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ABSTRACT

A chief goal of artificial intelligence is to build machines that think like people. Yet it has been argued that deep neural network
architectures fail to accomplish this. Researchers have asserted these models’ limitations in the domains of causal reasoning,
intuitive physics, and intuitive psychology. Yet recent advancements, namely the rise of large language models, particularly
those designed for visual processing, have rekindled interest in the potential to emulate human-like cognitive abilities. This
paper evaluates the current state of vision-based large language models in the domains of intuitive physics, causal reasoning,
and intuitive psychology. Through a series of controlled experiments, we investigate the extent to which these modern models
grasp complex physical interactions, causal relationships, and intuitive understanding of others’ preferences. Our findings
reveal that, while these models demonstrate a notable proficiency in processing and interpreting visual data, they still fall short
of human capabilities in these areas. The models exhibit a rudimentary understanding of physical laws and causal relationships,
but their performance is hindered by a lack of deeper insights—a key aspect of human cognition. Furthermore, in tasks
requiring an intuitive theory of mind, the models fail altogether. Our results emphasize the need for integrating more robust
mechanisms for understanding causality, physical dynamics, and social cognition into modern-day, vision-based language
models, and point out the importance of cognitively-inspired benchmarks.
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Figure 1. Overview of domains tasks, approach, and models. A: Example images for the different experiments. Each
experiment was taken from one of three cognitive domains: intuitive physics, causal reasoning, and intuitive psychology. B:
General approach. For every query, an image was submitted to the model, and different questions were asked about the image,
i.e. we performed visual question answering.C: Used multi-modal large language models and their size.
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People are quick to anthropomorphize, attributing human characteristics to non-human agents1. This tendency, far from
being a modern quirk, is deeply rooted in our collective psyche, as evidenced through our literary traditions. Consider E.T.A.
Hoffmann’s “Der Sandmann”2, where Nathaniel’s infatuation with Olimpia, a mere mechanical automaton with a limited
repertoire of expressions – her most notable being a plaintive ’Ach, Ach!’ – serves as a poignant example. With further
technological advances, this phenomenon, once confined to the realm of literature, has now manifested in reality. Already
simple chatbots like ELIZA3, which used simple pattern matching and substitution methodologies, gave users the illusion
of human-like understanding and engagement4. The tendency to anthropomorphize has only intensified with the advent of
Large Language Models (LLMs)5. These advanced AI systems represent a big leap from ELIZA both in complexity and
capability. Unlike ELIZA’s simplistic pattern matching, LLMs apply deep learning techniques to generate text6, learning from
vast datasets to produce responses that can be startlingly human-like7. Astonishingly, these models cannot only generate text.
When scaled up to bigger training data and architectures, other, so-called “emergent abilities” appear8, 9. The current models
can, for example, pass the bar exam10, write poems11, compose music12, and assist in programming and data analysis tasks13.
As a result, the line between human and machine capabilities is increasingly blurred14, 15. People not only interact with these
systems as if they were humans16, but they also start to rely on them for complex decision-making17, artistic creation18, and
personal interactions19. It is, therefore, natural to ask: Have we built machines that think like people? Or are we, just like
Nathaniel, projecting human qualities into rudimentary entities that are fundamentally different from us?

Judging whether or not artificial agents can mimic human thought is at the core of cognitive science20, 21. Therein,
researchers have long debated the capabilities of artificially intelligent agents22–24. In a seminal paper, Lake et al.25 proposed
core domains to consider when making such judgments. Published during the height of the deep learning revolution26, the
authors focused on domains that were easy for people but difficult for deep learning models: intuitive physics, causal reasoning,
and intuitive psychology.

Research on intuitive physics has studied how people perceive and interpret physical phenomena27–29. Past work on this
topic has emphasized that humans possess an innate ability to predict and understand the physical properties of objects and
their interactions30, even from a young age31, a notion sometimes summarized as a “physics engine” in people’s heads32. This
understanding includes concepts such as gravity33, inertia34, and momentum35. Some of the most canonical tasks in this domain
involve testing people’s judgments about the stability of block towers36, 37. These tasks have made their way into machine
learning benchmarks38, 39, where they are used to test the intuitive physical understanding of neural networks (see40 for an
overview of previous work on building models with human-like physical knowledge).

Research on causal reasoning has studied how individuals infer and think about cause-effect relationships41–43. Past work
on this topic has proposed that humans possess an intuitive capacity to infer, understand, and predict causal relationships in
their environment44–47, oftentimes described using Bayesian models of causal learning48, 49. This cognitive ability encompasses
recognizing patterns50, 51, inferring causes from interventions52, 53, and predicting future events based on hypothetical events54.
Canonical tasks in this domain often involve assessing individuals’ ability to infer causal relationships, for example, when
judging the responsibility of one object causing other objects’ movement55, 56. Causal reasoning remains a challenge, even for
current machine learning approaches57, 58.

