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ABSTRACT

Hierarchical data with multiple observations per group is ubiquitous in empirical
sciences and is often analyzed using mixed-effects regression. In such models,
Bayesian inference gives an estimate of uncertainty but is analytically intractable
and requires costly approximation using Markov Chain Monte Carlo (MCMC)
methods. Neural posterior estimation shifts the bulk of computation from inference
time to pre-training time, amortizing over simulated datasets with known ground
truth targets. We propose metabeta, a transformer-based neural network model
for Bayesian mixed-effects regression. Using simulated and real data, we show
that it reaches stable and comparable performance to MCMC-based parameter
estimation at a fraction of the usually required time.

1 INTRODUCTION

Much of the data we work with has a hierarchical structure that naturally clusters into subgroups.
When predicting the efficacy of a drug, for example, there may be subpopulation-specific effects in
addition to effects on the population as a whole. When building a movie recommendation system,
some films may be universally popular, yet individual preferences still matter. When looking at plant
growth, the same fertilizer may perform well in one field but poorly in another due to local conditions.
These challenges can be addressed using mixed-effects models, which provide a principled framework
for capturing both overall trends (fixed effects) and group-specific deviations (random effects). Mixed-
effects models have been widely adopted across disciplines – including ecology, psychology, and
education – and are by now considered a standard approach for analyzing hierarchical data (Gelman
& Hill, 2007; Harrison et al., 2018; Gordon, 2019; Yu et al., 2022).

In many such applications, we would like to estimate the parameters of a mixed-effects model in
a Bayesian manner, enabling the incorporation of prior knowledge and the explicit quantification
of uncertainty (Figueroa-Zúñiga et al., 2013; Gelman et al., 2013). However, closed-form solutions
are generally unavailable even for the simplest cases, necessitating computationally expensive
approximate inference methods such as Markov Chain Monte Carlo (MCMC, Metropolis et al.,
1953). From a practitioner’s perspective, this is undesirable as MCMC often entails prohibitively
long inference times, even for moderately sized datasets.

In this work, we introduce metabeta, a probabilistic transformer-based neural network model, that
is designed to efficiently approximate Bayesian inference for mixed-effects regression. It is trained via
neural posterior estimation (Rezende & Mohamed, 2015; Gordon et al., 2018; Wildberger et al., 2023;
Hollmann et al., 2025), amortizing computation costs over many simulated hierarchical datasets with
available ground truth parameters. We demonstrate that metabeta achieves accuracy comparable
to Hamiltonian Monte Carlo (HMC), which is the gold-standard MCMC method for Bayesian mixed-
effects regression (Neal, 2011; Betancourt, 2018; Bürkner, 2018; Capretto et al., 2022). Importantly,
our model reduces inference time by orders of magnitude, thereby greatly broadening the range
of feasible applications for Bayesian mixed-effects regression. To further facilitate metabeta’s
adoption for rapid deployment and plug-and-play compatibility, we provide open-source Python
code for our implementation and plan to release a package with pretrained models that integrates
seamlessly with existing analysis pipelines (Bürkner, 2018; Abril-Pla et al., 2023).
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A fast neural model for Bayesian Mixed-Effects Regression

1.1 RELATED WORK

Many methods for neural posterior estimation (NPE) have been proposed in recent years: TabPFN
(Müller et al., 2021; Hollmann et al., 2025) is a transformer-based model that efficiently estimates
a one-dimensional histogram-like posterior over outcomes y. Its training data is simulated using
random graphs, granting it intricate dependence-structure and excellent generalization for non-linear
probabilistic prediction. Rezende & Mohamed (2015) pioneered the use of conditional normalizing
flows (Papamakarios et al., 2021; Kobyzev et al., 2021) for NPE. Together with Gordon et al. (2018),
they laid the groundwork for BayesFlow, a seminal framework combining transformer-based
models and normalizing flows (Radev et al., 2020; 2023). In this framework, model parameters are
sampled from a fixed prior, observations are sampled from a likelihood, and a neural network learns
to map the observations to a joint posterior over model parameters. BayesFlow has been extended
to hierarchical Bayesian models with separate networks for each level of hierarchy (Habermann et al.,
2024), and to non-linear mixed-effects models optimized for cell biology and pharmacology (Arruda
et al., 2023). In both cases, the priors are fixed and a new model has to be trained if a different prior
is desired. This off-loads the amortization process to potential end-users, which at best nullifies the
runtime advantage of NPE for practical purposes.

