple rules, judging new objects by considering their similarity to previously encountered objects, and applying 
abstract rules. We highlight the systematicity with which people use these three mechanisms by, perhaps surprisingly, 
focusing on failures of generalization. These failures show that people prefer simple ways to generalize, even when 
simple is not ideal. Together, these results can be subsumed under two proposed stages: First, people infer what aspects 
of an environment are task relevant, and second, while repeatedly carrying out the task, the mental representations 
required to solve the task change. In this article, we compare humans to contemporary AI systems. This comparison 
shows that AI systems use the same generalization mechanisms as humans. However, they differ from humans in the 
way they abstract patterns from observations and apply these patterns to previously unknown objects—often resulting 
in generalization performance that is superior to, but sometimes inferior to, that of humans.
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with a circular dimension of pitch chroma, which 
explains the increased generalization between tones 
separated by an octave (see also Shepard, 1987). 
Although identifying individual stimuli can be considered 
a categorization task, the field of category learning has 
traditionally focused on much broader categories. 
Numerous studies have demonstrated that people can 
learn to categorize individual training stimuli into their 
respective categories based on their object properties. 
Importantly, stimuli not observed during training are cat-
egorized during a transfer test, with accuracy well above 
chance (e.g., Johansen & Palmeri, 2002; Nosofsky, 1986).

The results are again similar when the discrete case 
of learning categories is extended to learning functions 
that relate values from continuous feature dimensions 
(e.g., dosage of a poison) to continuous outcomes (e.g., 
symptom severity). It has been shown that people gen-
eralize to unobserved stimuli with high accuracy in the 
intrapolation range (i.e., values between observed val-
ues) and with performance well above chance in the 
extrapolation range (i.e., values outside the observed 
range; e.g., DeLosh et al., 1997). People behave simi-
larly in reinforcement learning tasks, in which they are 
instructed to collect as many rewards as possible from 
a limited number of choices. For example, Jagadish  
et al. (2023) showed that participants learned to relate 
response keys to rewards according to linear and peri-
odic functions. They furthermore showed that people 
could generalize to the composition of these two func-
tions (i.e., adding a periodic function to a linear func-
tion) with remarkable accuracy on the first trial, with 
practice only on the individual functions but no prac-
tice on the composite function.

Theoretically, two mechanisms have been proposed 
for how people generalize in these tasks. First, people 
use simple rules to partition a feature space (e.g., Ashby 
& Townsend, 1986). Such rules can often be repre-
sented by a simple or conjunctive conditional. For 
example, a person may consider a new face to belong 
to Family A if the nose is small or if the nose is small 
and the hair color is red ( Johansen & Palmeri, 2002). 
Second, people compare the new face to all previously 
encountered faces and use the overall similarity to pre-
viously encountered faces to categorize the new face. 
Research has shown that people likely use both mecha-
nisms but tend to start generalizing using a simple rule 
and then slowly shift to using similarity to stored exam-
ples as more of the same examples are presented 
( Johansen & Palmeri, 2002; Nosofsky et  al., 1994). 
Although similarity in these examples focused on the 
similarity of features of a single object, similarity can 
be defined more broadly to include similarity in asso-
ciations between objects. For example, it has been 
argued that similarity-based generalization occurs in 

certain associative memory tasks even before people 
are given a generalization test. Shohamy and Wagner 
(2008) showed that when two faces (F1 and F2) share 
one but not all associations with a set of stimuli (S1 
and S2; i.e., F1-S1, F1-S2, and F2-S1 are associated) and 
are therefore similar, the nonoverlapping association 
(F2-S2) is still associated in memory. In addition to 
these two mechanisms, studies have shown that the 
precision of representations within a feature space 
becomes more accurate with practice (Goldstone & 
Steyvers, 2001; Thalmann et al., 2024). More accurate 
representations help with generalization, especially for 
objects close to a category boundary.

Neither of these mechanisms can be said to be 
unique to humans. Although neural network models 
have a bias toward classifying novel objects on the basis 
of their similarity to previously observed examples, they 
also use rule-based mechanisms for categorization 
(Dasgupta et al., 2022). Moreover, modern artificial neu-
ral network models achieve superhuman performance 
in each of the four introduced tasks (e.g., in visual 
object recognition; van Dyck et  al., 2021). Although 
these observations show that AI systems outperform 
humans in each modality (e.g., visual, verbal), there are 
two differences between human and machine general-
ization. First, humans perform reasonably well on all 
tasks involving stimuli from multiple modalities (e.g., 
object recognition, language understanding), but most 
AI systems are modality-specific; for example, systems 
that are good at object recognition often cannot easily 
process language. Second, humans and neural networks 
likely have different internal representations. For exam-
ple, although humans learn an object’s representation 
by observing it from different angles and interacting 
with it in various task contexts, an AI system may excel 
at object recognition for entirely different reasons. For 
instance, a neural network might “recognize” cows sim-
ply because they are consistently presented against a 
green background (Ilyas et al., 2019). In this sense, it 
has been argued that modern AI systems excel at 
extracting statistical regularities from data but lack the 
ability to form internal models of the world (Vafa et al., 
2024; but for a different perspective, see Gurnee and 
Tegmark, 2024). Another way to look at this debate is 
that AI systems learn an internal model to perform well 
at the task they are trained on. However, this model 
does not necessarily match the human model, for exam-
ple, because humans interact with the same object in 
several different tasks and contexts.

