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1  |  DE VELOPMENT OF DIREC TED AND 
R ANDOM E XPLOR ATION IN CHILDREN

Children are natural born explorers. While exploration and active 
learning are quintessential features of development and maturation, 
they also pose fundamental challenges to children and adults alike. In 
particular, efficiently searching for information and rewards requires 

balancing the dual goals of exploring unknown options to learn some-
thing new, and exploiting familiar options to obtain known rewards. 
At a restaurant, should you go with your usual favorite or should you 
try the chef's latest creation? As a child, should you play your fa-
vorite game again or try out something new? Exploring novel options 
can potentially reveal new and even better rewards, but could also 
lead to disappointment. Known as the explore–exploit dilemma, this 
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Abstract
Are young children just random explorers who learn serendipitously? Or are even 
young children guided by uncertainty-directed sampling, seeking to explore in a sys-
tematic fashion? We study how children between the ages of 4 and 9 search in an 
explore–exploit task with spatially correlated rewards, where exhaustive exploration 
is infeasible and not all options can be experienced. By combining behavioral data 
with a computational model that decomposes search into similarity-based generaliza-
tion, uncertainty-directed exploration, and random exploration, we map out devel-
opmental trajectories of generalization and exploration. The behavioral data show 
strong developmental differences in children's capability to exploit environmental 
structure, with performance and adaptiveness of sampling decisions increasing with 
age. Through model-based analyses, we disentangle different forms of exploration, 
finding signature of both uncertainty-directed and random exploration. The amount 
of random exploration strongly decreases as children get older, supporting the notion 
of a developmental “cooling off” process that modulates the randomness in sampling. 
However, even at the youngest age range, children do not solely rely on random ex-
ploration. Even as random exploration begins to taper off, children are actively seek-
ing out options with high uncertainty in a goal-directed fashion, and using inductive 
inferences to generalize their experience to novel options. Our findings provide criti-
cal insights into the behavioral and computational principles underlying the develop-
mental trajectory of learning and exploration.
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fundamental problem contrasts the goals of gaining knowledge to 
reduce uncertainty with immediately acquiring rewards.

Optimal solutions to explore–exploit dilemmas are unattainable 
in all but limiting cases (Bellman, 1952; Gittins & Jones, 1979), making 
heuristic strategies an active area of research in many fields, includ-
ing cognitive and developmental psychology. Whereas many studies 
have investigated how adults balance exploration and exploitation 
(for reviews, see Cohen et al., 2007; Hills et al., 2015; Mehlhorn et al., 
2015), less is known about the developmental processes that shape 
learning and exploration during childhood. Studying how children, 
who have fewer cognitive resources and less experience, approach 
such problems can provide critical insights into the computational 
and behavioral principles that drive learning and development more 
generally. Here, we investigate developmental trajectories in learn-
ing and exploration between the ages of 4 and 9, an age range where 
substantial changes in children's exploration behavior have been 
observed across different tasks (Betsch et al., 2016; Ronfard et al., 
2018; Ruggeri, Markant, et al., 2019; Ruggeri, Xu, et al., 2019). To 
map out developmental trajectories, we combine behavioral data 
from a spatial search task with predictions from a computational 
model that disentangles different forms of exploration. Consistent 
with previous theories (Gopnik et al., 2017), our results show that 
the exploration patterns of young children are characterized by high 
levels of random sampling, which decreases with age. However, even 
at the youngest age range, children do not rely solely on random 
exploration, but they actively seek out options with high uncertainty 
(directed exploration) and use inductive inferences to predict unob-
served rewards (generalization).

1.1  |  How to explore: Random exploration, 
directed exploration, and generalization

Research on explore–exploit problems typically contrasts two dis-
tinct classes of exploration strategies (Gershman, 2018; Wilson 
et al., 2014). Random exploration models exploration by adding noise 
to the decision process (Luce, 1959; Thompson, 1933). Instead of 
only making reward-maximizing decisions, this added randomness 
can lead to the incidental exploration of new options and (better or 
worse) rewards. This exploration strategy is often also referred to 
as undirected exploration, because it is not goal oriented but merely 
relies on adding more randomness to the search process. Related to 
this strategy, it has been recently suggested that children's explora-
tion behavior is characterized by “higher temperature” (i.e., noisier) 
sampling, which “cools off” with age (Gopnik et al., 2017). The idea 
behind the temperature analogy evokes methods such as simulated 
annealing (Kirkpatrick et al., 1983), which is an optimization algo-
rithm that uses a time-dependent reduction of randomness to avoid 
getting stuck in a local optimum. Higher temperatures produce more 
randomness during the search process. Over time, the algorithm 
cools off, implementing a gradual decrease in the amount of random 
exploration of possible solutions. On this view, young children ex-
hibit high amounts of random sampling, which results in exploration 

of a larger set of possibilities compared to adults (Cauffman et al., 
2010; Mata et al., 2013). As children grow older, temperature de-
creases, yielding a stronger focus on reward maximization, leading to 
less diverse sampling behavior (Bonawitz et al., 2014).

Directed exploration (Schulz & Gershman, 2019; Wilson et al., 
2014) is an alternative strategy, which relies on representing one's 
uncertainty about the world and then assigning an intrinsic value to-
ward actively reducing this uncertainty (Gottlieb & Oudeyer, 2018). 
Instead of adding more variability through random (noisy) sampling, 
directed exploration actively seeks out uncertainty. According to 
this view, obtaining information is rewarding in and of itself, and the 
value of an option is inflated through an uncertainty bonus (Auer, 
2002). By valuing uncertainty positively, directed exploration en-
courages sampling options with promising but uncertain rewards, 
rather than focusing merely on exploiting known high-reward op-
tions. Computationally, directed exploration is more demanding, 
since it requires a richer representational structure that encodes 
both expected rewards and the underlying uncertainty. However, al-
ready infants have been shown to value the exploration of uncertain 
options positively (Schulz, 2015), 6-  and 7-year-olds can integrate 
prior beliefs and obtained evidence in simple learning and explo-
ration tasks (Bonawitz et al., 2012), and children aged 7–11 have 
been shown to rely more on directed exploration than adults when 
searching for rewards (Schulz et al., 2019).

In addition to random and directed exploration, the ability to gen-
eralize (Shepard, 1987) is another important cognitive capacity for 
navigating the exploration-exploitation dilemma. In particular, gen-
eralization provides traction for exploring large problem spaces by 
making predictions about novel options. For instance, when Italian 
immigrants came to the United States around 1900, they brought 
with them knowledge and love of the classic Neapolitan pizza. In 
their search for creating similarly rewarding dishes, they explored 
a variety of novel, but similar options—giving the world Chicago-, 
New York-, and California-style pizza, as well as several other new 

Research Highlights

•	 We investigate developmental trajectories in random 
and uncertainty-directed exploration in children be-
tween 4 and 9 years, using a complex explore–exploit 
dilemma with spatially correlated rewards.

•	 Children adapt their search to the structure of the en-
vironment but also exhibit a tendency to explore more 
than beneficial for the goal of maximizing rewards.

•	 We find a reliable decrease of random exploration 
between age 4 and 9, as well as substantial levels of 
uncertainty-directed exploration even in the youngest 
age range.

•	 As random exploration begins to taper off, children are 
already engaging in more sophisticated forms of explo-
ration and generalize their experiences to novel options.
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variations. A child encountering a new toy can predict whether or 
not it will be fun by comparing it to other toys it has encountered. If it 
appears similar to other fun toys, there is a good chance this new toy 
is also fun. Thus, generalization provides critical guidance for which 
options to explore—namely those which are similar to known high-
reward options. On this view, developmental differences in explora-
tion are tightly connected to the ability to make inductive inferences 
about unexplored options based on prior experience. As cognitive 
functions and memory develop, they enable more complex cognitive 
processes and representations (Blanco et al., 2016), thereby sup-
porting more effective generalization for guiding exploration. For 
instance, changes in search behavior over the life span may be due 
to the accumulation of knowledge, with adults having stronger in-
ductive biases than children, who seem to weigh new evidence more 
strongly (Gopnik et al., 2015).

2  |  GOAL S AND SCOPE

While random and directed exploration are conceptually different, 
they are not mutually exclusive. Research shows that both types 
of exploration strategies contribute to search and decision-making 
in adolescent and adult participants (Gershman, 2018; Somerville 
et al., 2017; Wilson et al., 2014), with dissociable neural signatures 
underlying the two forms of exploration (Zajkowski et al., 2017). In 
addition, both children and adults rely on generalization to learn 
about the environment and make inferences from experienced to 
not-yet-explored options (Schulz et al., 2018, 2019; Wu et al., 2018).

The goal of the present paper is to investigate how young chil-
dren, aged 4–9  years, balance random and directed exploration, 
using a spatial search task with correlated rewards. In particular, 
we trace age-related differences in learning and exploration using a 
computational model that combines similarity-based generalization 

with both directed and random exploration (Wu et al., 2018). Our 
data enable a direct test of the “cooling off” hypothesis and offers 
empirical evidence for the trajectory with which random sampling 
decreases over the course of childhood development.