Our contribution consists of three aspects: (1) Our model is trained on simulations with varying
data ranges and varying parameter priors, explicitly incorporating prior information into posterior
estimation; (2) it deploys post-hoc refinements of posterior means and credible intervals using
importance sampling (Tokdar & Kass, 2010) and conformal prediction (Vovk et al., 2022); (3) we
aim to release a trained version of our model for data practitioners.

2 METHODS

We briefly formalize mixed-effects regression (Section 2.1) and define a synthetic distribution over
hierarchical datasets representative of scenarios practitioners care about (Section 2.2). We then
present a neural network architecture that takes an entire dataset and priors as inputs and returns
posterior distributions over all regression parameters (Section 2.3). This model is trained on synthetic
datasets with available ground truth to perform accurate posterior inference (Section 2.4). In a final
post-training step, we refine the model’s outputs using importance sampling and conformal prediction
(Section 2.5). All our code is implemented in PyTorch 2.7.1 (Paszke et al., 2019) and openly
available at https://github.com/adkipnis/metabeta.

2.1 MIXED-EFFECTS REGRESSION

Mixed-effects regression extends traditional regression by explicitly accounting for within-group
dependency in hierarchical data (Gelman & Hill, 2007; Brown, 2021; Fahrmeir et al., 2013). To
model this dependency, mixed-effects regression distinguishes between two effect types:

• Fixed effects β ∈ Rd capture the general, group-independent relation between predictor
variables Xi ∈ Rni×d and the regression output variable yi ∈ Rni .

• Random effects αi ∈ Rq capture additional, group-specific variations for q ≤ d predictors.
For each group i = 1, . . . ,m, we treat αi as samples from Nq(0,S).

This yields the model:
yi = Xiβ + Ziαi + εi , (1)

with independent additive noise εi ∼ Nni
(0, σ2

εIni
). The random effect predictor matrix Zi is

typically a submatrix of Xi. Note, that the ni observations are conditionally independent given some
fixed αi but marginally dependent over αi:

yi|αi ∼ Nni(Xiβ + Ziαi, σ
2
εIni) =⇒ yi ∼ Nni(Xiβ, ZiSZ

⊤
i + σ2

εIni).

The goal of Bayesian mixed-effects modeling is to obtain posteriors for all unobserved global
(β, σ2

ε ,S) and local (αi) regression parameters, conditioned on the observed predictors, outcomes
and priors of the global parameters.
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2.2 DATA SIMULATION AND PREPROCESSING

To train our neural posterior estimator, we simulate hierarchically structured datasets using PyTorch
as shown in Figure 1A.

Priors: For each dataset, we sample multi-dimensional priors – that is, for q random effect variances
σi there are q half-normal priorsHN (τ2σi

).

Regression parameters: (1) q + 1 variance parameters are sampled from half-normal distributions,
the first q being the random effect variances, and the last one the noise variance. (2) Then, m× q
random effect vectors are sampled from a diagonal Gaussian, and d fixed effects are sampled from
another diagonal Gaussian. (3) Independent noise is sampled from a half-normal distribution.

Observations: The predictors xij are sampled independently from several distributions – including
normal, Student-t, continuous uniform, Bernoulli, negative binomial, and scaled Beta distributions –
with randomly chosen parameters. A correlation matrix is sampled from a Lewandowski-Kurowicka-
Joe distribution and its lower triangular is multiplied with the predictors to induce correlation structure
(Lewandowski et al., 2009). The random effects predictors are set to zij = xij for j ≤ q and 0
otherwise. Predictors and parameters are passed through equation 1 and noise is added to generate
outcomes yi for each group i.

Further details on the simulation procedure can be found in Appendix A. We simulate separate
mixed-effects datasets for training, validation, and testing. For the latter, we use PyMC (Abril-Pla
et al., 2023) to estimate all posteriors with HMC (with the default configuration: 4 chains, 1000
tuning iterations, and 1000 draws). For the HMC model specification, we provide the true priors and
the generative model used for simulation. We occasionally encountered divergence and strong outliers
for some HMC chains, which may strongly affect performance statistics. For a fair comparison, we
choose the chain with the fewest outliers identified by the median absolute deviation statistic (MAD,
Hampel, 1974; Leys et al., 2013) for any given dataset.