Out-of-Category Generalization

In the domain of language, it has been suggested that 
abstract knowledge (e.g., structuring a sentence in 
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terms of noun units and verb units) facilitates both 
language comprehension and production. Supporting 
this claim, G. F. Marcus et al. (1999) demonstrated that 
infants as young as 7 months old can recognize abstract 
sequential patterns (i.e., an ABA sequence in which A 
and B represent syllable placeholders) in a transfer 
sequence composed of previously unobserved sylla-
bles. Abstract sequential patterns also play a crucial 
role in memory. Wu et al. (2023) showed that humans 
extract abstract knowledge from patterned sequences, 
which enhances their short-term memory performance 
for sequences following the same pattern but consisting 
of novel items. Similarly, in the field of category learn-
ing, Goldwater et al. (2018) found that people can learn 
to infer categories based on the relationships between 
stimuli. For instance, participants learned that three bars 
of different lengths formed distinct categories when 
aligned monotonically in increasing length compared 
with when they were aligned nonmonotonically. 
Crucially, the participants also generalized this rule 
when categorizing a new set of previously unobserved 
objects (i.e., the luminance of circles). The results from 
these three areas, together with anecdotal evidence, 
such as mathematicians deriving general laws by refer-
ring to variables rather than individual data points, 
show that people can abstract patterns from a set of 
concrete observations and apply them to previously 
unobserved objects. Although traditional neural net-
works were unable to apply abstracted knowledge to 
feature domains that were not varied during training 
(G. Marcus, 2020), newer approaches mimic human-like 
generalization and sometimes generalize better than 
humans in such cases (Lake & Baroni, 2023).

Although the former cases referred to the abstraction 
of feature domains within one modality (e.g., visual), 
multimodal large language models can process informa-
tion from multiple modalities. For example, they can 
answer textual questions about images. Therefore, they 
have the potential to surpass human performance in 
multiple modalities and to generalize abstract patterns 
across modalities, as humans do. Schulze Buschoff  
et al. (2025) set out to test the latest multimodal models 
on three tasks that require the use of an abstract rule 
to be successful: logical reasoning, intuitive physics, and 
intuitive psychology. However, the models performed 
significantly worse than humans on all three tasks.

In summary, humans use simple rules, similarity to 
previously encountered objects, and abstract rules to 
generalize. Modern AI systems use the same mecha-
nisms, perform better at a given task within a particular 
modality, but are mostly modality-specific. More recent 
multimodal models, however, do not yet generalize on 
par with humans. Thus, because humans generalize rea-
sonably well in most of these tasks and across different 

feature domains, the evidence presented so far sets high 
expectations for human generalization abilities. However, 
there are some circumstances in which humans system-
atically fail to generalize, which we discuss below.

Systematic Failures of Generalization

Studies in the area of category learning have shown 
that humans oversimplify structure. For example, 
Vermaercke et al. (2014) trained humans and rats on a 
rule-based and an information-integrating category 
structure (see Fig. 1). The latter cannot be solved with 
a simple one- or two-dimensional rule. Given sufficient 
training, humans and rats learned both structures 
equally well. When rats were prompted to categorize 
unobserved transfer stimuli, performance remained 
roughly the same for both structures. Performance, 
however, dropped substantially for humans on the 
information-integration structure but not on the rule-
based structure. In a similar information-integration 
category learning task, about a third of the participants 
in a study by Donkin et al. (2015) relied on a rule-based 
categorization strategy, even though this strategy was 
clearly not the best representation of the category struc-
ture. Taken together, the Donkin et al. (2015) and 
Vermaercke et al. (2014) studies suggest that people 
make systematic errors when asked to infer the category 
of unobserved objects: They rely too heavily on rules.