Previous studies have shown reliable signatures of generalization 
and directed exploration in adults, with relatively little random ex-
ploration (Wu et al., 2018; Wu, Schulz, Gershman, 2020). In a com-
parison of children aged 7–11 and adults, Schulz et al. (2019) found 
no age-related differences in random exploration. Rather, children 
differed from adults by having higher levels of directed exploration 
and narrower generalization. While the lack of differences in random 
exploration does not support the idea of a “cooling off” process over 
the lifespan, it could also be the case that children aged 7–11 had 
already transitioned to a lower temperature and had already devel-
oped the capacity for directed exploration. Therefore, our goal is 
to investigate a younger age range to search for the developmental 
stage where random exploration diminishes and directed explora-
tion emerges.

3  |  E XPERIMENT

We used a simplified version of the spatially correlated multi-armed 
bandit paradigm (Wu et al., 2018) to investigate how children learn 
and search for rewards on a grid world by clicking on different tiles 
(Figure 1). Each tile had a different reward distribution, where the 
goal was to accumulate as many rewards as possible within a limited 
search horizon (i.e., a fixed number of clicks). Rather than displaying 
rewards numerically, as in previous experiments (Schulz et al., 2019), 
here the value of rewards was indicated using different shades of 
red to be interpretable by children as young as 4 (Figure 1). In this 
task, rewards were spatially correlated, such that nearby options had 
a similar mean reward. Thus, participants could use generalization 

F I G U R E  1 Example environments and screenshots from experiment. (a) Two rough environments with low spatial correlation and two 
smooth environments with high spatial correlation. Darker shades of red correspond to higher rewards. (b) Exploration task, in which 
children had 25 clicks in each round to obtain as many stars as possible by finding darker (i.e., more rewarding) tiles. (c) Bonus round 
judgments, in which children predicted the rewards for five previously unobserved tiles (tile with dashed border) and made a confidence 
judgment about their prediction

(b) Search task (c) Bonus round(a) Environments
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from a sparse number of observations to guide their exploration to-
ward promising regions of the search space. Importantly, the number 
of available clicks (25) was much smaller than the number of avail-
able options (64), requiring searchers to balance clicking novel tiles 
to discover new rewarding options (exploration) with re-clicking tiles 
already known to provide high rewards (exploitation).

3.1  |  Methods

3.1.1  |  Participants

We recruited 102 children between age 4 and 9 years. There were 54 
children whose age was below or equal to the median of 82 months, 
and 48 children who were older than the median age. We refer to 
the group of younger children henceforth as 6-year-olds (M = 72.6 
months, SD = 7.6, range 51 − 82 months, 24 female), and to the 
group of older children as 8-year-olds (M = 93.1 months, SD = 6.5, 
range 84 − 108 months, 23 female) from public museums in Berlin, 
Germany. In addition to comparing these age groups, we also con-
ducted analyses that treat age as a continuous variable. Fourteen 
additional children were excluded from analysis because they failed 
the instruction check (n = 9), did not want to play anymore (n = 1), 
were not native speakers (n = 2), or because their parents intervened 
during the experiment (n = 2). The study was approved by the ethical 
review board of the Max Planck Institute for Human Development in 
Berlin. Informed consent was obtained from children's legal guard-
ians prior to participation; average duration was about 12 min.

3.1.2  | Materials, design, and procedure

Children played six rounds of a spatial search game on a tablet, in 
which they were presented with an 8 × 8 grid world with spatially 
correlated rewards (Figure 1). The expected reward across all en-
vironments was identical (i.e., average reward over all tiles of a 
grid); what differed between environments was the spatial corre-
lation among rewards. The strength of the spatial correlations was 
manipulated between subjects, with smooth environments having 
stronger spatial correlations than rough environments. For each class 
of environments, we generated 40 different environments using a 
radial basis function kernel (see Equation 1) with either �smooth = 4 or 
�rough = 1. Each environment defined a bivariate reward function on 
the grid, such that each tile location was mapped to a reward value. 
Intuitively, smooth environments had smoother reward functions 
that varied gradually over the grid, whereas rough environments had 
rougher reward functions that varied more suddenly (Figure 1). On 
each round, a new environment was sampled without replacement 
from the set of 40 environments for the respective class.

At the beginning of each round, one random tile was revealed 
and children could sequentially sample 25 tiles. On each trial, they 
could either click a new tile or re-click a tile they had already se-
lected before (clicking was done by touching the desired tile on the 

tablet). Clicking a tile for the first time revealed its color, with darker 
colors indicating higher rewards along a continuous, linearly scaled 
color range (Figure 1). The color (i.e., underlying reward) of the re-
vealed tiles remained visible for the entire duration of the round. Re-
clicked tiles could show small variations in the observed color due 
to normally distributed noise, � ∼  (0, 1), with the revealed color 
indicating the most recent observation (Figure 1b).

To avoid having the global maximum immediately recognizable 
when revealed, we randomly sampled a different maximum value 
in each round from a uniform distribution ∼  (0. 7, 0. 9 ). Color 
values were re-scaled in each round such that the lowest value 
corresponded to 10% of the darkest value and the highest value cor-
responded to the randomly sampled maximum (between 70% and 
90% of the darkest value). Note that because of the noise applied to 
observations, sampled rewards could be below 10% or above 90% 
darkness, hence the additional range in our color scale. Reward val-
ues reported throughout the paper are arbitrarily scaled to the range 
[0,50] to be consistent with previous work (Schulz et al., 2019).

Children were awarded up to five stars at the end of each round 
(e.g., 4.6 out of 5; see Figure 1b), based on the ratio of their average 
reward to the global maximum of the given grid. At the beginning 
of a round, the stars were empty, then they continuously filled up 
in accordance with each obtained reward. The instructed goal was 
to collect as many stars as possible in each round; at the end of the 
game, children received a number of stickers proportional to the av-
erage number of stars earned in each round.

In total, children played six rounds of the spatial search game. 
The first round was a tutorial round, in which children were familiar-
ized with the goal of the game, the spatial correlation of rewards, the 
maximum number of clicks allowed per round, and the possibility of 
re-clicking tiles. Specifically, children were told that before each click 
they would have to decide whether to reveal a novel tile or re-click 
an already revealed tile. Both actions were explicitly demonstrated 
by the experimenter. After the tutorial, children were required to 
answer three comprehension questions. These questions pertained 
to the instructed task, that stars could be collected both by revealing 
new tiles and re-clicking previously revealed tiles, and the distribu-
tion of tiles in the grid (Appendix D, Figure D1 bottom right). If they 
failed to answer any of the questions correctly, the relevant part of 
the instructions was repeated and the questions were asked again. 
If a child failed again, they continued with the experiment, but were 
later excluded from the analyses. Children were not explicitly told 
that the expected reward of individual tiles was constant in each 
round, or that the expected reward across all options was the same 
in each environment. However, we also never suggested otherwise 
(e.g., that rewards might change or reverse over time).

Rounds two to five comprised the actual exploration task, 
where in each round children had 25 clicks to find rewards on the 
grid. The sixth and last round was a bonus round, in which children 
sampled for 15 trials and then made reward predictions for five 
randomly chosen and previously unobserved tiles (Figure 1c). This 
was explained to them before the bonus round started. Judgments 
were made using a continuous slider, asking children to indicate the 
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darkness of the target tile, with the end points labeled as “light” and 
“dark.” When moving the slider, the target tile changed its color ac-
cordingly. The underlying reward scale was continuous, ranging from 
0 to 50. To assess the level of confidence associated with the reward 
predictions, children were asked how certain they were about the 
predicted darkness, using a slider from 0 to 10 in steps of 1, with 
the endpoints labeled as “not certain at all” to “very certain.” After 
judging five tiles, children were asked to select one of them. They 
received the corresponding reward and then continued the round 
until the search horizon was exhausted.

4  |  BEHAVIOR AL RESULTS

We first analyze the behavioral data in terms of performance and 
exploration behavior. These analyses exclude the tutorial and bonus 
rounds, leaving a total of 100 search decisions (4 rounds × 25 tri-
als) for each of the 102 participants. We then report the results of 
the bonus round, where we analyze children's reward predictions 
and confidence judgments. The behavioral data are complemented 
by model-based analyses, where we disentangle generalization, di-
rected exploration, and random exploration. We report both fre-
quentist statistics and Bayes factors (BF) to quantify the relative 
evidence of the data in favor of the alternative hypothesis (HA) over 
the null hypothesis (H0) (see Appendix A for details).

4.1  |  Exploration task: Performance

Whereas both smooth and rough environments had the same ex-
pected rewards, the stronger spatial correlations in the smooth 
environment facilitated better performance for both age groups 
(6-year-olds: Msmooth = 29.9 vs. Mrough = 26, t (52 ) = 3.3, p = 0.002,  
d = 0.9, BF = 22; 8-year-olds: Msmooth = 34.3 vs. Mrough = 28, 
t (46 ) = 6.4, p < 0.001, d = 1.8, BF > 100; Figure 2a). Thus, regardless 
of age, children were able to leverage the spatial correlation of rewards 

in the environment, and performed better in more correlated environ-
ments. Performance was more variable in smooth compared to rough 
environments (6-year-olds: F (29, 23 ) = 3.8, p = 0.002; 8-year-olds: 
F (21, 25 ) = 2.7, p = 0.002), indicating individual differences in the 
ability to learn about and harness the environmental structure when 
searching for rewards.