Research on intuitive psychology has explored how individuals infer, understand, and interpret social phenomena and
mental states of other agents59, 60. Past work on this topic has emphasized the concept that humans possess an inherent ability
to infer and reason about the mental states61, 62, intentions, and emotions of others, often referred to as a “theory of mind”63, 64.
This ability has been modeled as a Bayesian inference problem65–67. Canonical tasks in this domain often involve assessing
individuals’ capacity to predict actions based on understanding others’ perspectives or intentions, such as determining agents’
utility functions based on their actions in a given environment68, 69. It is the subject of ongoing debates if modern algorithms
show any form of intuitive psychology70–72.

Lake et al. argued that some of these abilities act as “start-up software,” because they constitute cognitive capabilities
present early in development. Moreover, they proposed that these so-called “intuitive theories”73, 74 need to be expressed
explicitly using the calculus of Bayesian inference75, as opposed to being learned from scratch, for example, via gradient
descent. However, with the increase in abilities of current neural networks, in particular LLMs, we pondered: Can LLMs, in
particular vision LLMs, sufficiently solve problems from these core domains?

To address this question, we took canonical tasks from the domains of intuitive physics, causal reasoning, and intuitive
psychology that could be studied by providing images and language-based questions. We submitted them to some of the
currently most advanced LLMs. Our results showed that these models can, at least partially, solve these tasks. In particular,
the largest currently available model, OpenAI’s Generative Pre-trained Transformer (GPT-4) managed to perform robustly
above chance in two of the three domains. Yet crucial differences emerged. First, none of the models matched human-
level performance in any of the domains. Secondly, none of the models fully captured human behavior, leaving room for
domain-specific models of cognition such as the Bayesian models originally proposed for the tasks.
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Results

We tested four different models on three core components for human-like intelligence as outlined by Lake et al. (25; see
Fig. 1A). The models we used are vision large language models, which are multimodal models that integrate image processing
capabilities into large language models (76, 77; see Fig. 1B). These models allow users to perform visual question answering78, 79:
users can upload an image and ask questions about it, which the model interprets and responds to accordingly.

The first model was GPT-4 with Vision (GPT-4V), developed by OpenAI80. This multimodal model extends the abilities
of GPT-4 to analyze and interpret images, although the details of how the model accomplished this have not been made
public. The second model is ADEPT’s Fuyu-8B81, which is a decoder-only multimodal model based on the classic transformer
architecture. Fuyu-8B stands out due to its simpler architecture and training procedure compared to other multimodal models.
The third model is LLaMA-Adapter V282, or short Adapter, which offers an alternative approach to enhance the capabilities of
vision-language models by increasing learnable parameters, introducing an early fusion strategy for better visual integration,
and employing a joint training approach for image-text and instruction-following data. The final model is Otter83, which is
based on OpenFlamingo84, an open-sourced version of DeepMind’s Flamingo85, and specifically designed for multimodal
in-context instruction following.

For testing the three core components, we used three tasks taken from the cognitive science literature that could be studied
in vision LLMs via visual question answering. For intuitive physics, we asked models to judge the stability of different block
towers, using stimuli originally proposed by Lerer and colleagues86 and based on previous research by Battaglia et al.36. For
causal reasoning, we again used block towers and asked how many blocks would fall if certain blocks were removed or to judge
the responsibility of certain blocks for the stability of the tower, adopting a design that Zhou and colleagues had previously
used in human subjects87. Finally, for intuitive psychology, we used a task where the models saw a picture of an agent’s path on
a grid and then had to make inferences about the costs and rewards associated with the environment, taken from Jara-Ettinger
and colleagues88.

For every task, we queried the visual reasoning abilities of the LLMs with tasks of increasing complexity (see Fig. 1C).
First, we asked about simple features of the shown images such as the background color or the number of objects shown.
Afterward, we submitted questions taken from the cognitive science experiments. We report results based on comparisons to
the ground truth as well as the different models’ matches to human data.
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Figure 2. Results for four different large language models for tasks of increasing complexity given images of real block
towers from86. We first ask for the background color in the image (A), then the number of blocks in the image (B), and finally a
binary stability rating for the block towers (C). The last plot shows the match to human stability ratings as determined by the
Pearson correlation (D). Errors bars in plots A - C are given by the standard deviation of a binomial distribution. The error bars
in plot D are given by the 95% confidence interval for the correlation coefficient.
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Intuitive physics
To test the intuitive physics capabilities of the different LLMs, we used photographs depicting wooden block towers from Lerer
et al.86 (see Fig. 5 in the Appendix for an example). These images mirror stimuli that developmental psychologists use to study
the development of intuitive physics in infants. We used these images to test the models in increasingly complex tasks, starting
with determining the background color of a given image (1), counting the number of colored blocks in the image (2), and giving
a binary stability judgment of the depicted block tower (3).