(t) (t)

noise
d 

fixed effects

q+1 

variances

m 

random effects

m, ni 

predictors

m 

outputs

m 
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Inference
draw t samples +
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A
priors
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Figure 1: (A) Dataset Simulation. Given a set of priors, we sample regression parameters and noise in a
cascading way. Predictors are sampled from various distributions for training and from real datasets for testing,
and outcomes are generated according to equation 1. (B) Model Pipeline. Observed data are summarized locally
(per group) and globally (across groups). During training, the posterior networks learn the forward mapping
from the true regression parameters to a simple multivariate base distribution, conditioned on the respective
summaries and priors. During inference, we draw k samples from the base distribution, and apply the implicitly
learned backward mapping to them, approximating sampling from the unknown target posterior. (C) Example
Posteriors. Kernel density estimates from the posterior samples of metabeta (MB) and Hamiltonian Monte
Carlo (HMC) on a toy dataset. (D) Compute Time. For test sets with d = 5, q = 1, m ≤ 30 and ni ≤ 70, our
model takes several orders of magnitude less time to compute in comparison to HMC. Computation time was
measured on a MacBook Air M2 with 24GB of RAM.
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2.3 MODEL ARCHITECTURE

The model architecture takes inspiration from BayesFlow (Radev et al., 2020; Habermann et al.,
2024) and TabPFN (Hollmann et al., 2025) and has two main parts: (1) a summary network that
computes a maximally informative dataset statistic over observations, and (2) a posterior network
that uses the summary and priors to propose a joint posterior over regression parameters. Both are
trained end-to-end. Since mixed-effect datasets are hierarchically structured, we use two summary
and posterior networks, one for the global parameters (fixed effects and variance parameters) and
one for the local parameters (group-specific random effects). The training and inference pipeline is
visualized in Figure 1B. Data preprocessing is detailed in Appendix B and Appendix C.

SUMMARY NETWORK

Datasets vary in the number of groups and observations per group. A summary network fΣ extracts
information for the posterior by pooling over all instances in a dataset. Since the data is structured
hierarchically, it needs to be summarized accordingly over all exchangeable instances: In a first step,
we pool over observations per group, generating m local summaries s1, . . . , sm. In a second step, we
pool the local summaries over groups, generating a global summary s. For summarization, we opted
for a set transformer (Lee et al., 2019). Our implementation consists of multiple transformer encoder
blocks (Vaswani et al., 2017), followed by averaging over the resulting sequence of transformer
outputs. This yields the important property of permutation invariance, i.e. the summary stays the
same regardless of the input ordering along the sequence dimension. The local and global summary
network both consist of 4 transformer encoder blocks with 128 units, equally large feedforward layers,
8 attention heads, 1% dropout and GELU activations (Hendrycks & Gimpel, 2023).

POSTERIOR NETWORK

Posterior networks fΠ take the dataset summaries and priors as inputs and propose a joint posterior
for a set of parameters. Inference on global and local parameters is separated as proposed by Heinrich
et al. (2023). Inference on global parameters ϑ = (β, S, σ2

ε) is conditioned on the global summary
and the parameter priors. Inference on local variables (αi) is conditioned on the separate local
summaries and the global parameters (the true ones during training, and the inferred ones during
validation). We opted for a normalizing flow (Papamakarios et al., 2021) as our posterior network:

A normalizing flow learns an invertible mapping from a d-dimensional random variable zn with
a complex distribution to a d-dimensional random variable z0 with a regular distribution (e.g. a
multivariate normal). The flow consists of a finite composition T of continuously differentiable and
invertible transforms Ti with triangular Jacobians, T = Tn ◦ · · · ◦ T1. For some random variable
z0 ∼ Nd(0, I), we model T (zn) = z0 ⇐⇒ T−1(z0) = zn with pn(zn) = p0(z0) |det JT (z0)| .
Each invertible transform Ti is parameterized by a neural network that takes part of the current hidden
state zt and the summary s as inputs. Because of their efficiency, we opted for conditional affine
coupling as our normalizing flow architecture (Dinh et al., 2014; 2017). For the base distribution we
use a diagonal multivariate location-scale t distribution with learnable parameters for each dimension
(Alexanderson & Henter, 2020). For both posterior networks, we use 4 affine coupling flow blocks
parameterized by MLPs with three 128-unit feedforward layers, skip connections (He et al., 2016),
1% dropout and ReLU activations.

2.4 LEARNING

To calculate the loss for the global parameters, we use the forward Kullback-Leibler divergence
between the unknown true posterior p(ϑ|s) and its flow-based approximation pΠ(ϑ|s) := pn(zn|s),

ℓΠ(ϑ, s) ∝ −Eϑ,s [log pΠ(ϑ|s)] = −Eϑ,s [log p0(T (ϑ|s)) + log |det JT (ϑ|s)|] ,

where T and thereby the approximation pΠ(ϑ|s) depend on the posterior network. Since the summary
s of data D is itself depending on the summary network, the end-to-end loss can be written as

ℓΠ,Σ(ϑ,D) ∝ −Eϑ,D [log pΠ(ϑ|fΣ(D))] = −Eϑ,D [log p0(T (ϑ|fΣ(D)) + log |det JT (ϑ|fΣ(D))|] .

