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Abstract

A variety of conceptualizations of psychological uncertainty
exist. From an information-theoretic perspective, probabilistic
uncertainty can be formalized as mathematical entropy. Cog-
nitive emotion theories posit that uncertainty appraisals and
motivation to reduce uncertainty are modulated by emotional
state. Yet little is known about how people evaluate proba-
bilistic uncertainty, and about how emotional state modulates
people’s evaluations of probabilistic uncertainty and behavior
to reduce probabilistic uncertainty. We tested intuitive entropy
evaluations and entropy reduction strategies across four emo-
tion conditions in the Entropy Mastermind game. We used the
unified Sharma-Mittal space of entropy measures to quantify
participants’ entropy evaluations. Results suggest that many
people use a heuristic strategy, focusing on the number of pos-
sible outcomes, irrespective of the probabilities in the proba-
bility distribution. This result is surprising, given that previous
work suggested that people are very sensitive to the maximum
probability when choosing queries on probabilistic classifica-
tion tasks. Emotion induction generally increased participants’
heuristic assessment. The uncertainty associated with emo-
tional states also affected game play: participants needed fewer
queries and spent less time on games in high-uncertainty than
in low-uncertainty emotional states. Yet entropy perceptions
were not related to subjectively reported uncertainty, numer-
acy or entropy knowledge, suggesting that entropy perceptions
may form an independent psychological construct.
Keywords: Entropy; human entropy intuitions; Sharma-Mittal
space; emotion; uncertainty

Introduction
Uncertainty is a fundamental characteristic of the world and
a key concept in theories of cognition and emotion. In cog-
nitive theories of the value of information, mathematical en-
tropy quantifies the uncertainty about a variable given a prob-
ability distribution. Uncertainty can be reduced by acquir-
ing information, quantified as information gain (Lindley et
al., 1956; Oaksford & Chater, 1994; Crupi, Nelson, Meder,
Cevolani, & Tentori, 2018). Many different entropy models
for quantifying probabilistic uncertainty have been proposed.
Even though Shannon entropy is widely used (Coenen, Nel-
son, & Gureckis, 2018; Fuhrman et al., 2000; Martignon,
Von Hassein, Grün, Aertsen, & Palm, 1995; Oaksford &
Chater, 1994), other entropy measures also are important in
some contexts. Quadratic entropy (Lande, 1996) is impor-
tant in ecology; the families of Rényi entropies (Rényi et al.,
1961) have proven powerful in computer science and image

processing; Tsallis entropies (Tsallis, 2011) are widely used
in physics. Bayes’s error is another kind of entropy (Crupi
et al., 2018), widely used in various domains. Despite the
centrality of probabilistic uncertainty in models of the value
of information, which model best captures human intuitions
about probabilistic uncertainty is an open question. More-
over, most previous work has considered how people assess
the information value of possible questions, rather than the
perception of probabilistic uncertainty itself.

Furthermore, research on cognition and emotion on peo-
ple’s uncertainty perceptions have to this point remained sep-
arate from each other, despite their shared theoretical basis.
Cognitive theories of emotion define uncertainty as a cog-
nitive component characterizing emotional states (Smith &
Ellsworth, 1985; Scherer, Schorr, & Johnstone, 2001). For
example, anger and pride are characterized by low uncer-
tainty appraisals, whereas anxiety and curiosity are charac-
terized by high uncertainty appraisals. Previous research has
investigated the role of emotion in judgment, risk assessment,
and decision making under uncertainty. It was found that
emotion-related uncertainty appraisals modulate risk assess-
ment and information processing (Tiedens & Linton, 2001;
Lerner & Keltner, 2001). In these studies, psychological un-
certainty is usually assessed using questionnaires which ask
respondents about their subjective appraisal of uncertainty in
a situation (Smith & Ellsworth, 1985). This conceptualization
of psychological uncertainty lacks precise quantification and
mathematical formalisation. Entropy offers such a mathemat-
ically precise quantification of uncertainty, yet how emotions,
appraisals of uncertainty and entropy perceptions are related
is an open empirical question. Furthermore, little research
(Hirsh, Mar, & Peterson, 2012, is an exception) has looked at
the role of different characteristics of emotion in basic assess-
ments of probabilistic uncertainty and in behavior directed
towards uncertainty reduction.

Our research has three goals: quantifying human intuitions
about probabilistic uncertainty in the Sharma-Mittal space of
entropy measures; investigating the relationship between en-
tropy and emotion-theoretical conceptualizations of psycho-
logical uncertainty; and investigating which characteristics of
emotions best predict emotion effects on assessments of prob-



abilistic uncertainty and behavior aimed at reducing proba-
bilistic uncertainty.