All four models were able to correctly perform the first and easiest task: they all achieved almost perfect accuracy in
determining the background color of the images (see Fig. 2A). In the second task, the performance of most models deteriorated,
with only GPT-4V correctly determining the number of blocks in all images (see Fig. 2B). It is important to note that the first
two tasks are fairly trivial for humans and we would expect human performance to be at 100% (the background color is always
white and images featured either 2, 3, or 4 blocks).

While the first two tasks provided insight into the models’ performance on high-level descriptive tasks, the third task directly
tested their physical reasoning abilities. Performance for most models was at chance, with only GPT-4V performing slightly
above chance in determining the stability of the block towers (see Fig. 2C, Fisher’s exact test yielded an odds ratio of 2.38
with a one-sided p-value of 0.049). None of the other models performed significantly above chance (all p > 0.05). Human
subjects were also not perfect but showed an average accuracy of 63.28%, which was also larger than chance with p < .001.
Interestingly, there was no statistically significant difference between people’s and GPT-4V’s accuracy (z = 0.684, p = .49),
likely because the task was also hard for humans and because Lerer and colleagues only collected 10 human subjects.

Finally, we determined the similarity between models’ and humans’ stability judgments as determined by the Pearson
correlation (see Fig. 2D). We found that GPT-4V was the only model that showed a significant correlation with human
judgments, r = 0.155, t(205) = 2.241, p = .01, while none of the other models showed any meaningful match to human
judgments (all p > .05). However, the average correlation between humans (r = 0.46, t(910) = 14.127, p < .001) was larger
than the correlation between GPT-4V and humans (z = 3.825, p < .001).

Causal reasoning
To test the causal reasoning capabilities, we used synthetic images again depicting block towers from Zhou et al.87, 89 (see
Fig. 6 in the Appendix for an example). Here, the images showed static scenes of block towers that were stable but might
collapse if one of the blocks was removed.

Again, we started by asking the models to count the blocks in the image (1), we continued by querying the models for the
number of blocks that would fall if a specific block was removed from the scene (2), and finally, we asked the models to rate
the responsibility of a specific block for the stability of the other blocks (3). For the second task, we established a baseline
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Figure 3. Results for analyses using images from causal reasoning experiments taken from89. We first ask for the number of
blocks in the image, then the number of blocks that would fall if a specific block is removed, and finally a rating between 0 and
100 for how responsible a specific block is for the stability of the tower. For the responsibility ratings, all LLMs except for
GPT-4V give constant ratings: Fuyu always responds with 100, while Otter and LLaMA-Adapter V2 always respond with 50.
Error bars in plots A - C are given by the standard error of the mean, while the error bar plot D is given by the 95% confidence
interval of the correlation coefficient.
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performance represented by a horizontal line in Fig. 3A-C, which corresponds to a random agent. This random agent used a
simple strategy: it gave the mean between 0 and the number of blocks in each image as its’ prediction, essentially behaving like
a uniform distribution over the possible number of blocks that could fall.

The images in this task displayed a larger number of blocks (ranging from 6 to 19), which made the basic counting task
significantly more challenging than in the previous section. Models’ responses approximated the ground truth, albeit rarely
matching it exactly. Therefore, we report the mean absolute distance to the ground truth instead of the percentage of correct
answers (see Fig. 3A). The models’ performance highlighted the challenging nature of this task, with the best performing
model (GPT4-V) still being on average 2 blocks off.

In Figures 3B and 3C, model performances for the second task are shown. Notably, both GPT-4V and Fuyu-8B surpassed
the random baseline, their performance levels being close to the human results reported in87, which is depicted by the rightmost
bar in the plot. However, GPT4-V still diverges significantly from the average over human subjects (t(42) = 2.59, p < .05).
In the second task, all four models exhibited mean correlations with human values ranging from 0.26 to 0.39, (all p < .001),
with Adapter demonstrating the highest correlation. However, it is important to note that despite its relatively high correlation,
Adapter also exhibited the highest mean absolute distance to ground truth values.

Next, we show the Pearson correlation of all models to human subjects for the third task in Figure 3D. Notably, all models
except for GPT-4V gave constant ratings for this task (Fuyu always responds with 100, while Otter and LLaMA-Adapter V2
always respond with 50), making their correlation with human judgments undefined. GPT-4V, on the other hand, demonstrated
a mean correlation of 0.15 with human values (p < .001). For the human-to-human correlation, we randomly paired human
observers from the original study and calculated the correlation over their concatenated responses. We repeated this ten times
and calculated the average of the Fisher z-transformed correlations (r = 0.195, p< .001). While the average correlation between
humans was higher, it was not significantly higher than the correlation between GPT-4V and humans (z = 0.919, p = 0.179).