Eight-year-old children obtained higher rewards than 
6-year-olds in both rough (M = 28 vs. M = 26, t (48 ) = 2.6, p = 0.012,  
d = 0.7, BF = 4.1) and smooth environments (M = 34.3 vs. M = 28.9,  
t (50 ) = 3.3, p = 0.002, d = 0.9, BF = 19). Age-related performance 
differences were also found when treating age as continuous vari-
able (Figure 2b), with performance increasing with age in both 
rough (Pearson's r = . 36, 95% CI = [ . 09, . 58 ], p = 0.011, BF = 6.0)  
and smooth environments (r = . 39, 95% CI = [ . 14, . 60 ], p = 0.004, 
BF = 14).

Figure 2c shows the learning curves (average reward over trials; 
first aggregated within and then across participants). Consistent with 
the overall performance, learning curves increased more strongly in 
smooth compared to rough environments. In rough environments, 
8-year-olds performed slightly better than 6-year-olds, but generally 
there was only little improvement over trials. In smooth environ-
ments, older children learned more quickly than younger children 
and consistently outperformed them. A notable finding is that in 
smooth environments, toward the end of the search, the average 
obtained rewards tended to decrease again, in both age groups, 
suggesting a tendency to continue exploration even at the cost of 
foregone rewards.

4.2  |  Exploration task: Search trajectories

Rather than only comparing performance, we also looked for behavio-
ral patterns in how children searched for rewards, by analyzing the dis-
tance between consecutive choices and how this was affected by the 
magnitude of rewards and the subsequent search decisions. Figure 3a 
shows the distribution of Manhattan distances between consecutive 

F I G U R E  2 Obtained rewards measured in arbitrary units in the range [0,50]. (a) Tukey box plots of the distribution of obtained mean 
rewards, separately for each age group and environment. Each dot is a participant-wise mean, the horizontal line in the box shows the group 
median and the diamonds indicate group means. Dotted line is random performance. (b) Average obtained rewards as a function of age in 
smooth and rough environments. Each dot represents one participant, the dashed line shows a linear regression (±95% CI); dotted line is 
random performance. (c) Learning curves showing the average rewards over trials, first averaged within participants and then aggregated 
across participants; error bars are 95% CIs
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choices. For 8-year-olds, the mean distance was smaller in smooth than 
in rough environments (Msmooth = 2.04 vs. Mrough = 2.69, t (46 ) = −3.1,  
p = 0.003, d = 0.9, BF = 13), indicating they searched more locally in 
the presence of strong spatial correlations. For 6-year-olds, there was 
no difference between environments (Msmooth = 2.11 vs. Mrough = 1.93, 
t (52 ) = 1.0, p = 0.31, d = 0.3, BF = . 42), suggesting a more limited ca-
pability to adapt to environmental structure.

We also analyzed search decisions (Figure 3b) by computing 
the proportions of repeat choices, corresponding to re-clicking the 
previously revealed tile, near choices, corresponding to searching a 
neighboring tile (i.e., distance of 1), and far choices, corresponding 
to clicking tiles with a distance larger than 1. Older children tended 
to search more locally in smooth compared to rough environment, 
while conversely making more far choices in rough compared to 
smooth environments.

This pattern was not observed for 6-year-olds, indicating that 
younger children did not adapt their search patterns to the correla-
tion structure of rewards in the environment. Notably, the number 
of repeat clicks is overall rather low, regardless of age group and en-
vironment (see Section 6). This may also explain the learning curves 
(Figure 2c), which tended to decrease toward the end of each round 
in smooth environments. This demonstrates that children generally 
show higher levels of exploration when searching for rewards, and 
thus less exploitation of high-value options that have already been 
observed.

Finally, we analyzed the relation between the value of a reward 
obtained at time t and the search distance on the subsequent trial 
t + 1. If a large reward was obtained, searchers should search more 
locally, while conversely, if a low reward was obtained, searchers 
should be more likely to search farther away. Using hierarchical 
Bayesian regression analyses, we predicted search distance using 
the reward obtained on the previous step, age group, and their in-
teractions as population-level (“fixed”) effects, while treating par-
ticipants as random intercepts. Figure 3c shows how the reward 
obtained from the previous choice related to subsequent search 
distance (see Table B1 in Appendix B for detailed results). Both 6- 
and 8-year-olds tended to search more locally when high rewards 
were obtained and searched further away when low rewards were 
obtained. The two age groups were differentially influenced by the 
obtained rewards, such that 8-year-olds more markedly increased 
the distance following low rewards compared to 6-year-olds, in both 
smooth and rough environments. Taken together, these findings in-
dicate that the magnitude of rewards influenced search distance, but 
8-year-olds were more responsive in adapting their search behavior 
than 6-year-olds.

4.3  |  Bonus round judgments

The last round was a bonus round in which children made 15 search 
decisions and then predicted the expected rewards for five random, 
unrevealed tiles. Additionally, they were also asked how confident 
they were about the predicted reward (i.e., darkness of tile).

Figure 4a shows the mean absolute error between children's 
estimates and the true underlying expected reward. Overall, 
8-year-olds had lower prediction error than 6-year-olds (M = 11.5 vs. 
M = 16.5, t (100) = 3.9, p < 0.001, d = 0.8, BF > 100). The difference 
between age groups was found in both environments, albeit less 
pronounced in rough (M = 11.5 vs. M = 15.5; t (48 ) = 2.4, p = 0.019,  
d = 0.7, BF = 2.9) compared to smooth environments (M = 17.2 vs. 
M = 11.5; t (50 ) = 3.0, p = 0.004, d = 0.8, BF = 9.1). Aggregating both 
age groups, we found no effect of environment on prediction error 
(Mrough = 13.4 vs. Msmooth = 14.8; t (100) = −1.0, p = 0.32, d = 0.2,  
BF = . 32). We constructed a random baseline by sampling 10,000 
random values from the reward interval [0, 50 ] and 10,000 samples 
(with replacement) from the true reward values in the bonus round 
environments that children experienced. We then computed the 
absolute error between each random guess and the bootstrapped 
true values, and finally computed the mean absolute error across all 
samples. Compared to this random baseline, 6-year-olds performed 
worse than chance level (t (53 ) = 2.7, p = 0.009, d = 0.4, BF = 4.2),  
whereas 8-year-olds were better than chance (t (47 ) = −3.1, 
p = 0.003, d = 0.4, BF = 9.6). Younger children's performance below 
chance level can be traced to a tendency to frequently make extreme 
judgments, a tendency that has also been observed in other studies 
(Chambers, 2002; Meder et al., 2020). Out of the 270 judgments, 83 
(31%) times 6-year-olds predicted a reward of 0 or 50, whereas this 
was much less frequent in 8-year-olds (22 out of 240, 9%). Since the 
true rewards in the experienced bonus environments were normally 
distributed (with a mean around 22), this bias substantially increased 
prediction error in younger children, resulting in below chance level 
performance.

Looking at prediction error as a function of age in months 
(Figure 4), we found that in both rough and smooth environments 
children's prediction error declined with age (rough: r = − . 40, 
p = 0.004, BF = 14, smooth: r = − . 46, p < 0.001, BF = 57). Across all 
judgments and children, we found no systematic relation between 
confidence and prediction error (Kendall's rank correlation: r� = . 07, 
p = 0.04, BF = . 67). A Bayesian regression with confidence, age group, 
and their interaction as predictors and subject-wise random intercept 
also showed no reliable relationship (see Table B2 in Appendix B).

We also analyzed whether the distance to previously revealed 
tiles was related to participants’ reward predictions and confidence. 
For each participant, we computed the average (Manhattan) distance 
of each of the five target tiles to the 15 previously revealed tiles. We 
then computed subject-wise correlations between distance and ei-
ther prediction error or confidence, respectively. Seventeen children 
gave the same confidence judgment to all five predictions, such that 
the correlation was undefined and were omitted from these analy-
ses. Generally, more proximal target tiles tended to produce lower 
prediction error (mean correlation: Mr = . 12) and higher confidence 
(Mr = − . 07). However, there were substantial variation between age 
groups and environments. The prediction error of 8-year-olds de-
creased more strongly with spatial proximity than 6-year-olds in both 
environments, although age-related differences were only reliable 
in rough environments (Rough: mean correlation M8−year−olds = . 24 
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vs M6−year−olds = − . 07, two-sample t test t (48 ) = −2.2, p = 0.034,  
d = 0.6, BF = 1.9; Smooth: M8−year−olds = . 17 vs M6−year−olds = . 12,  
t (50 ) = −0.3, p = 0.754, d = 0.1, BF = . 29). Similarly, the confidence 
ratings of 8-year-olds were higher for more proximate targets 
than for 6-year-olds, but the age-related differences were not re-
liable (Rough: M8−year−olds = − . 21 vs M6−year−olds = . 05, t (38 ) = 1.8,  
p = 0.079, d = 0.6, BF = 1.1; Smooth: M8−year−olds = − . 12 vs 
M6−year−olds = . 01, t (43 ) = 0.8, p = 0.420, d = 0.2, BF = . 39). These 
findings indicate that older children's reward predictions and confi-
dence tended to be more strongly influenced by the spatial distance 
to known options than 6-year-olds’ judgments, but the age-related 
differences were not consistent.