The objective for the local parameters is completely analogous. We sum the local losses over groups
and add the result to the global loss, which follows a potential factorization of the joint posterior over
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both types of regression parameters (see Appendix D). The expectation is approximated by averaging
over the batch. Model weights are updated using the Schedule-Free AdamW optimizer (Defazio
et al., 2024). We train separate models for different numbers of fixed effects and random effects until
convergence, which requires between 105 and 106 training sets in our case.

2.5 POST-HOC REFINEMENT

IMPORTANCE SAMPLING

Learning pΠ by minimizing the forward Kullback-Leibler Divergence naturally forces pΠ to be
positive wherever p is positive, making pΠ mass-covering (Jerfel et al., 2021). Thus, we can use
importance sampling to improve posterior estimation (Tokdar & Kass, 2010; Dax et al., 2023). For
each sample ϑk ∼ pΠ(ϑ|D) we assign an importance weight,

wk =
p(D|ϑk)p(ϑk)

pΠ(ϑk|D)
,

which is well-defined, as pΠ is only zero if the numerator is zero. We use the weights to refine
statistics of the samples (e.g. the posterior mean or empirical CDFs). Since we have two posterior
networks and the local posterior is conditioned on the global estimates, we perform alternating
importance sampling for both. For more details, please see Appendix E.

CALIBRATION WITH CONFORMAL PREDICTION

Uncertainty quantification is a hallmark of Bayesian inference, making the fidelity of the approximate
posterior’s credible intervals a critical concern. Posterior samples can be used to calculate empirical
quantiles and thus also intervals that contain c% of the posterior density. Due to the mass-covering
property of pΠ, the learned posteriors tend to be too wide – i.e. the true parameter is inside the c%
credible interval in more than c% of the cases. This is a commonly known issue of normalizing flows
(Chen et al., 2025; Dheur & Taieb, 2025). Conformal prediction (Vovk et al., 2022; Shafer & Vovk,
2008; Angelopoulos & Bates, 2022) is a general-purpose method that constructs distribution-free
prediction sets Ĉα such that P(ϑ ∈ Ĉα) ≥ 1 − α. To construct Ĉα, we use a calibration set to
calculate the difference between the true ϑ and the closest border of the proposed 1 − α credible
interval Cα. The 1− α quantile of these differences is then added to the proposed interval borders,
widening them if the value is positive and narrowing them otherwise. Importantly, this does not
require retraining but efficiently refines credible intervals post-hoc.

3 RESULTS

We test our model against HMC on a toy dataset with highly constrained parameters and uncorrelated
normal data (Section 3.1), in-distribution on held-out synthetic test sets of varying difficulty (Sec-
tion 3.2), and out-of-distribution on semi-synthetic data where predictors X are taken from four real
datasets (Section 3.3). This approach has the following considerable benefits over evaluation on purely
real data: (1) The regression models are always correctly specified, (2) we know the ground truth
parameters and can thus evaluate parameter recovery and coverage, (3) we can compare the results to
in-distribution test data and gauge how well the model transfers to realistic predictors (Lueckmann
et al., 2021; Ward et al., 2022). We use the following evaluation metrics: We quantify parameter
recovery with Pearson’s correlation r and RMSE between the true parameters and posterior means.
We check the fidelity of credible intervals using coverage errors: A CE(α) = 0.05 means that the
model’s 1− α credible interval Cα is on average 5% too wide. Coverage error are estimated using
the difference between the relative frequency of the true parameter being inside Cα and the credible
interval’s nominal probability mass (1− α):

CE(α) =
1

B

B∑
b=1

1

(
ϑ(b) ∈ C(b)

α

)
− (1− α).

Finally, we plot posterior predictive distributions (Gelman et al., 2013), which visualize how much
the posterior predictive samples ỹt ∼ p(y|ϑ̂t) match the actual y. All metrics are calculated for
both metabeta and HMC posterior samples. A brief comparison of required computation time is
reported in Figure 1D.
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3.1 TOY EXAMPLE