Intuitive psychology
To test the intuitive psychology of the different LLMs we used synthetic images depicting an astronaut on a colored background
from Jara-Ettinger et al.88 (see Fig. 5 in the Appendix for an example). The experiment consisted of three parts which differed
slightly in their layout and components. Depending on the experiment, the images featured either one or two different terrains
(indicated by different background colors and textures) as well as either one or two different care packages. The astronaut was
shown with a path that led from a starting point to a base; the astronaut could collect care packages along the way. Depending
on which terrain the astronaut crossed or which care package they chose to pick up or not, it was possible to infer the costs
associated with the different terrains and the rewards associated with the different care packages.

GP
T4

V

FU
YU

AD
AP

TE
R

OT
TE

R

0

20

40

60

80

100

Pe
rc

en
ta

ge
 c

or
re

ct

Background colorA

GP
T4

V

FU
YU

AD
AP

TE
R

OT
TE

R

1.0

0.5

0.0

0.5

1.0

Co
rre

la
tio

n 
wi

th
 h

um
an

s

Cost questionsB

GP
T4

V

FU
YU

AD
AP

TE
R

OT
TE

R

1.0

0.5

0.0

0.5

1.0

Co
rre

la
tio

n 
wi

th
 h

um
an

s

Reward questionsC

Figure 4. Results on tasks for intuitive psychology taken from88. Again, we first ask for the background color (A). Models are
then asked to make inferences about the costs and rewards in an environment depending on the path an agent has taken (B and
C). Correlation values for Fuyu and LLaMA-Adapter V2 are missing as they always responded with constant ratings for either
cost or reward questions. Error bars in plot A are given by the standard deviation of a binomial distribution, while the error bars
in plots B and C are given by the 95% confidence interval for the correlation coefficient.
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Again, we first tasked models with determining the background color of the images (1), afterwards we asked them to infer
the costs associated with the different terrains (2) and the rewards associated with the different care packages (3). The results for
the first task are shown in Figure 4A. The performance of the models in determining the background color was worse compared
to the intuitive physics data set, which might be due to the fact that the background color here was not uniform (see Fig. 8). For
tasks 2 and 3, we pooled the answers for the three parts of the experiment, as there was only a small number of images in each
individual experiment. As shown in Figures 4B and 4C, all models only showed no or very weak correlations with the average
over human subjects in their judgments about the costs and rewards associated with the environment. Correlations with the
average over human subjects ranged from −0.02 to 0.12 for cost questions and from −0.02 to 0.17 for reward questions (all
p > .05).

Discussion

We started by asking whether, with the rise of modern large language models, researchers have created machines that – at
least to some degree – think like people. To address this question, we took four recent multi-modal large language models and
probed their abilities in three core cognitive domains: intuitive physics, causal reasoning, and intuitive psychology.

In intuitive physics, the models managed to solve some of the given tasks and showed a medium match with human data.
Similarly, in a causal reasoning task, some models, in particular, GPT-4V, performed well and showed a medium match with
human data. Finally, in an intuitive psychology task, none of the models performed well and none of them showed a reasonable
match with human data. Thus, an appropriate answer to the question motivating our work would be “No.”, or – perhaps more
optimistically – “Not quite.”

Limitations and Future Work
Although we have tried our best to give all models a fair chance and set up the experiments in a clean and replicable fashion,
some shortcomings remain that should be addressed in future work.

First of all, we have only tested a handful of multi-modal models on just three cognitive domains. While we believe that the
used models and tasks provide good insights into the state-of-the-science of LLMs’ cognitive abilities, future studies should
look at more domains and different models to further tease apart when and why LLMs can mimic human reasoning. For
example, it would be interesting to see if scale is the only important feature influencing model performance90, 91. Currently, our
evidence suggests that even smaller models, for example Fuyu with its 8 billion parameters, can sometimes perform as well as
GPT-4V in some tasks.

Another shortcoming of the current work is the simplicity of the used stimuli. While the block towers used in our first
study were deliberately designed to be more realistic86 than commonly used psychological stimuli36, this was not true for the
experiments in the other two domains. For the intuitive psychology experiments, in particular, we would expect the models
to perform better if the stimuli contained more realistic images of people, which has been shown to work better in previous
studies92. Interestingly, using more realistic stimuli can also change people’s causal judgments93; how realistic stimuli used in
cognitive experiments should be, remains an open question94.

On a related point, we only used static images in our current experiments, which severely limits the breadth and level of
detail of the questions we could ask. For example, some of the most canonical tasks investigating people’s causal reasoning
abilities involve videos of colliding billiard balls55. As future large language models will likely be able to answer questions
about videos95, these tasks represent the next frontier of cognitively-inspired benchmarks.