To analyze selected and nonselected options, we first av-
eraged the predicted reward and confidence of the not-chosen 
tiles within subjects, and then compared chosen and not cho-
sen options. Selected tiles tended to have higher predicted re-
wards (Mchosen = 32 vs Mnonchosen = 28.9, t (101) = 2.4, p = 0.018, 
d = 0.3, BF = 1.7), and there was also a tendency to select options 
where participants were more confident in their reward predic-
tions (Mchosen = 7.59 vs. Mnonchosen = 7.04, t (101) = 2.2, p = 0.028, 
d = 0.2, BF = 1.2). Selected tiles also tended to have a higher true 
reward than nonselected tiles, but the difference was not reli-
able (Mchosen = 23.75 vs. Mnotchosen = 21.95, t (101) = 2.0, p = 0.048,  
d = 0.3, BF = . 74). Thus, children tended to choose options they 

F I G U R E  3 Search trajectories. (a) Histogram of distances between consecutive search choices. A distance of zero indicates a repeat click; 
a distance of 1 corresponds to clicks on neighboring tiles; distances >1 correspond to other clicks on the grid. The vertical dashed line marks 
the difference between a repeat click and selecting any other tile. (b) Average proportion of search decisions by age group and environment. 
Repeat clicks correspond to re-clicking a previously revealed tile, near clicks correspond to directly neighboring tiles, and far clicks are 
sampling decisions with a distance >1. (c) Search distance as function of reward obtained on the previous trial. The lines visualize the relation 
between search distance and previous reward for each age group and environment, obtained from a Bayesian regression (±95% CI). The dots 
show the observed mean distances given previous rewards, aggregated across all decisions and children. One outlier has been removed from 
the lower plot, but is included in all statistical analyses.

F I G U R E  4 Bonus round judgments. (a) Mean absolute prediction error for 6- and 8-year-olds. (b) Mean absolute prediction error as 
function of age. Each dot is one participant, the dashed line shows a linear regression (±95% CI). Dotted line is random performance
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expected to have high rewards and for which they were confident 
in their predictions.

In summary, 8-year-olds obtained higher rewards than 
6-year-olds, with both groups performing better in smooth com-
pared to rough environments, facilitated by stronger spatial correla-
tions. Participants adapted their search patterns in response to the 
magnitude of obtained rewards, searching locally upon finding rich 
rewards, and searching farther away upon finding poor rewards. The 
responsiveness of this adaptive search pattern was mediated by age, 
where 8-year-olds exhibited a stronger relationship between reward 
value and search distance than 6-year-olds. Lastly, prediction accu-
racy increased reliably with age, but there was no relation between 
children's subjective confidence in their reward judgments and their 
prediction error.

5  |  A COMPUTATIONAL ANALYSIS OF 
DIREC TED AND R ANDOM E XPLOR ATION IN 
CHILDREN

The behavioral data presented above show strong and systematic 
differences between the exploration behavior of 6- and 8-year-old 
children. We next present a computational model that captures key 
aspects of generalization and sampling strategies in order to map the 
developmental trajectory of learning and exploration. In particular, 
the model provides a clear computational framework for estimating 
to what extent children generalize about the spatial correlation of 
rewards, and how their sampling behavior can be decomposed into 
directed and random exploration.

5.1  |  The Gaussian process upper confidence 
bound (GP-UCB) model

Our model consists of three building blocks: a learning model that 
makes predictions about the distribution of rewards in the environ-
ment, a sampling strategy, which maps these predictions onto valu-
ation of options, and a choice rule, which converts value into choice 
probabilities. We now briefly describe these components, with fur-
ther details provided in Supplement S1.

5.1.1  |  Learning model

To model learning about rewards in the environment we use 
Gaussian Process (GP) regression as a form of Bayesian function 
learning (Rasmussen & Williams, 2006). The GP uses the principles 
of Bayesian inference to adaptively learn a value function, mapping 
the location of each option onto rewards. Generalization about novel 
options is thus accomplished through interpolation or extrapolation 
from previous observations (rewards and their locations). This ap-
proach has been shown to account for how adults explicitly learn 
functions (Lucas et al., 2015), and has been successfully applied to 

model the behavior of children and adults in a wide range of learn-
ing and search tasks (Schulz et al., 2017, 2019; Wu, Schulz, Garvert, 
et al., 2020; Wu, Schulz, & Gershman, 2020; Wu et al., 2018).

Formally, a GP defines a distribution over functions 
f ∼ 

(
m (x) , k

(
x, x �

))
, where each function can be interpreted 

as a candidate hypothesis about the relationship between spatial 
location and expected rewards. The GP prior is determined by a 
mean function m(x) and a kernel function k

(
x, x ′

)
. We follow the 

convention of setting the mean function to zero, while using the 
kernel function to encode the covariance structure. Put simply, 
the kernel provides an inductive bias about how points in the input 
space are related to each other as a function of distance (i.e., spatial 
similarity). A common choice for the kernel is the radial basis func-
tion (RBF): 

where x and x ′ denote two inputs (e.g., coordinates of tiles on the 
grid) and � is the length-scale parameter governing the extent of gen-
eralization. Put simply, the RBF kernel models generalization as an 
exponentially decaying function of the distance between inputs x 
and x ′. This kernel is closely related to Shepard’s (1987) universal law 
of generalization, which models generalization as an exponentially 
decaying function of similarity, where similarity is the inverse of 
distance. In the present study, the � parameter specifically pertains 
to generalization about the extent of spatial correlation of rewards 
in the environment, where higher � values correspond to stronger 
spatial correlations. For instance, � = 1 indicates that the rewards 
of two neighboring tiles are assumed to be correlated by r = . 61; if 
options are further than three tiles away, the correlation decays to 
effectively zero. Smaller values of � indicate that the assumed cor-
relation decays more rapidly as a function of distance, while larger 
values of � indicate stronger spatial correlations. Thus, this param-
eter represents how strongly participants generalize across options 
(tiles) based on their spatial proximity.

In the present task, GP regression generates normally distributed 
beliefs about the rewards for any tile x, summarized as expectation 
� (x) and uncertainty � (x). These predictions are modulated by the 
length-scale parameter �, which defines the extent to which rewards 
are assumed to be correlated as a function of distance. For instance, 
� = 1 corresponds to the assumption that the rewards of two neigh-
boring tiles are correlated by r = 0.6, and that due to the exponential 
decay this correlation effectively decreases to zero for options fur-
ther than three tiles apart. We treat � as a free parameter, which we 
estimate for each individual participant. This enables us to assess 
each child's tendency to generalize.

5.1.2  |  Sampling strategies

Given a learner's belief about expected reward � (x) and esti-
mated uncertainty � (x), we use a sampling strategy to map these 

(1)k
(
x, x �

)
= exp

(
−
| |x − x � | | 2

2�2

)
,
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beliefs onto a valuation for each option. Specifically, we use Upper 
Confidence Bound (UCB) sampling (Auer, 2002) to model directed ex-
ploration as a simple weighted sum: 

where � is the mean expected reward and � represents the extent to 
which uncertainty � (measured in terms of the standard deviation of x) is 
valued positively. The parameter � is an “uncertainty bonus,” since it opti-
mistically inflates expected rewards by their degree of uncertainty. UCB 
provides an effective sampling strategy for balancing the exploration-
exploitation dilemma, by mediating between exploring novel options 
to  reduce uncertainty while also prioritizing the exploitation of high-
value options.

To illustrate this sampling strategy, consider two options (tiles) 
x1 and x2. Option x1 has expected reward of �

(
x1

)
= 50 and uncer-

tainty �
(
x1

)
= 5. Option x2 has expected reward of �

(
x2

)
= 45 and 

uncertainty �
(
x2

)
= 15. Thus, option x1 has higher expected re-

ward than x2, but x2 is more uncertain. UCB sampling takes into ac-
count both reward and uncertainty to balance the explore–exploit 
trade-off. For instance, if � = 1, UCB (x1 |� = 1) = 50 + 5 = 55 
and UCB (x2 |� = 1) = 45 + 15 = 60, meaning that option x2 
is more attractive than option x1. By contrast, if � = 0.2, then 
UCB (x1 |� = 0.2 ) = 50 + 1 = 51 and UCB (x2 |� = 0.2 ) = 45 + 3 = 48. 
In this case, option x1 is valued higher than x2, making it more likely 
to click this tile. Thus, the higher �, the stronger a searcher values 
uncertainty positively, nudging them toward sampling uncertain op-
tions. Conversely, when � → 0 the value of an option is dominated by 
its expected reward, regardless of the attached uncertainty. In our 
model, we estimate � for each learner based on their individual search 
behavior, to assess their level of uncertainty-directed exploration.

5.1.3  |  Choice rule

The final component of the model is the choice rule, which 
translates UCB values into choice probabilities with a softmax 
function: 

Importantly, the softmax choice contains a temperature pa-
rameter � that governs the amount of randomness in the choice 
probabilities. This enables us to quantify the amount of random 
exploration for each learner. Higher temperature sampling corre-
sponds to noisier predictions, where as � → ∞, all options have an 
equal probability of being chosen. Conversely, lower temperatures 
produce choice probabilities that are more concentrated on high-
value options, where as � → 0, it becomes an argmax choice rule (i.e., 
always choosing the option with the highest value). In our model, � 
is estimated from the data, to assess the amount of random explo-
ration for each child.