Emotions, uncertainty and information
Cognitive emotion theories state that emotions are charac-
terized by cognitive appraisals (Smith & Ellsworth, 1985;
Scherer et al., 2001). The Appraisal Tendency Framework
(Lerner & Keltner, 2000) posits that high-uncertainty emo-
tional states are associated with increased perceptions of
risks, leading to more systematic information processing and
decreased risk-seeking behavior (Tiedens & Linton, 2001;
Lerner & Keltner, 2001; Wright & Bower, 1992; Smith &
Ellsworth, 1985). Other theories of emotion make diverg-
ing predictions: Feelings-as-information theory (Schwartz,
Woloshin, Black, & Welch, 1997) conceptualizes emotions as
a source of information about the situation and predicts that
negative affective states will motivate effortful, systematic
and analytical thinking, whereas positive affective states will
lead to more heuristic, effortless information processing. The
valence of an emotion is also hypothesized to affect probabil-
ity and risk estimates (Wright & Bower, 1992), with negative
moods making estimates more negative and positive moods
influencing assessments in a positive direction. The emotion-
cognition relationship can also be interpreted in terms of cog-
nitive load. In this view, emotions pull resources away from
cognitive tasks and thus interfere with cognitive processing
(Plass & Kalyuga, 2019). Emotions may also have the func-
tion to guide the allocation of attention (Derryberry & Tucker,
1994; Wichary, Mata, & Rieskamp, 2016).

The Sharma-Mittal space of entropy measures
The Sharma-Mittal space of entropy measures offers a frame-
work in which different entropy models arise in a unified
parametric space (Crupi et al., 2018; Sharma & Mittal, 1977).
Each entropy model describes the entropy in a random vari-
able K, which can take values k1 through kn. We can envision
K to be an object’s unknown category, and k1 through kn to be
possible categories. Two key ideas are important for charac-
terizing an entropy function in the Sharma-Mittal space (Fig.
1), each of which is associated with a particular parameter.

One idea is how surprising it would be if a particular event
ki were to happen, i.e., if the object were to be category
ki. Surprise is maximal if the prior probability of the event
P(ki) = 0, and null if P(ki) = 1. Different entropy func-
tions have different maxima, and differently shaped surprise
curves, but surprise is always a nonincreasing (and typically a
monotonically decreasing) function of P(ki). Sharma-Mittal
entropy uses the Tsallis (1988) family of surprise functions,
determined by a degree parameter t in the vertical axis. Exist-
ing data on people’s query selection, and ratings of possible
queries’ usefulness, place strong constraints on psychologi-
cally plausible degree parameter values (Crupi et al., 2018).

The other key idea is that entropy is average surprise, but
that rather than averaging the raw surprise values themselves,
individual surprise values are passed through an averaging
function g, as a self-weighted entropy (Crupi et al., 2018) in

the General Theory of Means (Muliere & Parmigiani, 1993)
framework. The order parameter r determines the averaging
function in the Sharma-Mittal space.

Figure 1: Sharma-Mittal space of entropy measures. (Crupi et al.,
2018)

The order parameter r determines the ranking of differ-
ent probability distributions’ uncertainty, which may vary in
number of possibilities as well as their individual probabili-
ties (Crupi et al., 2018). For most values of r, the entropy of
a distribution depends on all of the probabilities in that dis-
tribution. However, if r is infinite, the entropy depends only
on the largest probability in the distribution. In the other ex-
treme case of r = 0, entropy is a function of the number of
“live” (greater-than-zero-probability) possibilities. This can
be viewed as a heuristic model because of its computational
simplicity; it can also be called “balanced” in the sense that
it treats all possibilities equally, irrespective of their probabil-
ity. For instance, entropy models with order about 1.51 deem
a 50%, 50% distribution to be equal in entropy to a 85%, 5%,
5%, 5%, 5%, 5% distribution. Higher-order entropy mod-
els deem the 50%, 50% distribution to be higher entropy;
lower-order entropy models deem the six-item distribution to
be higher entropy. The most psychologically plausible order
parameter value is not well constrained by existing empirical
data; hence, we focus on it here.

Entropy Mastermind
Studying people’s subjective assessments of uncertainty re-
quires making the idea of probabilistic uncertainty under-
standable. We employed Entropy Mastermind for this pur-
pose. Entropy Mastermind (Figure 2) is a single-player app-
based game in which the computer generates a secret code by
drawing from a known, and typically nonuniform, probabil-
ity distribution, represented iconically as a ”fruit bowl”. The



Figure 2: Entropy Mastermind. Top: Icon array presenting an
example fruit bowl that generated the hidden fruit code. Probabil-
ity distributions follow one of four entropy recipes, resulting in low,
medium low, medium high and high (shown) entropy levels. Codes
are generated by random sampling with replacement. The player
guesses which fruit is in each position of the three slots of the secret
code, by clicking on the position they want to change. The partici-
pant then clicks a “Check” button (not shown), to receive feedback.
Bottom: Game play. The first guess is 3 grape items. The feedback
(one smiling and two frowning faces) conveys that exactly one of the
items is correct in kind and location. However, the player does not
know which of the three items is in the correct position: In the feed-
back, smiley faces always come first, then neutral faces, and lastly
frowning faces. In the second guess, the player tests grape in the
first position, and apple in the other positions. The feedback (smil-
ing, neutral, frowning face) indicates that one item is correct in kind
and location, another item is in the code but needs to be moved, and
another item is not in the code at all. From the third guess, the player
can infer that grape is in the middle, apple on the right, and pear is
not in the code. Game play continues until the hidden code is fully
identified.