For the comparisons to human data, we currently used the participant data collected in the original studies and assessed
the correspondence between models and this data via correlation coefficients. Future work could expand on this approach by
collecting new data from human subjects choosing which of the model’s judgments they prefer. This could lead to a more
detailed comparison, similar to what has been proposed to discriminate among deep learning models for human vision96 and
language97.

A crucial weakness of most studies using large language models is that they can be sensitive to specific prompts98–100.
While we have attempted to use prompts that elicited good behavior, thereby giving LLMs a chance to perform well, future
work could try to further optimize these prompts using available methods101–103, while also assessing how the models respond
to paraphrased versions of the same tasks. While it could be possible to further engineer the used prompts, as well as try out
several other ways of phrasing the same prompt, we believe that our current approach was sufficient to showcase these models’
abilities.

Finally, we applied all models out of the box and without additional fine-tuning. Future studies could attempt to fine-tune
multi-modal LLMs to better align with cognitive data104 and assess if this improves their reasoning abilities more generally.
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Related work
We are not the first to assess LLMs’ reasoning abilities105–107. Previous studies have focused, among others, on testing
LLMs’ cognitive abilities in model-based planning108, analogical reasoning tests109, exploration tasks110, systematic reasoning
tests111, 112, psycholinguistic completion studies113, and affordance understanding problems114. In this sense, our contribution
can be seen as a part of a larger movement in which researchers use methods from the behavioral sciences to understand black
box machine learning models115–117. However, most of the previous studies did not investigate multi-modal LLMs but rather
remained in the pure language domain. Although there are recent attempts to investigate vision LLMs cognitive features,
including their reaction to visual illusions118 as well as how they solve simple intelligence tasks119, we are the first to investigate
the proposed core components of cognition in these models.

Previous work has also looked at how LLMs solve cognitive tasks taken from the same domains that we have looked at. In
intuitive physics, Zečević et al.120 found that LLMs performed poorly in a task using language descriptions of physical scenarios.
Zhang and colleagues121 extracted programs from text produced by large language models to improve their physical reasoning
abilities. Finally, Jassim and colleagues122 proposed a novel benchmark for evaluating multimodal LLMs’ understanding of
situated physics. In causal reasoning, Binz and Schulz123 showed that GPT-3 failed at simple causal reasoning experiments,
while Kosoy et al.124 showed that LLMs cannot learn human-like causal over-hypotheses. In research on intuitive psychology,
Kosinsky argued that theory of mind might have emerged in LLMs71 which has been criticized other researchers72. Akata et al.
showed that GTP-4 plays repeated games very selfishly and could not pick up on simple conventions such as alternating between
options19. Finally, Gandhi and colleagues125 proposed a framework for procedurally generating Theory of Mind evaluations
and found that GPT4’s abilities mirror human inference patterns, though less reliable, while all other LLMs struggled.

Many of the past studies on LLMs have fallen risk of appearing in new models’ training set. Recent work has recognized
this issue and, in turn, evaluated language models on many problem variations to minimize training set effects126. Our work
differs from these approaches as current models could not have just memorized solutions to the given problems because these
problems require deep reasoning and are rarely ever published with the ground truth attached.

Conclusion
A major plot twist in E.T.A Hoffmann’s “Der Sandmann” is that Nathaniel might have been a machine himself, which explains
why he fell for Olimpia. This metaphor also relates to our anthropomorphization of LLMs: since LLMs are trained on
human-generated data, their behaviors will always reflect our behaviors and biases. However, this reflection is sharpening, and
modern neural network architectures have become more human-like. One of the other domains emphasized by Lake et al. was
the ability to reason compositionally. Recent attempts have shown that neural networks can perform compositional reasoning
if trained appropriately127. Similarly, our current work has shown that multimodal LLMs have come a long way, showing
some correspondence to human behavior and often performing above chance. Moreover, machine learning researchers have
put forward various ideas about how to close the remaining gap between humans and machines128, including self-supervised
learning129, translating from natural into probabilistic languages130, or grounding LLMs in realistic environments131. This
continuous evolution in models’ capabilities necessitates a reevaluation of the metaphors and tools we use to understand them.
We believe that cognitive science can offer tools, theories, and benchmarks to evaluate how close we have come to building
machines that think like people.

Methods

Code
The open-source models were installed per the instructions on their related Github or Huggingface repositories and evaluated
on a Slurm-based cluster with a single A100. For the results reported as GPT-4V, we used the public ChatGPT interface and
the OpenAI API, specifically the November 2023 release of gpt4-vision-preview model which is available via the
completions endpoint. Code for replicating our results is available on GitHub (github.com/lsbuschoff/multimodal). All models
were evaluated in Python using PyTorch132. Additional analyses were carried out using NumPy133, Pandas134, and SciPy135.
Matplotlib136 and Seaborn137 were used for plotting.