5.1.4  | Model summary

In sum, the GP-UCB model combines (i) a learning component that 
generalizes from limited observations to unobserved options, (ii) a 
UCB sampling strategy that inflates expectations of reward by the 
associated uncertainties to perform directed exploration, and (iii) 
a softmax choice rule that converts UCB values into choice prob-
abilities and adds decision noise as a form of random exploration. 
Each model component has a single free parameter that we esti-
mate through cross-validation from children's search decisions: the 
length-scale parameter � indicates the extent of generalization, the 
uncertainty bonus � defines the level of directed exploration, and 
the temperature parameter � captures the amount of random explo-
ration Careful analyses of these parameters provides a window into 
the computational principles of learning and exploration, enabling us 
to identify age-related changes.

5.2  |  Model comparison

We contrast the predictive accuracy of the GP-UCB model with a 
Bayesian reinforcement learning model (Mean Tracker; MT). Both 
models share the same uncertainty bonus � and temperature pa-
rameter �, but in place of the GP � parameter, the MT uses an error 
variance parameter �2

�
, which can be interpreted as inverse learning 

sensitivity. Thus, both models have three free parameters, where the 
MT model uses the same UCB and softmax components, but does 
not generalize. Instead, it learns independent reward distributions 
about each option using the principles of associative learning (see 
Supplement S1 and S2 for details and extended model results includ-
ing additional sampling strategies).

We used cross validation to assess how well the models predict 
each searcher's sampling decisions, where—as before—we omit the 
tutorial round and bonus round. Specifically, we iteratively split each 
child's data into a training set consisting of three of the four rounds, 
and holding out the remaining round as a test set. We computed the 
maximum-likelihood estimates for each model's parameters (range 
[
exp (−5) , exp (4)

]
) using differential evolution (Mullen et al., 2011) 

and then evaluated each model's predictive accuracy on the held-
out test set. This procedure was repeated for each participant for 
all rounds.

We can describe the objective performance of our models using 
predictive accuracy as a pseudo-R2, comparing the summed out-of-
sample log loss for each model k against a random model (i.e., choos-
ing all options with equal probability):

where log  represents log loss. Intuitively, R2 = 0 indicates chance-
level predictions and R2 = 1 indicates theoretically perfect predictions.

Figure 5a shows the predictive accuracy of the two models for 
both age groups. The GP-UCB model had higher predictive accuracy 

(2)UCB (x) = � (x) + �� (x)

(3)p (x) =
exp (UCB (x) ∕�)

∑
N
j= 1

exp
�
UCB

�
xj

�
∕�

� .

(4)R2 = 1 −
log

(
Mk

)

log
(
Mrand

) ,
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than the MT-UCB model overall (t (101) = 6.6, p < 0.001, d = 0.7,  
BF > 100), and also for each age group (6-year-olds: t (53) = 3.4, 
p = 0.001, d = 0.5, BF = 22; 8-year-olds: t (47) = 6.1, p < 0.001, d = 1.0,  
BF > 100). In total, 73 out of 102 participants were best described by 
the GP-UCB model: 34 out of 54 six-year-olds (63%) and 39 out of 
48 eight-year-olds (81%). These results demonstrate the importance 
of generalization, since this component was not present in the MT 
learning model.

5.3  |  Developmental differences in 
parameter estimates

To map the developmental trajectories of learning and search, we 
analyzed the parameter estimates of the GP-UCB model (Figure 5b). 
There was no difference in the level of generalization (� parame-
ter) between 6- and 8-year-olds (Mann–Whitney U-test: U = 1093,  
p = 0.18, r� = − . 11, BF = . 42). We also analyzed whether the esti-
mate for the generalization parameter differed between smooth and 
rough environments. The mean � estimates were higher in smooth 
than in rough environments (Msmooth = 2.8 vs. Mrough = 0.56), in line 
with the difference in ground truth (�smooth = 4 vs. �rough = 1). This 
difference was observed for both age groups (6-year-olds: M = 3.3 
vs. M = 0.4 and 8-year-olds: M = 2.1 vs. M = 0.53). However, no reli-
able difference between environments was found when performing 
a comparison of median parameter values (Mann–Whitney U-test: 

Mdsmooth = 0.42 vs. Mdrough = 0.41, U = 1425, p = 0.405, r� = . 07,  
BF = . 33). Generally, there was a tendency to undergeneralize; a 
finding that echoes related research with adults (Wu et al., 2018) and 
older children (Schulz et al., 2019). While this may indicate a poten-
tial limitation in the ability to harness the amount of spatial correla-
tion in the environment, simulations show that undergeneralization 
tends to produce better performance than overgeneralization, and 
can in fact sometimes lead to better performance than precisely 
matching the true amount of spatial correlation in the environment 
(Wu et al., 2018).

While there was little difference between age groups regarding 
their extent of generalization, we found systematic developmental 
differences in directed and random exploration. Younger children 
had higher estimates than older children for both the exploration 
bonus � (U = 1602, p = 0.041, r� = . 17, BF = 1.6) and temperature � 
(U = 1688, p = . 009, r� = . 21, BF = 2.2), with a stronger age-related 
decrease for the latter. These results indicate that 6-year-olds exhib-
ited a stronger tendency toward both directed and random explora-
tion than 8-year-olds.

Figure 5c–f provide a more detailed analysis of these findings 
by treating age as a continuous variable. First, Figure 5a shows that 
the predictive accuracy of the GP-UCB model increased with age 
(Kendall's r� = . 27, p < 0.001, BF > 100). Second, consistent with the 
group-based analyses, there were little changes in the generalization 
parameter � as a function of age (r� = . 10, p = 0.14, BF = . 39). In con-
trast, both the uncertainty bonus parameter � and in particular the 

F I G U R E  5 Model comparison and parameter estimates of the GP-UCB model. (a) Predictive accuracy (pseudo-R2) of mean tracker (MT) 
and Gaussian process (GP) learning model combined with upper-confidence bound (UCB) sampling. Each dot represents one participant 
with the mean out-of-sample accuracy across rounds (excluding practice and bonus round). Box shows IQR, the line is the median and the 
diamond is the mean. (b) Individual parameter estimates of the GP-UCB model by age group. (c) Predictive accuracy of the GP-UCB model as 
function of age. (d–f) Parameter estimates of the GP-UCB model as function of age. Each dot represents one child with their cross-validated 
median parameter estimates. Dashed line indicates a linear regression (±95% CI)
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temperature parameter � of the softmax function decreased with 
age. Younger children tended to have higher values of � (r� = − . 14,  
p = 0.043, BF = 1.0), indicating a somewhat larger value placed on 
reducing uncertainty, and thus more directed exploration. Whereas 
the age-related change in directed exploration were rather weak, 
there was a marked decrease in the temperature parameter � 
(r� = − . 23, p < 0.001, BF = 46). Thus, the amount of random sam-
pling decreased with age. These same changes in parameters as a 
function of age also hold when controlling for the predictive accu-
racy of the GP-UCB model (see Figure B2 and Table B2 in Appendix 
B), although these analyses find a slightly stronger increase in � as a 
function of age, indicating broader generalizations as children grow 
older. We additionally analyzed parameter estimates for � and � sep-
arately for children best accounted for by the GP-UCB and MT-UCB 
model, respectively (Appendix C). The same qualitative trends for � 
and � were obtained within both subgroups as in the overall analysis, 
with a strong decrease for the random exploration parameter � and 
weaker age-related differences for the directed exploration param-
eter �. This was the case regardless of whether children's behavior 
was overall better described by the GP-UCB model or the MT-UCB 
model. Thus, the overall trends do not result from aggregating across 
subgroups with qualitatively different exploration strategies.

Taken together, these analyses provide a window into the de-
velopmental trajectories of exploration behavior, showing how both 
directed and, in particular, random exploration decrease as children 
get older.

5.4  |  Parameter estimates and performance

The extent of generalization � was positively correlated with perfor-
mance in both age groups (6-year-olds: r� = . 19, p = 0.041, BF = 1.4;  
8-year-olds: r� = . 25, p = 0.011, BF = 4.4). The stronger correlation 
for 8-year-olds suggests that, compared to 6-year-olds, they were 
better able to use generalization about the spatial correlation of re-
wards to achieve higher performance.

Both the uncertainty bonus � (6-year-olds: r� = − . 26, p = 0.005, 
BF = 8.7; 8-year-olds: r� = − . 29, p = 0.003, BF = 13) and the random 
exploration parameter � (6-year-olds: r� = − . 38, p < 0.001, BF > 100;  
8-year-olds: r� = − . 28, p = 0.005, BF = 8.8) were negatively cor-
related with performance, showing how too much exploration can 
hurt performance within the demands of the experiment. For di-
rected exploration, high values of � can lead to excessive exploration 
at the cost of forgoing options with high expected rewards, and is 
a direct outcome of the explore–exploit trade-off defined by UCB 
sampling (Eq. 2). For random exploration, the higher the temperature 
�, the more behavior tends toward random choice and random per-
formance, regardless of the learning mechanisms (GP vs. MT) or the 
UCB trade-off between exploitation and exploration that enter the 
softmax choice rule (Equation 3).

Thus, one key mechanism underlying the age-related perfor-
mance differences is that younger children where characterized by 
higher levels of both directed and random exploration compared to 

8-year-olds, who therefore were better able to harness the spatial 
correlation of rewards in the environment. Yet the optimal level of 
exploration ultimately depends on the demands of the environment, 
particularly the available time horizon. Over long horizons, high ini-
tial exploration can pay dividends when there are ample opportuni-
ties for exploration down the road. Our participants may have been 
better calibrated to the long-horizon of their lifespan, than the short-
horizon of our task.