To gauge if the pipeline works for both our model and HMC, we first test both on a toy example
with d = 2 and q = 1. Regression parameters and observed data all fall inside small ranges, and
the observed single predictor is sampled from a standard normal distribution. Result figures can be
found in Appendix F. Both models reach almost perfect parameter recovery correlation for fixed
effects (rMB = 1.000 vs. rHMC = 0.996), random effects (rMB = 0.987 vs. rHMC = 0.974), and for
variance parameters (rMB = 0.997 vs. rHMC = 0.996). The same pattern arises for recovery error
for fixed effects (RMSEMB = 0.020 vs. RMSEHMC = 0.197), random effects (RMSEMB = 0.097
vs. RMSEHMC = 0.136), and for variance parameters (RMSEMB = 0.027 vs. RMSEHMC = 0.029).
Posterior coverage is good for metabeta (CEMB = 0.021), whereas HMC’s marginal posterior
for the variance parameters tend to be slightly too wide (CEHMC = 0.146). Example kernel density
estimates of the posteriors for a single regression dataset are plotted in Figure 1C: While the modes
often agree, the posterior shapes vary between our model and HMC. Overall, both models perform
well on the toy problem with a slight advantage for metabeta. This shows that the pipeline is in
principle correctly specified for both approaches.

3.2 IN-DISTRIBUTION TESTS

We ran a sweep of tests to check how well our model can handle different mixed-effect datasets in
terms of the problem size (determined by d and q), numbers of total observations (n =

∑m
i=1 ni)

and signal to noise ratio, SNR = V(y − ε)/V(ε). The test sets were constructed using the same
simulation pipeline as the training sets, but with different random seeds. Table 1 shows that our
model’s performance is most strongly affected by the problem size in terms of RMSE. Both
relatively low signal to noise ratio and low n affect metabeta’s performance slightly, but none
is systematically more impactful than the other. However, its Pearson correlations and coverage
are relatively robust to both problem size and dataset properties. HMC, on the other hand, tends to
produce more outliers for larger n and SNR. Accordingly, its coverage varies more strongly over
datasets. Overall, our model appears to have comparably stable performance and outperforms HMC
in most test cases.

Table 1: Performance evaluation for metabeta and HMC on synthetic test sets. Test set properties are number
of fixed effects d, number of random effects q, relative sample size n, and signal to noise ratio SNR. The
symbols ⃝ resp. ◦ indicate top resp. bottom 50% of the test set, sorted by either n or SNR. The evaluation
metrics are Pearson’s correlation-coefficient r, root mean squared error RMSE, and coverage error CE(α)
averaged over α ∈ {0.05, 0.1, 0.2, 0.32, 0.5}. All metrics are averaged across regression parameters. Bold
formatting indicates better performance.

metabeta HMC
d q property split r RMSE CE r RMSE CE

3 1 n ⃝ 0.993 0.508 0.010 0.799 19.879 0.057
◦ 0.995 0.546 -0.071 0.991 1.475 0.012

SNR ⃝ 0.997 0.277 0.044 0.796 20.389 0.022
◦ 0.991 0.689 -0.021 0.998 0.679 0.129

5 2 n ⃝ 0.994 0.502 0.015 0.828 10.703 0.024
◦ 0.968 1.064 -0.085 0.840 5.458 -0.077

SNR ⃝ 0.973 0.794 0.000 0.794 11.879 -0.056
◦ 0.988 0.729 0.009 0.946 1.899 0.090

8 3 n ⃝ 0.968 1.234 0.013 0.897 3.096 0.001
◦ 0.975 1.212 -0.078 0.899 2.962 -0.053

SNR ⃝ 0.955 1.094 0.009 0.836 4.058 -0.066
◦ 0.966 1.309 0.020 0.956 1.516 0.086

12 5 n ⃝ 0.972 1.339 0.008 0.887 37.148 -0.028
◦ 0.961 1.699 -0.082 0.946 1.662 -0.025

SNR ⃝ 0.945 1.405 -0.006 0.885 37.040 -0.054
◦ 0.970 1.587 0.014 0.928 3.993 0.067
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Table 2: Performance evaluation for metabeta and HMC on semi-synthetic test sets using real predictors xij

and simulated regression parameters. The evaluation metrics are Pearson’s correlation-coefficient r, root mean
squared error RMSE, and coverage error CE(α) averaged over α ∈ {0.05, 0.1, 0.2, 0.32, 0.5}, separately per
type of parameter. Bold formatting indicates better performance.

metabeta HMC
Source Parameters r RMSE CE r RMSE CE

MathAchieve β 0.999 0.754 0.023 0.992 1.966 0.030
σ 0.996 0.316 0.010 0.980 0.778 0.164
α 0.987 0.832 0.041 0.956 1.518 0.060

Exam β 0.999 0.554 0.057 0.995 1.548 0.054
σ 0.994 0.407 0.009 0.996 0.219 0.183
α 0.986 0.786 0.031 0.972 1.108 0.099