Evidence from the field of function learning speci-
fies this systematicity: People tend to prefer simple rules 
to complicated ones (see also Chater & Vitányi, 2003). 
For example, they learn linear functions faster than 
quadratic functions (Brehmer, 1974), and they simplify 
more complicated functions, for example, by approxi-
mating a quadratic function with a linear function 
(DeLosh et al., 1997; Little & Shiffrin, 2009).

In the area of cognitive training, a large corpus of 
studies has shown that despite large performance gains 
on trained tasks, performance on similar untrained 
tasks does not improve. For example, despite large 
improvements in performance on a working memory 
task, performance on very similar untrained working 
memory tasks is unaffected (De Simoni & von Bastian, 
2018). This lack of generalized training gains (e.g., 
Melby-Lervåg et al., 2016) is somewhat surprising given 
the large positive correlation between working memory 
and fluid intelligence (e.g. De Simoni & von Bastian, 
2018). It has been assumed that training gains in work-
ing memory tasks should therefore generalize to other 
tasks requiring reasoning or fluid intelligence.

These systematic failures of generalization cast doubt 
on the proposition that mastery of a task seamlessly 
generalizes to performance on new objects within the 
same task or to performance on similar tasks. So how 
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can we understand these divergent results about 
remarkable generalization abilities and systematic gen-
eralization failures (for a summary, see Table 1)? In 
what follows, we introduce two stages that determine 
how well humans generalize and whether practice in 
one task can be expected to transfer to other tasks. 
These two stages will moreover allow us to integrate 
evidence for and against good human generalization 
abilities.

Two Stages of Human Generalization

We propose that generalization is primarily a function 
of mental representations acquired through engage-
ment with a task. These representations emerge at both 
the task level and the level of individual objects or 

feature dimensions. We further suggest that these rep-
resentations are formed during learning episodes that 
can be roughly divided into two partially overlapping 
stages (see Fig. 2).

Constraining the task representation

When people are given a task, they need to constrain 
the dimensionality of the problem space. Although 
experimenters often try to constrain the possible task 
representations through instructions, there are typically 
several ways to derive them. For example, Mason et al. 
(2022) argued that people generate hypotheses about 
which aspects of a task environment are relevant. They 
showed that small changes in instructions and stimulus 
presentation affected people’s task representations. This 
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Fig. 1.  Three commonly studied category learning structures. Note that both dimensions in the information-integration structure 
must be considered at the same time for the accurate categorization of an object. Sequentially applying two simple rules will result 
in suboptimal performance.

Table 1.  Evidence for and Against Good Generalization Abilities

Domain

Evidence

For Against

Absolute identification Psychological similarity predicts whether stimuli 
are considered to be the same stimulus

—

Category learning Above-chance generalization of category 
knowledge to unobserved stimuli

Preference for rules, even if not favorable

Function and reinforcement 
learning

Above-chance generalization of function 
knowledge to unobserved stimuli (inter- and 
extrapolation)

Preference for simple rules (e.g., representing a 
quadratic function with a linear function)

Memory and language Use of abstracted patterns in concrete space  
(e.g., words, chunks) and in abstract space 
(e.g., nouns vs. verbs, motifs)

—

Cognitive training — Absence of transfer in the face of large 
performance gains in trained tasks
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idea is consistent with Feldman’s (1992) proposal that 
people focus on dimensions that they expect to be task 
relevant given their background knowledge but ignore 
dimensions that they expect to be task irrelevant. As a 
consequence, individual differences in task representa-
tions arise because people differ in the features they 
consider task relevant. Difficulties in finding task- 
relevant feature dimensions can be exacerbated in real-
world tasks. For example, John Snow’s discovery that 
cholera outbreaks were associated with the use of a 
particular well in London is similar to finding a needle 
in a haystack. Although much research has focused on 
how people make decisions on a small set of feature 
dimensions, more work is needed to understand how 
people generate hypotheses about which dimensions 
are relevant in a task.

This tendency to generate hypotheses about what 
information is relevant in a given task and how that 
information helps solve a task can slow down learning 
or even lead to what are known as learning traps. For 
example, when there is a change in which stimulus 
dimensions are task relevant, humans have a hard time 
disengaging from the previously relevant dimensions 
(Kruschke, 1996). This differs from AI systems, which can 
instantly assign an experimenter/engineer-defined error 
signal to the relevant feature dimension(s). AI systems 
can directly exploit statistical regularities in the data 

without needing to form hypotheses about which features 
are important, and they do so across a myriad of dimen-
sions without human limitations of attentional capacity.