Differences in exploration also allow us to explain some age-
related differences in performance. The observed performance dif-
ferences in 6-year-olds between smooth and rough environments 
can be at least partially attributed to differences in the amount of 
random exploration in the two types of environment, since too 
much random exploration typically hurts performance in struc-
tured environments (Schulz et al., 2019; Wu, Schulz, Garvert, et al., 
2020). Although they did not adapt their search trajectory to the 
same extent as 8-year-olds did (Figure 3b), 6-year-olds still achieved 
better performance in smooth compared to rough environments 
(Figure 2a). Indeed, 6-year-olds showed a higher amount of random 
exploration (i.e., higher temperature parameter � in rough compared 
to smooth environments (Md� = 2.02 vs Md� = 0.11), although the 
difference was not statistically reliable (U = 268, p = 0.112, r� = . 18,  
BF = . 67). Eight-year-olds also showed slightly higher levels of ran-
dom exploration in rough environments, but the difference was less 
pronounced than for 6-year-olds (Md� = 0.05 vs Md� = 0.02; U = 229,  
p = 0.245, r� = − . 14, BF = . 59). However, the analysis of the search 
trajectories shows that 8-year-olds were generally better able to 
adapt their search trajectories to the structure of the environment 
(e.g., by searching more locally in smooth environments), helping 
them to better exploit the correlation between rewards.

6  |  GENER AL DISCUSSION

We investigated how 6- and 8-year-old children search for rewards 
in a spatial version of the explore–exploit dilemma, focusing on dis-
entangling how generalization, random exploration, and directed 
exploration contribute to age-related changes. Although general 
performance increased with age, we found that even younger chil-
dren could successfully generalize the observed spatial correlations 
and use this knowledge to guide their search for rewards. Children 
adapted their exploration behavior depending on the rewards they 
obtained, with 8-year-olds showing a stronger relationship between 
obtained rewards and search distance. Finally, while prediction ac-
curacy in the bonus round increased with age, there was no relation 
between children's confidence and their prediction error.

The model-based analyses showed that the GP-UCB model 
provided a better account of children's behavior than the MT-UCB 
model, highlighting the importance of similarity-based generaliza-
tion. A key finding is a strong age-related decrease of random explo-
ration, represented by the τ parameter of the softmax choice rule, 
consistent with the hypothesis that children's temperature “cools 
off” as they get older (Gopnik et al., 2017).
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However, children's exploration behavior was not solely driven 
by random exploration, but also by a high amount of uncertainty-
directed sampling, as indicated by high levels of the uncertainty-
bonus parameter �. The valuation of uncertainty also tended to 
decrease with age, but this trend was much weaker compared to the 
tapering off of random exploration.

Our findings extend the developmental investigation of chil-
dren's exploration behavior, complementing previous research with 
older children (Schulz et al., 2019), as well as adolescent and adult 
participants, who also show signatures of both types of exploration 
strategies (Wilson et al., 2014; Wu et al., 2018). Table 1 provides an 
overview of children and adults’ model parameters across different 
studies using similar versions of the multi-armed spatially correlated 
bandit paradigm. The comparison shows that children up to around 
age 11 show higher levels of directed exploration than adult sub-
jects, whereas adults tend to generalize more strongly. High levels 
of random exploration were only observed in 6-year-olds, indicating 
that this form of exploration diminishes earlier in development than 
uncertainty-guided exploration. Future studies should systemat-
ically investigate an even broader age range (e.g., from childhood 
through adolescence to adulthood, ideally in a longitudinal design) to 
identify changes in exploration and generalization over the lifespan.

Children are keen explorers—but are they good exploiters? One 
peculiar finding we obtained was the low number of exploitation deci-
sions (i.e., repeat clicks; Figure 3b). Across all children and rounds (ex-
cluding tutorial and bonus round), the proportion of repeat clicks was 
about 7% (6-year-olds: 6.8%, 8-year-olds: 7.5%). While this proportion 
was comparable to participants in a similar age range as reported in 
other studies (e.g., Schulz et al., 2019, reported 5.6% repeat clicks for 7- 
to 8-year-olds and 6.4% for 9- to 11-year-olds), this contrasts with the 
behavior of adults, who typically show a higher proportions of repeat 
clicks; 12% in Wu et al. (2018, averaged across three experiments) and 
32.1% in the study by Schulz et al. (2019). Lower exploitation rates for 
children have also been observed in simpler bandit tasks with fewer op-
tions and independent reward distributions (Blanco & Sloutsky, 2019).

The tendency to over-explore might be responsible for the de-
crease of children's average rewards toward the end of the search 
horizon (Figure 2c). Indeed, given a fixed search horizon, it is typi-
cally better at some point to start exploiting the found high-reward 
options, rather than keeping on searching for even better options. 
It is likely that this behavior was driven by the high amount of both 
random and directed exploration, as captured by a high temperature 
parameter �, leading to increased random sampling, and a high un-
certainty bonus �, leading children to optimistically inflate expected 
rewards of unobserved tiles. While this tendency to over-explore 
impaired performance in our task, it may nevertheless be adaptive in 
some settings (Sumner et al., 2019), by allowing children to discover 
changes that are not obvious and are overlooked by adults (Gopnik 
et al., 2015; Lucas et al., 2014). It could be especially adaptive in 
dynamic environments where reward structures change over time 
(Behrens et al., 2007; Speekenbrink & Konstantinidis, 2015). In such 
nonstationary environments, previously rewarding options may no 
longer be valuable at a later point in time, thereby benefiting contin-
uous exploration.

Another factor contributing to the drop-off in performance to-
ward the end of rounds might be genuine curiosity about discover-
ing the rewards associated with unrevealed tiles. Indeed, anecdotal 
evidence suggests that some children were prone to an additional 
“novelty bonus” based on expressions of excitement when re-
vealing new tiles. One interpretation of this is that the objectively 
same reward from a known tile might be valued less compared to 
the very same reward obtained from revealing a novel tile. This is 
in line with various theories of curiosity (Berlyne, 1950; Dubey & 
Griffiths, 2019; Gottlieb & Oudeyer, 2018; Gottlieb et al., 2013; 
Kidd & Hayden, 2015) that posit intrinsic rewards from novel stim-
uli, which have been linked to the lifespan goal of self-development 
(Lopes & Oudeyer, 2012). In the present study, curiosity and the 
intrinsic reward signals associated with revealing new tiles might 
have contributed to the declining performance toward the end of 
the search round. Despite the instructed aim of the experiment, 

TA B L E  1 Comparison of predictive accuracy and GP-UCB parameter estimates across different studies with children and adults, using 
the spatially correlated multi-armed bandit paradigm

Age group Accuracy R2 Generalization λ Uncertainty bonus �
Randomness 
τ

Current study

6-year-olds (N = 54) 0.09 0.41 0.57 0.18

6-year-olds (N = 54) 0.18 0.42 0.54 0.04

Schulz et al. (2019)

6-year-olds (N = 54) 0.17 0.44 0.51 0.01

6-year-olds (N = 54) 0.26 0.53 0.50 0.02

6-year-olds (N = 54) 0.39 0.83 0.24 0.03

Wu et al. (2018)

6-year-olds (N = 54) 0.26 0.74 0.40 0.03

Note: R2 is the mean predictive accuracy of the GP-UCB model. Model parameters �, �, and � are the median values of the cross-validated estimates. 
We report the mean across three experiments from Wu et al. (2018), which used both 1D (Exp. 1) and 2D spatially correlated bandits (Exps. 2 and 3), 
with similar smooth and rough environments (Exp. 1 and 2) or natural environments defined by agricultural data (Exp. 3).
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children may find it more rewarding to try out novel options, even 
to the detriment of accumulating higher rewards through exploiting 
known options. Therefore, an important avenue for future research 
is to integrate theories and models of curiosity with generalization, 
directed exploration, and random exploration (Brändle et al., 2020).

Another critical question for future research concerns the rep-
resentation of uncertainty in learning and exploration. In our task, 
the spatial correlation of rewards favors a more complex represen-
tation of uncertainty structured around generalization, but in other 
tasks simpler representations of uncertainty may provide a better 
account. For instance, count-based exploration strategies operate 
on simpler representations of uncertainty solely based on the num-
ber of experiences with a certain stimulus (e.g., the number of times 
a tile has been visited; Bellemare et al., 2016; Cogliati Dezza et al., 
2019). This representation of uncertainty can be used to implement 
a variant of the GP-UCB model, where the posterior uncertainty 
� (x) is replaced with a count-based representation of uncertainty 
(Supplement S1). Exploratory analyses with a GP count-based model 
with our data suggest promising results (Supplement S2), yet also 
present a crucial limitation. Specifically, the uncertainty estimates 
of the count-based model are decoupled from the generalization 
component, producing identical uncertainty estimates for all unob-
served options. This holds for both near and distant options, disre-
garding the level of spatial proximity to previous observations. This 
is also the case for time-based representations, where uncertainty 
is assumed to increase the longer an option has not been chosen 
(Blanco & Sloutsky, 2019). In this sense, the count-based account 
is similar to the MT model, where both the estimates of reward and 
uncertainty are updated only when a tile is observed. When using a 
count-based representation of uncertainty, reward estimates are in-
fluenced by generalization, but not the uncertainty of rewards which 
is solely a function of previous visits. By contrast, the GP-UCB model 
generalizes both reward expectations and attached uncertainty by 
exploiting the correlation structure of rewards in the environment. 
In fact, research with adults has shown that confidence judgments 
are systematically related to the uncertainty estimates predicted by 
the GP (Wu, Schulz, Garvert, et al., 2020; Wu, Schulz, & Gershman, 
2020), as opposed to being uniform across all unobserved options. 
(We observed a similar relation for 8-year-olds in our study, but the 
data were rather noisy, so a cautious interpretation is warranted; see 
Appendix B). Future research should contrast different representa-
tions of uncertainty in their ability to predict children's and adults’ 
confidence judgments about expected rewards of novel options, to 
gain a better understanding of possible developmental trends in the 
representation of uncertainty across the lifespan.