Gcsemv β 0.999 0.596 0.007 0.881 6.634 -0.020
σ 0.988 0.639 -0.009 0.477 30.083 0.071
α 0.964 1.430 0.016 0.889 2.434 -0.009

SleepStudy β 1.000 0.092 0.147 0.996 1.292 0.194
σ 0.996 0.310 0.050 0.687 9.709 0.169
α 0.975 1.065 0.024 0.972 1.166 0.115

3.3 OUT-OF-DISTRIBUTION TESTS

We gathered 4 canonical datasets that are often used for demonstration purposes of mixed-effects
regression: (1) MathAchieve (d = 5, q = 1), available in nlme (Pinheiro et al., 1999), (2) Exam
(d = 4, q = 1) and (3) Gcsemv (d = 3, q = 1), both available in mlmRev (Bates & Bolker, 2020),
and (4) sleepstudy (d = 2, q = 2), available in lme4 (Bates et al., 2015). All contain numerical
and categorial predictors, have varying numbers of groups and observations per group, as well as
different ranges for X and y. For each, we built a semi-synthetic test set using real predictors X,
simulated regression parameters and resulting outcomes y. Table 2 lists model performance for all
datasets for each type of parameter. Our model has the clear advantage: In 11/12 cases our model has
the better correlation with the true parameters, in 12/12 cases it has the lower RMSE and in 10/12
cases it has the better coverage. HMC particularly struggles with the variance parameters, which do
not pose a substantial problem for metabeta. Our model again has considerably fewer outliers
(Figure 2A) and better coverage (Figure 2B), which is reflected in its credible intervals (Figure 3A).
Both models produce appropriate posterior predictive distributions (Figure 3B). Overall, this suggests
that the simulated predictors X, on which our model is trained, approximate the structure of realistic
datasets well. This makes our model useful for analyzing the type of datasets practitioners care about.

m
et
ab
et
a

A

H
M
C

B

Figure 2: Results based on MathAchieve. Remaining results are depicted in Appendix F. (A) Parameter
Recovery. Our model outperforms HMC on average in terms of r, bias and RMSE for all parameter types, and
has fewer outliers. (B) Coverage. Our model’s posterior credible intervals are on average more faithfully tuned.
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A B

Figure 3: Results based on MathAchieve (A) Credible Intervals. 95% and 50% credible intervals for
metabeta and HMC, compared over different parameter values. Note that discrepancies in width are mirrored
in the coverage plot of Figure 2B: HMC has poorer coverage for β0 and σ0 and its credible intervals are on
average wider than metabeta’s for both parameters. The plot for β4 is omitted due to space constraints. (B)
Posterior Predictive. Observed regression outputs (black) plotted against samples from the posterior predictive
(colored) and its mean (grey) for both models. Curves based on kernel density estimates over data points,
separately for two randomly chosen datasets.

4 DISCUSSION

In this paper we present metabeta, a probabilistic transformer-based model that performs efficient
approximate Bayesian inference for mixed-effects regression. We trained metabeta on simulated
datasets with varying ranges for predictors, regression parameters, and outcomes. Most importantly,
these datasets incorporate varying priors and we condition the model outputs on them, which not only
amortizes the high computational costs encountered when using MCMC for parameter estimation,
but also generalizes previous neural posterior estimation (NPE) techniques that are trained on a
fixed prior. We show that our model has favorable and robust performance on in-distribution and
out-of-distribution test sets, based on real hierarchical datasets practitioners care about. In each
experiment, we compare the results of our model with Hamiltonian Monte Carlo (HMC), the gold-
standard MCMC method for Bayesian mixed-effects regression, and show that metabeta often
outperforms HMC in terms of accuracy, stability, and fidelity of credible intervals – all at a fraction
of the time required for parameter estimation with HMC.

The high speed and explicit incorporation of priors opens new avenues for Bayesian mixed-effects
regression: Analysts can now specify multiple priors simultaneously and check how robust the model
posteriors are to varying a priori assumptions. Furthermore, it is straightforward to extend our model
to a mixture of experts by passing the same dataset multiple times with different permutations of
the design matrix columns, and then aggregating the resulting back-permuted posterior samples
(Hollmann et al., 2025).

4.1 LIMITATIONS AND OUTLOOK

Each trained version of metabeta is currently tailored to the size of the regression problem in
terms of the number of fixed effects (d) and the number of random effects (q). This means there are
potentially as many model versions as combinations of d and q. A single model with an upper bound
to d and q is possible with our setup, but will never perform as well as a model that is specialized for
a given problem size. Since a single snapshot of the weights requires about 20mb of storage, pulling
each model from an online server on-demand seems to be a manageable alternative to a single model
with on average worse performance.