Representational change

The more experience people have with a task, the more 
they tend to solve it and generalize using information 
about individual stimuli (i.e., exemplars; Johansen & 
Palmeri, 2002). In particular, people use the perceived 
similarity between a representation of a novel stimulus 
and representations of previously observed stimuli to 
respond to the novel stimulus (Nosofsky, 1986). 
Furthermore, as people perform a task, their represen-
tations of task-relevant objects change over time. First, 
representations of individual stimuli become more pre-
cise with repeated exposure (Goldstone & Steyvers, 
2001; Thalmann et al., 2024). Second, repeated expo-
sure to the same sequences of items (e.g., F-B-I) leads 
to the emergence of chunks, and these chunks are used 
in novel situations and tasks to deal more efficiently 
with limited working memory capacity (Thalmann 
et al., 2019). Finally, people learn more abstract repre-
sentations, for example, to categorize nouns as subjects 
and objects. They use sequential regularities at the 
abstract level (e.g., subject-verb-object) to generalize 
efficiently. That is, they handle previously unobserved 
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sequences that follow the same regularities with relative 
ease (e.g., G. F. Marcus et al., 1999; Wu et al., 2023).

Although we consider the evidence that mental rep-
resentations change with practice to be substantial, the 
literature on cognitive training provides strong evidence 
that cognitive processes cannot be trained (Melby-Lervåg 
et al., 2016). We therefore propose that successful gen-
eralization between tasks primarily depends on whether 
participants can use the same representations—rather 
than merely relying on identical cognitive processes—
across both tasks. These representations might include, 
for instance, a deeper understanding of the musical notes 
relevant to both flute and piano playing, a series of let-
ters learned as a cohesive chunk that applies to two 
different memory tasks, or an abstract representation of 
a sequence of items common to memory tasks that differ 
in their stimulus domain (e.g., verbal and visual).

How to Compare Generalization  
in Humans and AI Systems

Over the past decades, the training corpora of AI sys-
tems have become larger and larger. Decoupling gen-
eralization from experience has therefore become 
challenging. The same problem, however, also applies 
to human participants. Psychologists have made an 
effort to use objects, often artificially created and dif-
ferent from the ones participants already know, to 
decouple generalization from experience. We are con-
vinced that this principle will continue to play an impor-
tant role. Decoupling generalization from experience 
will allow us to make stronger, valid claims about gen-
eralization abilities—compared with task performance—
in humans, in AI systems, and in how the two differ. We 
envision a future in which the abilities of humans and 
AI systems are compared in a more systematic way—
founded on the principles of measurement theory. First, 
an ability should be defined clearly, including a concise 
statement about its measurement. Second, the measure-
ment of an ability should be based on a set of tasks 
from different domains to decouple the measurement 
from domain-specific experience. Third, the tasks should 
be unknown to the agents to decouple the ability from 
mere memory recall. A first step in such a direction is 
the abstract reasoning corpus by Chollet (2019).

Conclusion

Humans have been portrayed as excellent at generaliza-
tion, especially compared with deep neural networks. In 
this work, we presented a more detailed view and showed 
that humans often systematically fail tests of generaliza-
tion. We then argued that successful generalization 
depends on two factors: discovering and learning an 

adequate task representation and learning accurate, 
efficient, and abstract representations of the objects 
involved in a task. If an experimenter sets up a com-
plicated, multidimensional, nonlinear task structure, 
people may end up solving the task with an incorrect 
simple rule because they have a strong preference for 
such simple rules; or they may need thousands of train-
ing examples and feedback to eventually approximate 
the complicated function and generalize accordingly. 
In contrast, when the task requires the execution of a 
one-dimensional simple rule on a salient feature dimen-
sion, humans are likely to perform and generalize well 
immediately because they can use their lifetime of 
experience to quickly constrain the problem space. 
Thus, the true art of human generalization lies not in 
a universal ability to generalize but in the well-formed 
craft of using adapted, efficient representations in the 
face of limited processing capacity.

Recommended Reading

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., 
& Madry, A. (2019). (See References). Shows that neural 
network models pick up those regularities that are most 
relevant within a given training data set (and must not 
necessarily be the features humans use).

Johansen, M., & Palmeri, T. J. (2002). (See References). Shows 
that people initially use rules to generalize to unobserved 
objects but later on change to exemplar-based processing.

Nosofksy, R. M. (1986). (See References). Explains how 
the same principles of exemplar-based processing can 
explain generalization in absolute identification and cat-
egory learning.

Shepard, R. N. (1987). (See References). Shows that the 
mapping from representations/descriptions of objects in 
physical space to psychological space is important when 
evaluating generalization in absolute identification tasks.

Taylor, J. E., Cortese, A., Barron, H. C., Pan, X., Sakagami, 
M., & Zeithamova, D. (2021). (See References). Provides 
an extensive review of generalization phenomena with a 
particular focus on neurobiology.
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