Models
GPT4-V
We initially queried GPT-4V through the ChatGPT interface, since the OpenAI API was not publicly available at the outset of
this project. The Intuitive Psychology task responses were collected using the gpt4-vision-preview model variant after
its November 2023 release in the API. We set the maximum number of generated tokens for a given prompt to 1 to get single
numerical responses. All other parameters were set to their default values. Note that this model does not currently feature an
option for manually setting the temperature, and the provided documentation does not specify what the default temperature is.
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FUYU
Fuyu is an 8B parameter multi-modal text and image decoder-only transformer. We used the Huggingface implementation with
standard settings and without further finetuning (available here). The maximum number of generated tokens was set to 8 and
responses were parsed by hand.

ADAPTER
We here use the multi-modal version of LLaMA-Adapter V2, which adds adapters into LLaMA’s transformer in order to turn it
into an instruction-following model. We used the GitHub implementation with standard settings and again without further
finetuning (available here). The maximum number of generated tokens was left at 512 and responses were parsed by hand.

OTTER
Otter is a multi-modal LLM that supports in-context instruction tuning and it is based on the OpenFlamingo model. We used
the Huggingface implementation (available here), again with standard settings and without finetuning. The maximum number
of generated tokens was left at 512 and responses were parsed by hand.

Datasets
Intuitive physics
We tested the intuitive physical understanding of the models using images from Lerer et al.86. The photos depict a block tower
consisting of colored wooden blocks in front of a white fabric (see Fig. 5 for an example). The images are of size 224 x 244. In
the data set, there are a total of 516 images of block towers. We tested the models on 100 randomly drawn images. We first
tested the models on their high-level visual understanding of the scenes: we tasked them with determining the background
color and the number of blocks in the image. In order to test their physical understanding, we tested them on the same task as
the original study: we asked them to give a binary rating on the stability of the depicted block towers. For the first two tasks,
we calculated the percentage of correct answers for each of the models. For the third task, we used the Pearson correlation to
determine the degree of similarity between the models and human subjects.

Causal reasoning
For the causality part we used images from Zhou et al.87. The images show artificial block stacks of red and gray blocks on a
black table (see Fig. 6 for an example). The data set consists of 42 images on which we tested all models. We again first tested
the models on their high-level visual understanding of the scene and therefore tasked them with determining the number of
blocks in the scene. The ground truth number of blocks in the scenes ranged from 6 to 19. Since this task is rather challenging
due to the increased number of blocks, we do not report the percentage correct as for the intuitive physics data set but the mean
over the absolute distance between model predictions and the ground truth for each image (see Fig. 3A).

To test the causal reasoning of the models we adopted the tasks performed in the original study89. We asked models to
infer how many red blocks would fall if the gray block was removed. We again report the absolute distance between model
predictions and the ground truth for each image (see Fig. 3B). We calculate a random baseline which uses the mean between 0
and the number of blocks for each specific image as the prediction. We also ask the models for a rating between 0 and 100 for
how responsible the gray block is for the stability of the tower. For both, the number of blocks that would fall if the gray block
was removed, and its’ responsibility for the stability of the tower, we calculate the mean Pearson correlation to human subjects
from the original study (see Fig. 3C).

Intuitive psychology
To test the intuitive psychology of the different LLMs, we used stimuli from Jara-Ettinger et al.88. This part consisted of three
different experiments each consisting of 16, 17, and 14 images showing a 2D depiction of an astronaut and care packages in
different terrains (see Fig. 5 for an example). In order to check their high-level understanding of the images, we again asked the
models to determine the background color of the images. Since this background color is not uniform, we counted both “Pink”
and “Purple” as correct answers. We report the percentage of correct answers for the background color in Figure 2A.

In accordance with the original study, analyses for the intuitive psychological capabilities of the models are split into cost
questions (passing through a terrain is associated with a cost for the agent) and reward questions (collecting a care package
yields some sort of reward for the agent). We pooled cost and reward questions over all three experiments and reported the
mean Pearson correlation with both humans and a heuristic outlined in88 (see Figs. 2B and 2C). This heuristic calculates the
costs and rewards associated with the environment from the amount of time an agent spends in each terrain and which care
package it collects.
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A Example trials
A.1 Intuitive physics

Fall: True

Humans right
GPT4-V wrong

Fall: True

Humans right
GPT4-V right

Fall: True

Humans wrong
GPT4-V wrong

Fall: True

Humans wrong
GPT4-V right

Fall: False Fall: False Fall: False Fall: False

Fall: True Fall: True Fall: True Fall: True

Fall: True Fall: False Fall: True Fall: False

Figure 5. Example images from86 which are either challenging or easy for Humans, GPT4-V, or both in the binary tower
stability judgement task for physical intuition.
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A.2 Causal reasoning