Our choice of model architecture trades of posterior expressivity for computation speed: Other
normalizing flow methods like Neural Spline Flows (Durkan et al., 2019), Flow Matching (Wildberger
et al., 2023), Conditional Diffusions (Chen et al., 2025; Reuter et al., 2025) or TarFlow (Zhai et al.,
2025) offer more flexible posterior shapes, but posterior sampling is considerably more expensive
than for Affine Coupling Flows. The relative simplicity of affine coupling posteriors can be seen as
implicit regularization, preventing overly irregular quantification of regression parameter uncertainty.
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A noteworthy outlook for metabeta is the incorporation of attention over predictors, in addition to
the already present attention over samples (Müller et al., 2021). While this may introduce significant
overhead for the summary network, it promises to handle dependencies between predictors in a more
explicit and robust manner.

Finally, NPE models generally suffer when test data are strongly out of distribution in comparison to
training data. While there are ways to amend this (Ward et al., 2022), a future iteration of metabeta
will be trained directly on realistic hierarchical datasets generated by an LLM (Borisov et al., 2022;
Wang et al., 2024; Jagadish et al., 2024; 2025).

4.2 CONCLUSION

Our model brings Bayesian mixed-effects regression closer to practical usability in real-world
applications. In its current form, it already enables rapid prototyping – practitioners can quickly
test different model specifications and validate findings using conventional tools if needed. Our
analyses highlight that metabeta is immediately applicable to such use cases. Looking ahead, we
envision scaling our model to larger regression problems, incorporating attention over predictors and
training on more realistic, LLM-generated hierarchical data. This would open the door to entirely
new applications of Bayesian mixed-effects regression that are currently out of reach.
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Figure 4: Scatter plots of sampled synthetic predictors for two datasets.

A DATASET SIMULATION

A.1 PREDICTORS

We sample ni observations of predictor j, xij, from the following distributions: Nor-
mal, StudentT, Uniform, Bernoulli, NegativeBinomial, ScaledBeta; with respective probability
(0.10, 0.40, 0.05, 0.25, 0.10, 0.10), making student t distributed predictors the most likely ones. For
each dataset, the parameters of these distributions are randomly sampled with the constraint that
the resulting outcome y has a bounded variance (i.e. does not explode). Correlation is induced by
sampling LL⊤ = R ∼ LKJ(10) and multiplying L with the design matrix X. For binary variables,
we induce correlation with another variable using the following approach:

Algorithm 1: Sample correlated binary variable
Data: x ∈ Rn, r ∈ (−1, 1)
Result: z ∈ {0, 1}n
y ∼ Nn(0, 1);
y← r · x+ (1− r2)

1
2 · y;

p← (1 + e−y)−1;
z ∼ Bernoulli(p);

An example of generated training data is visualized in Figure 8.

A.2 PRIORS

Priors for parameters are sampled using the following approach:

Algorithm 2: Sample priors
Data: b ∈ N, d ∈ N, q ∈ N
Result: νβ ∈ Rb×d, τβ ∈ Rb×d, τσ ∈ Rb×q , τε ∈ Rb

νβ ∼ Ub×d(−20, 20);
τβ0
∼ Ub×1(0.1, 30);

τβ ∼ Ub×d−1(0.1, 20);
τβ ← [τβ0

, τβ ];
τσ ∼ Ub×q(0.1, 10);
τε ∼ Ub×1(0.001, 10);

For the toy example, νβ is kept 0, τβ is bounded below 5, and τσ and τε are bounded below 1.
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B STANDARDIZATION

Before entering the neural model, all observable data is normalized to zero mean and unit standard
deviation over groups and observations. To keep the dependence structure intact, we also analytically
standardize the regression parameters during training and un-standardize them after sampling, using
the following equalities:

β∗
k = βk

σxk

σy

α∗
ik = αik

σzk

σy
∼ N

(
0, σ∗2

k

)
σ∗2
k = σ2

k

σ2
zk

σ2
y

, σ∗2
ε =

σ2
ε

σ2
y

where σxk
resp. σy are the kth predictor’s resp. the outcome’s standard deviation, and β∗

k is the kth
slope after z-standardizing predictors and outcomes. The intercepts require special care:

β∗
0 =

β0 +
∑d

k=1 µxk
βk − µy

σy

α∗
i0 =

αi0 +
∑q

k=1 µzkαik

σy
=

∑q
k=0 µzkαik

σy
∼ N

(
0, σ∗2

0

)
,

where µxk
is the mean of the kth predictor over all observations. Due to the sum term in the latter,

σ∗2
0 = Var (αi0) + Var

(
q∑

k=1

µzkαik

)
+ 2 · Cov

(
αi0,

q∑
k=1

µzkαik

)
,

which is equivalent to summing up the covariance matrix of the random vector µz ⊙αi.