7  |  CONCLUSIONS

Our study provides important new insights into the developmental 
origins and trajectory of learning and exploration, revealing some of 
its underlying computational principles. Being able to disentangle 
the role of generalization, and directed versus random exploration 

enriches our understanding of how children learn about the world 
they live in (Buchsbaum et al., 2011; Gopnik et al., 2001) and the peo-
ple they interact with (Bridgers et al., 2019; Jara-Ettinger et al., 2016). 
It is also important to extend this computational approach to inves-
tigate the exploration behavior of even younger preschoolers, tod-
dlers, and infants, to identify a more comprehensive developmental 
trajectory and potentially account for individual differences. Finally, 
connecting this line of work with the growing body of research and 
theories on curiosity promises to bring us one step closer to identify-
ing the key to children's impressively successful early learning.
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APPENDIX A

S TATIS TIC AL ANALYSE S
We report both frequentist statistics and Bayes factors (BF) to 
quantify the relative evidence of the data in favor of the alternative 

hypothesis (HA) over the null hypothesis (H0). All model specifica-
tions and R-code are available online at https://osf.io/eq2bk/

Group comparisons
Frequentist tests are reported as t tests for parametric compari-
sons, and Mann–Whitney U-test or Wilcoxon signed-rank test for 
nonparametric comparisons. Bayes factors are based on the de-
fault two-sided Bayesian t test for either independent or depend-
ent samples, using a Jeffreys–Zellner–Siow prior with its scale set 
to 

√
2∕2 (Rouder et al., 2009). All statistical tests are nondirectional 

as defined by a symmetric prior. Bayes factors for the Mann–
Whitney U-test are based on performing posterior inference over 
the test statistic (Kendall's r�), assigning a prior using parametric 
yoking (van Doorn et al., 2020). Bayes factors for nonparametric 
comparisons are based on performing posterior inference over 
the test statistics (Kendall's r� for the Mann–Whitney U-test and 
standardized effect size r = Z√

N
 for the Wilcoxon signed-rank test), 

assigning a prior using parametric yoking (van Doorn et al., 2020). 
The posterior distribution for Kendall's r� or the standardized ef-
fect size r  yields a Bayes factor via the Savage–Dickey density ratio 
test, where the null hypothesis posits that parameters do not differ 
between groups and the alternative hypothesis posits an effect and 
assigns an effect size using a Cauchy distribution with the scale 
parameter set to 1∕

√
2.

Correlations
Linear correlations are tested with Pearson's r , the corresponding 
Bayesian test is based on Jeffrey's test for linear correlation 
assuming a shifted, scaled beta prior distribution B

(
1

k
,
1

k

)
 for r , ​

where the scale parameter is set to k = 1

3
 (Ly et al., 2016). For testing 

rank correlations with Kendall's tau, the Bayesian test is based 
on parametric yoking to define a prior over the test statistic (van 
Doorn et al., 2018). Bayesian inference is performed to compute a 
posterior distribution for r�, and the Savage–Dickey density ratio 
test is used to produce an interpretable Bayes Factor.

Bayesian multilevel regressions
Regression analyses were performed in a Bayesian framework with 
Stan (Carpenter et al., 2017), accessed via R-package brms (Bürkner, 
2017). In all models, participants were treated as a random inter-
cept, the remaining predictors were implemented as population-
level (“fixed”) effects. For population-level effects, we used a 
normal prior with a mean of 0 and standard deviation of 10; for 
group-level (“random”) effects, we used a half student-t prior with 
3 degrees of freedom, a mean of 0, and a scale parameter of 10; for 
the intercept a student-t prior with 3 degrees of freedom, a mean of 
1, and a scale parameter of 10. All models were estimated over four 
chains of 4000 iterations, with a burn-in period of 1000 samples.
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APPENDIX B

BAYE SIAN REG RE SSION ANALYSE S

Search distance as function of reward on previous step
We ran separate regression analyses for each environment to assess 
the influence of reward obtained at trial t on search distance at t + 1, 
with population-level (“fixed”) effects for previous reward, age group, 
and their interaction, and by-participant random intercepts. Figure 3c 
illustrates the population-level effects; Table B1 provides a summary 

of the results. For both environments, these analyses showed an ef-
fect of previously obtained reward on search distance (i.e., lower re-
wards lead to higher subsequent search distances), an effect of age 
group (i.e., 8-year-olds showed higher search distances overall), and 
an interaction (i.e., the search distance of 8-year-olds was stronger 
influenced by obtained rewards than that of 6-year-olds).

Judgments
In the bonus round, children made reward predictions for five pre-
viously unseen tiles and rated their confidence in their predictions. 
To assess the relation between prediction error (mean absolute 
deviation between judged and true reward value) and confidence 
we ran a Bayesian linear regression with prediction error as de-
pendent variable, and confidence, age group and their interaction 
as population-level (“fixed”) effects, and a random intercept for 
participants. Children's confidence judgments were elicited using 
an 11-point (0–10) slider with the endpoints labeled as “not at all” 
and “very sure.”

Table B2 provides a summary of the results; Figure B1 show the 
population-level (fixed) effects of the model, excluding the group-
level effects (random intercepts over participants). These data show 
no systematic relation between children's subjective confidence in 
their predictions.

Regression analyses for age-related trends in parameter estimates
To control for the effect of predictive accuracy R2 on the age-
related changes in the GP-UCB parameter estimates, we ran 

TA B L E  B 1 Bayesian regression results: search distance as 
function of reward on previous step

Predictor

Rough environment Smooth environment

Estimate 95% HDI Estimate [95% HDI]

Intercept 2.26 [1.90–2.63] 2.89 [2.6.–3.19]

Previous reward −0.01 [−0.02–−0.01] −0.03 [−0.03–−0.02]

Age group 1.85 [1.31–2.34] 1.19 [0.73–1.64]

Previous reward 
× age group

−0.04 [−0.05–−0.03] −0.03 [−0.04.–−0.02]

Random effects

�2 0.48 0.29

�00 4.84 4.14

N 50 52

Observations 5000 5200

Bayesian R2 0.16 0.13

Note: Both models were implemented in brms (Bürkner, 2017). We 
report the posterior mean estimates for the coefficients, followed by 
an 95% uncertainty interval in brackets (“highest density interval”, HDI). 
�2 indicates the individual-level variance and �00 indicates the variation 
between individual intercepts and the average intercept. For categorical 
variable age group, 6-year-olds are the reference level.

TA B L E  B 2 Bayesian regression results: prediction error and 
confidence

Predictor Estimate 95% HDI

Intercept 13.72 [10.04–17.51]

Confidence 0.35 [−0.09–0.77]

Age group −2.12 [−7.57–3.29]

Confidence × age group −0.38 [−1.07–0.30]

Random effects

�2 25.09

�00 81.36

N 102

Observations 510

Bayesian R2 0.3

Note: The model was implemented in brms (Bürkner, 2017). We report 
the posterior mean estimates for the coefficients, followed by a 95% 
uncertainty interval in brackets (“highest density interval”, HDI). �2 
indicates the individual-level variance and �00 indicates the variation 
between individual intercepts and the average intercept. For variable 
age group, 6-year-olds are the reference level.

F I G U R E  B 1 Confidence and prediction error in the bonus 
round. The lines visualize the expected values of the posterior 
predictive distribution of a Bayesian regression (±95% CI); the dots 
show the raw data
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regression analyses for each parameter with age (in months), in-
dividual R2, and their interaction as predictors for the individual 
median parameter estimates. Since �, �, and � are defined as 
non-negative, we log-transformed them for the regressions; for 
plotting the influence of age on parameters we converted the re-
gression models’ predictions back to the original scale by expo-
nentiating them, such that all parameters are non-negative. Table 
B3 shows the results of the regression analyses; Figure B2 visual-
izes the effects of age on the GP-UCB parameter estimates while 
taking into account R2.

GP model predictions and judgments of reward and confidence
We assessed the relation between GP model predictions and partici-
pant judgments about expected reward and confidence in the bonus 
round. In the bonus round, participants selected 15 tiles and then 
made reward predictions for five unseen tiles and judged their confi-
dence in their predictions. The MT model, which learns independent 
reward distributions, makes identical predictions for all unseen tiles, 
as it does not generalize. By contrast, the GP model makes specific 
predictions for novel options, taking into account the data obtained 
so far and the spatial correlation of the search ecology.