Easy for humans
Hard for GPT4-V

Easy for humans
Easy for GPT4-V

Hard for humans
Hard for GPT4-V

Hard for humans
Easy for GPT4-V

Figure 6. Example images from87 which are either challenging or easy for Humans, GPT4-V, or both in the number of blocks
that will fall task for causal reasoning. Easy here refers to images where judgements have a low average distance to the that the
ground truth. Hard refers to images where judgements have a high average distance to the ground truth.
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A.3 Intuitive psychology

A

B

Figure 7. Example images from experiment 1B where the ratings given by GPT4-V match or diverge from human
psychological intuition. A: GPT4-V answers 7, 5, 2, 7 for left cost, right cost, left reward, right reward. These values make
sense given the path of the agent. It crosses straight through the left terrain, indicating that it might have a high cost associated
with it and that the agent does not find the left care package rewarding. It then crosses through the yellow terrain to pick up the
white care package, indicating that this package has a high reward associated with it. B: GPT4-V answers 5, 4, 2, 7 for left cost,
right cost, left reward, right reward. These values are counterintuitive. The agent is seen crossing into the left terrain and
picking up the left reward, which indicates that the left care package has a significant reward associated with it and that the left
terrain should not incurr a large cost upon the agent. GPT4-V however assigns the left terrain a higher cost than the right terrain
and also the left care package a lower reward than the right care package.

17/22



A

B

Figure 8. Example images from experiments 1A and 1B. A: GPT4-V answers 7, 7, 0 for inside cost, outside cost, top reward.
That the care package has no value for the agent is sensible given the image, however we would expect the costs for inside and
outside terrains to diverge, as the agent seemingly takes a detour to avoid crossing the inside terrain. B: GPT4-V answers 5, 5, 7
for bottom cost, top cost, top reward. The reward here should have a high value seeing as the agent takes a detour to collect the
care package. However, the bottom terrain should be associated with a lower cost compared to the top terrain, as the agent is
seen taking a detour to cross the bottom terrain instead of the top terrain after picking up the care package.
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Prompts
Intuitive physics
For the intuitive physics experiment, we used a task from Lerer et al.86. For each trial, we asked the models three questions:

Question 1 What is the background color?

Question 2 How many blocks are in the image?

Question 3 Will this block tower fall? Give a boolean answer.

Causal reasoning
For the causality experiment, we used a task from Zhou et al.87, 89. For each trial, we again asked the models three questions:

Question 1 How many blocks are there in the image? You are only allowed to answer with a single number. No words
allowed!

Question 2 How many of the red bricks would fall off the table if the dark grey brick wasn’t there? You are only allowed
to answer with a single number between 0 and {num_blocks} corresponding to how many blocks would fall.
No words allowed!

Question 3 How responsible is the dark grey brick for the red bricks staying on the table? You are only allowed to answer
with a number on a scale from 0% (not at all responsible) to 100% (fully responsible). No words allowed!

Naive Utility Calculus
For the intuitive psychology experiment, we used three tasks from Jara-Ettinger et al.88. We again asked the model two
descriptive questions in order to assess their basic comprehension of the scene:

Question 1 Please answer the following question with a single color name only: What color is the background of the
central part of the image? You are only allowed to answer with a single color name!

Question 2 Please answer the following question with a number only: How many orange or white containers are in the
image? You are only allowed to answer with a number!
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For experiment 1A we first gave the models the following basic prompt, which was combined with different trial specific
questions:

“This task is about astronauts. The astronauts are exploring planets with alien terrains depicted with different
colours and textures. Each astronaut has different skills, making each terrain more or less exhausting or easy for
them to cross. All astronauts can ultimately cross all terrains, even if it’s exhausting. The astronauts land far
from the base and have to walk there. In each image, the black circle on the left indicates where the astronaut
landed. The base is on the middle right part of the image. Sometimes care packages are dropped from above and
the astronauts can pick them up. There are two kinds of care packages depicted with an orange cylinder and a
white cube. Each astronaut has different preferences and likes each kind of care package in different amounts. The
astronauts don’t actually need the care packages. They can go straight to the base, or they can pick one up. You
will see images of different astronauts with different skills and preferences travelling from their landing location
to the home base. The astronauts always have a map. So they know all about the terrains and the care packages.
Please answer the following question with a number only:”

For experiment 1B we first gave the models the following basic prompt, which was again combined with different trial-specific
questions:

“This task is about astronauts. The astronauts are exploring planets with alien terrains depicted with different
colours and textures. Each astronaut has different skills, making each terrain more or less exhausting or easy for
them to cross. All astronauts can ultimately cross all terrains, even if it’s exhausting. Sometimes, the astronauts
land far from the base and have to walk there. In each image, the black circle indicates where the astronaut landed.
The base is in the center of the image. Sometimes care packages are dropped from above and the astronauts can
pick them up. There are two kinds of care packages depicted with an orange cylinder and a white cube. Sometimes
both care packages are identical. The astronauts cannot pick both care packages. Each astronaut has different
preferences and likes each kind of care package in different amounts. The astronauts don’t actually need the care
packages. They can go straight to the base, or they can pick one up. You will see images of different astronauts
with different skills and preferences travelling from their landing location to the home base. The astronauts always
have a map. So they know all about the terrains and the care packages. Please answer the following question with
a number only:”

Finally, for experiment 1C we first gave the models the following basic prompt:

“This task is about astronauts. The astronauts are exploring planets with alien terrains depicted with different
colours and textures. Each astronaut has different skills, making each terrain more or less exhausting or easy for
them to cross. All astronauts can ultimately cross all terrains, even if it’s exhausting. The astronauts land far from
the base and have to walk there. In each image, the black circle on the left indicates where the astronaut landed.
The base is on the right part of the image. The path astronauts take from where they land to their base is indicated
by a thick black line between the black circle on the left and the astronaut on the right. Sometimes care packages
depicted by a blue cube on a black background are dropped from above and the astronauts can pick them up. Each
astronaut has different preferences and likes each care package in different amounts. The astronauts don’t actually
need the care packages. They can go straight to the base, or they can pick one up. You will see images of different
astronauts with different skills and preferences travelling from their landing location to the home base. Your task is
to judge how easy/exhausting it is for the astronaut in each image to cross each terrain, and how much they like
each care package. The astronauts always have a map. So they know all about the terrains and the care packages.
Please answer the following question with a number only:”
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Experiment 1A

Images Questions

0, 1

1. How easy is it for the astronaut in this image to cross the pink terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

2. How much does the astronaut in this image like the orange care package on a scale from 0 (not at
all) to 10 (a lot)? You are only allowed to answer with a number!

2, 3, 4, 5

1. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely easy) to 10
(extremely exhausting)? You are only allowed to answer with a number!

2. How much does the astronaut like the white care package on a scale from 0 (not at all) to 10 (a
lot)? You are only allowed to answer with a number!

3. How much does the astronaut like the orange care package on a scale from 0 (not at all) to 10 (a
lot)? You are only allowed to answer with a number!"

6, 7, 8, 9, 10

1. How easy is it for the astronaut to cross the purple terrain on a scale from 0 (extremely easy) to
10 (extremely exhausting)? You are only allowed to answer with a number!

2. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely easy) to 10
(extremely exhausting)? You are only allowed to answer with a number!

3. How much does the astronaut like the orange care package on a scale from 0 (not at all) to 10 (a
lot)? You are only allowed to answer with a number!

11, 12, 13, 14, 15

1. How easy is it for the astronaut to cross the purple terrain on a scale from 0 (extremely easy) to
10 (extremely exhausting)? You are only allowed to answer with a number!

2. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely easy) to 10
(extremely exhausting)? You are only allowed to answer with a number!

3. How much does the astronaut like the white care package on a scale from 0 (not at all) to 10 (a
lot)? You are only allowed to answer with a number!

4. How much does the astronaut like the orange care package on a scale from 0 (not at all) to 10 (a
lot)? You are only allowed to answer with a number!"
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Experiment 1B

Images Questions

1, 2, 3, 4, 5, 6, 7

1. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

2. How easy is it for the astronaut to cross the yellow terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

3. How much does the astronaut like the orange care package on a scale from 0 (not at all)
to 10 (a lot)? You are only allowed to answer with a number!

4. How much does the astronaut like the white care package on a scale from 0 (not at all) to
10 (a lot)? You are only allowed to answer with a number!

8, 9, 10

1. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

2. How easy is it for the astronaut to cross the yellow terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

3. How much does the astronaut like the orange care package on a scale from 0 (not at all)
to 10 (a lot)? You are only allowed to answer with a number!

11, 12, 13, 14, 15, 16, 17

1. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely
easy) to 10 (extremely exhausting)? You are only allowed to answer with a number!

2. How much does the astronaut like the orange care package on a scale from 0 (not at all)
to 10 (a lot)? You are only allowed to answer with a number!

3. How much does the astronaut like the white care package on a scale from 0 (not at all) to
10 (a lot)? You are only allowed to answer with a number!

Experiment 1C

Images Questions

All images

1. How easy is it for the astronaut to cross the yellow terrain on a scale from 0 (extremely easy) to 10
(extremely exhausting)? You are only allowed to answer with a number!

2. How easy is it for the astronaut to cross the pink terrain on a scale from 0 (extremely easy) to 10
(extremely exhausting)? You are only allowed to answer with a number!

3. How much does the astronaut like the blue care package on a scale from 0 (not at all) to 10 (a lot)? You
are only allowed to answer with a number!
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