Proof :

y∗ij =
yij − µy

σy

=
1

σy

(
β0 +

d∑
k=1

xijkβk + αi0 +

q∑
k=1

zijkαik + εij − µy

)

!
= β∗

0 +

d∑
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x∗
ijkβ

∗
k + α∗
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q∑
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εij
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+
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xijkβk
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(
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+
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□

The distributions of the standardized random effects and noise follow from the scaling of normal
random variables, and the variance of the random intercept follows from the variance of sums of
random variables (Wasserman, 2010).
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C DATA REPRESENTATION AND EMBEDDING

Group-membership is represented implicitly by a separate tensor dimension, e.g. X has the shape
(batch,m, n, d). For PyTorch dataloader compatiblity, all tensors are zero-padded and correspond-
ing masks are stored. To spread the learning signal evenly across the network, all slope-related
variables are randomly permuted separately per regression dataset, using the same permutation for
X,Z,β, bi, and S.

Observable data is concatenated along the last dimension to D = [y,X,Z], and linearly projected to a
higher-dimensional space (e.g. 128 dimensions). Since mixed-effects regression must be permutation
invariant (wrt. to groups and observations per group), no positional encoding or explicit group identity
information is passed as input, and instead group identity is represented implicitly by a separate
tensor dimension, e.g. X has the shape (batch,m, n, d).

D POSTERIOR FACTORIZATION

Let the joint distribution over all regression parameters and the data be

p(ϑ,α,D),

where α = {αi}i=1,...,m and D = {Di}i=1,...,m.

We can write the joint posterior as

p(ϑ,α,D)

p(D)
= p(ϑ,α |D) = p(ϑ |D) p(α |ϑ,D) = p(ϑ |D)

m∏
i=1

p(αi |ϑ,Di),

where we use the conditional independence of the local parameters in the last step. This translates
naturally to the loss calculation:

ℓ = ℓΠg,Σg+

m∑
i=1

ℓ
(i)
Πl,Σl

∝ −Eϑ,α,D

[
log pΠg

(
ϑ | fΣg (fΣl

(D))
)
+

m∑
i=1

log pΠl
(αi |ϑ, fΣl

(Di))

]
.

Similar derivations can be found in Heinrich et al. (2023) and Habermann et al. (2024).
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E ALTERNATING IMPORTANCE SAMPLING

For numerical stability, we compute

1. logwi ← log p(D|ϑi) + log p(ϑi)− log q(ϑi|D)

2. logwi ← min(logwi, logw
†), where logw† is the 98th percentile over i

3. wi ← exp(logwi −maxj logwj), such that wi ≤ 1 for all i
4. w̃i ← wi

1
s

∑s
i=1 wi

such that
∑s

i=1 w̃i = s.

Since we have two approximate posteriors (one for the global parameters, one for the random
effects), we have two sets of samples which require separate importance weights (IW). For the global
parameters posterior, the numerator can either use the marginal likelihood,

p(D|ϑ)p(ϑ) =
m∏
i=1

p
(
yi|Xi,β,σ

2
α, σ

2
ε

)
p(β)p(σ2

α)p
(
σ2
ε

)
,

or the conditional likelihood,

p(D|ϑ)p(ϑ) =
m∏
i=1

p
(
yi|Xi,αi,β, σ

2
ε

)
p(αi|σ2

α)p(σ
2
α)p(β)p

(
σ2
ε

)
.

The marginal likelihood may seem more appropriate, because the global posterior does not receive
any explicit information about the random effects, i.e. it is not conditioned on them. However,
calculating the marginal likelihood is inefficient, as it requires a matrix inversion for each sample.
Empirically, parameters recovery also suffers from using marginal likelihood IW. Instead, we plug in
the posterior mean of the random effects for the conditional likelihood IW. The IW for the random
effects posterior is calculated accordingly, this time using the importance-weighted means of the
global parameters. We alternate the two steps 3 times, starting with the local samples.
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F RESULT FIGURES

Descriptors are the same as in Figure 2 and Figure 3B.

F.1 TOY EXAMPLE

Figure 5: Results based on the toy example.

F.2 EXAM

Figure 6: Results based on Exam.
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F.3 GCSEMV

Figure 7: Results based on Gcsemv.

F.4 SLEEPSTUDY

Figure 8: Results based on Sleepstudy.
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