TA B L E  B 3 Bayesian regression results: parameter estimates with age and R2 as predictors

Predictor

Generalization λ (log) Uncertainty bonus � (log) Temperature τ (log)

Estimate 95% HDI Estimate 95% HDI Estimate 95% HDI

Intercept −2.83 [−4.55–−1.12] 2.98 [−0.77–6.70] 3.76 [0.21–7.56]

Age (in months) 0.03 [0.01–0.05] −0.03 [−0.08–0.02] −0.05 [−0.10–−0.01]

R
2 5.49 [−3.05–13.95] −7.75 [−22.98–7.55] −5.94 [−20.91–8.96]

R
2 × Age (in months) −0.08 [−0.18–0.03] 0.04 [−0.14–0.22] −0.06 [−0.24–0.13]

Observations 102 102 102

Bayesian R2 0.08 0.13 0.69

Note: All models were implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients, followed by an 95% 
uncertainty interval in brackets (“highest density interval”, HDI).

F I G U R E  B 2 Effect of age on GP-UCB parameters, derived from a Bayesian regression with age (in months), individual model R2, and 
their interactions, as predictor for the (log-transformed) median parameter estimates. For plotting we converted the regression models’ 
predictions back to the original scale by exponentiating the parameter estimates, such that all parameters are non-negative

F I G U R E  B 3 GP model predictions for 
judgments. The lines visualize the means 
of the posterior predictive distribution 
of the Bayesian regression (±95%CI); the 
dots show the raw data points. (a) Relation 
between GP model predictions of reward 
and children's reward judgments. (b) 
Relation between GP model uncertainty 
about expected rewards and children's 
confidence about their reward judgments
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For each participant, we used parameters estimated from 
rounds 2 to 5 in order to generate individual GP model predic-
tions (estimated mean reward and variance) for the five randomly 
selected tiles in the bonus round. These predictions were con-
ditioned on the 15 individual choices and observations made by 
each child and were generated using each individuals’ median � 
estimates. This represents a type of out-of-task prediction, where 
we used parameters estimated from search decisions to predic-
tion out-of-sample judgments. We use the mean reward predic-
tions of the GP model (posterior � (x) of tile) as a prediction for 
each each child's judgment about expected reward and the GP's 
uncertainty estimates (posterior �) as a prediction of each child's 
confidence judgments, where we treat uncertainty as the inverse 
of confidence.

GP predictions were somewhat correlated with participant pre-
dictions (r� = . 08, p = 0.013, BF = 1.5), although this disappeared 
when separating participants into age groups (6-year-olds: r� = . 06,  
p = 0.182, BF = . 22; 8-year-olds: r� = . 08, p = 0.054, BF = . 57). GP un-
certainty estimates were negatively correlated with confidence for 
8-year-olds (r = − . 18, p = 0.005, BF = 7.5), but not for 6-year-olds 
(r = . 06, p = 0.330, BF = . 23). This suggests that the confidence 
judgments of 8-year-olds were somewhat accounted for by the GP 
model, but not those of 6-year-olds.

To analyze these findings in more detail, we conducted Bayesian 
regression analyses to predict children's reward and confidence judg-
ments based on the outputs of the GP model. Specifically, we used 
GP model predictions, age group, and their interaction as population-
level (“fixed”) effects, and by-participant random intercept (Table B4). 
In the first model (Reward judgments), participant reward judgments 
in the range [0,50] for novel options x (tiles) were predicted from the 
GP posterior means of rewards, � (x). The second model (Confidence 
judgments) used the GP posterior uncertainty, � (x) to predict chil-
dren's confidence judgments in the range [0,10]. All GP predictions 
were computed based on individual participant �-values and the 15 

search decisions they made prior to providing their judgments for five 
random novel options.

Table B2 provides a summary of the results; Figure B3 visual-
izes the population-level (fixed) effects of the model, excluding 
the group-level effects (random intercepts over participants). The 
results show a positive but rather weak relation between the GP 
model's reward predictions and children's reward judgments about 
unobserved tiles (Figure B3a). The trends for the relation between 
model uncertainty and children's confidence judgments mirror the 
overall correlations. For 6-year-olds, there's a weak relation in the 
wrong direction (i.e., they tend to be more confident when the GP 
model is more uncertain). By contrast, for 8-year-olds there is a fairly 
strong trend in that children's confidence declined with increasing 
model uncertainty. However, the raw data are very noisy and un-
evenly distributed, so a cautious interpretation of these results is 
warranted.

APPENDIX C

SUBG ROUP ANALYSE S
The majority of participants (73 out of 102 children), were best pre-
dicted by the GP-UCB model. The proportion of children best de-
scribed by the GP-UCB model was somewhat lower for 6-year-olds 
(63%) than for 8-year-olds (81%), raising the possibility that the 
observed developmental trends in the parameters representing 
directed and random exploration are due to aggregating across 
subgroups exhibiting qualitatively different patterns of parameter 
estimates.

Figure C1 shows the � parameter representing uncertainty-
directed exploration and the � parameter representing random ex-
ploration separately for children best predicted by the GP-UCB and 
MT-UCB model, respectively. These are the two components shared 
by the two models, therefore one should expect similar trends as for 
the overall analyses.

TA B L E  B 4 Bayesian regression results: GP model predictions and bonus round judgments

Predictor

Reward judgments Confidence judgments

Estimate 95% HDI Estimate 95% HDI

Intercept 24.08 [12.43–35.46] 6.59 [4.23–8.99]

GP predictions 0.29 [−0.15–0.75] 1.14 [−1.32–3.55]

Age group −2.09 [−16.13–12.33] 2.08 [−1.19–5.42]

GP predictions × age group −0.07 [−0.65–0.51] −3.3 [−6.73–0.03]

Random effects

�2 32.69 3.49

�00 168.25 4.53

N 102 102

Observations 510 510

Bayesian R2 .19 .49

Note: Both models were implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients, followed by an 95% 
uncertainty interval in brackets (“highest density interval”, HDI). �2 indicates the individual-level variance and �00 indicates the variation between 
individual intercepts and the average intercept. For categorical variable age group, 6-year-olds are the reference level.
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In fact, the qualitative pattern for the two parameters mirror the 
overall analyses, with weak age-related differences for � and stronger 
difference for �. This pattern hold regardless of whether children's 
behavior was overall better described by the GP-UCB model or the 
MT-UCB model. Importantly, for children best predicted by GP-UCB 
model, the amount of random exploration decreased as a function of 
age, r� = − . 18, p = 0.03, BF = 1.6. However, while the other trends 
show the same age-related pattern as the overall analyses, the other 
comparisons within these subgroups were not statistically reliable. 
Nevertheless, the persistence of the observed developmental tra-
jectories on the subgroup level refutes the possibility that the overall 
trends are due to aggregating across subpopulations with qualita-
tively different parameter estimates.

APPENDIX D

INS TRUC TIONS
The experiment was implemented on a tablet, where children could 
touch the screen to select tiles. Below are screenshots from the tu-
torial (translated from German); example screenshots from the task 

are shown in Figure 1b,c. To account for individual and developmen-
tal differences in reading ability, the experimenter always read out 
loud the instructions displayed on screen. Additional information 
was given verbally during the tutorial. For instance, after explain-
ing the game and the goal (i.e., selecting tiles to collects stars; top 
left) and before practicing the search for rewards (top right), chil-
dren were told that before each choice they would have to decide 
whether they would like to reveal a novel tile or re-click a previously 
revealed tile. The experimenter demonstrated both actions before 
the child completed the tutorial round. After the tutorial round and 
prior to the instruction test (bottom right) participants could also 
ask questions to clarify the given task and instructions (Figure D1).

F I G U R E  C 1 Model parameters separately for children best accounted for by the GP-UCB model and MT-UCB-model
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F I G U R E  D 1 Screenshots and instruction test from tutorial

In this game I will show you 6 such grids. 
At the beginning, there is always one tile
that has already been revealed.

The goal of the game is to collect as
many stars as possible, by finding as
many dark tiles as possible. The darker a 
tile is, the more stars you get. The more
stars you get, the more stickers you will 
receive at the end of the game.

If you want to reveal another tile, you can
click on it and the color of that tile will be
shown. Below you see the colors you
can observe.

In each round, you have 25 clicks, to find 
as many dark tiles as possible!

Continue

Before we start, a hint: On the
grids, dark tiles are frequently located
close to other dark tiles, and light tiles
tend to be close to other light tiles. 
Thus, the color of a tile depends on 
where it is located on the grid. 

Continue

Great!
You did a great job!
In the next rounds you can collect up
to 5 stars on each grid. The more
dark tiles you find, the more stars you
will get. The more stars you get, the
more stickers you will receive at the
end of the game?

Do you have any questions?

Continue

Learn colors

Find as many dark tiles as possible

Find the darkest tile

No idea

Only by reavling new, white tiles

Only by re-clicking revealed, colored tiles

By clicking new, white tiles or by re-clicking revealed, colored tiles

Randomly

Dark tiles are never close to each other

Dark tiles are always in close to each other

Dark tiles are frequently close to each other

Check answers

What is your task?

How can you collect stars?   

How are the dark tiles distributed?

Please answer a few questions before we start with the game.

Only when you correctly answer all questions we can start with the game.