items are mixed before each draw, and items of the code are
drawn with replacement. The player has to guess the secret
code by making queries (testing possible codes), and getting
feedback in the form of smileys (happy, neutral, sad). The
number of queries needed is a measure of the difficulty to
break the code. In empirical data from a previous experi-
ment, the number of queries needed to break the code was an
increasing function of the entropy in the generating distribu-
tion (Schulz, Bertram, Hofer, & Nelson, 2019).

To quantify the order parameter describing people’s intu-
itive assessment of relative uncertainty in probability distribu-
tions, we asked participants questions about the relative dif-
ficulty of playing Mastermind with two differently entropic
code jars. Difficulty was defined as number of queries par-
ticipants expected to need to break the secret code. Response
patterns across four such questions (Figure 3) allow map-
ping of participants onto the order parameter of the Sharma-
Mittal space. Note that this mapping arises from the pattern
of responses in the four comparisons, not single responses or
aggregate scores.

Figure 3: Entropy Intuitions. Question: Which code jar would
be harder/easier to play Mastermind with? Answer Options: The
50%,50% jar/the 6 item jar/both are equal. Answers place respon-
dents along the order parameter axis of the Sharma-Mittal space.

Towards a theory of human entropy perceptions
Previous research on information search behavior in a proba-
bilistic visual classification task, in which probabilities were
learned from experience, suggested that probability gain,
which is the expected reduction in Bayes’s error (Nelson,
McKenzie, Cottrell, & Sejnowski, 2010), is a psychologically
plausible entropy model. Bayes’s error has an infinite order
parameter; related high-order entropy models are also con-
sistent with experimental data to date (Crupi et al., 2018).
However, people’s valuation of information on words-and-
numbers tasks gives a wide range of possible order param-
eter values (Crupi et al., 2018). Because of the contradic-
tory findings in previous work, and the fact that asking peo-
ple the usefulness of queries (as in previous work) is sev-
eral steps removed from assessing uncertainty itself, we did
not have strong hypotheses about the results of the present
study. Rather, we designed the stimuli with the goal to estab-
lish whether people’s entropy intuitions, in the context of this
task, are consistent with any Sharma-Mittal entropy models,
and to be able to discriminate among a wide range of order
parameter values.

Method
Materials and Procedure 109 first-year undergraduate
psychology students (99 female, Mage = 19.39; SD = 2.65;
range: 18 to 39) at University of Surrey participated in our
study as part of a cognitive psychology class. Informed
consent was given in accordance with the University’s
procedures and the Helsinki Declaration. Students were first
introduced to the rules and interface of the game. Participants



Figure 4: Entropy Axioms Question Select the code jar which
would make the game as easy/hard as possible (the easier/harder
the game, the less/more queries are needed). Correct answer:
50%,50% = easiest; 6-color jar = hardest. Entropy increases with
the number of different items if items are uniformly distributed.

were randomly assigned to one of 5 conditions: writing about
an episode of anger, pride, anxiety, curiosity or a neutral
event (control). Emotions differed in valence (positive:
curiosity, pride; negative: anxiety, anger) and uncertainty
(high uncertainty: anxiety, curiosity; low uncertainty: anger,
pride). Participants completed a set of questionnaires,
including a test of numeracy, uncertainty appraisals and
questions testing intuitions about entropy. After a brief
emotion refresh, participants played 12 rounds of Entropy
Mastermind.

Questionnaires and entropy questions Numeracy was as-
sessed using the adaptive Berlin Numeracy Test (Cokely,
Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012), com-
bined with 3 additional items from (Schwartz et al., 1997) to
cover a wider range of numeracy levels. The results of both
tests were added, forming an aggregate numeracy score rang-
ing from 1 to 7. Uncertainty appraisals were assessed using a
12-item short form of the Intolerance of Uncertainty ques-
tionnaire (Carleton, Norton, & Asmundson, 2007) and the
Dimensional Ratings Scale (Smith & Ellsworth, 1985). The
latter was slightly adapted to assess uncertainty appraisals
in the current situation instead of appraisals in the situation
reported during the emotion manipulation. Entropy knowl-
edge questions tested participants’ understanding of key ax-
ioms of entropy. These are axioms that, up to a possible tie,
would be satisfied not only by all Sharma-Mittal entropy mea-
sures, but by virtually any entropy measures in the literature
(Csiszár, 2008). For example, one such axiom holds that if
each possibility is equally probable, a probability distribu-
tion with a greater number of possible outcomes is higher en-
tropy. To test understanding of this axiom (Figure 4), partic-
ipants were asked which of five uniform probability distribu-
tion code jars, ranging from 2 to 6 colors of marbles, would
be hardest for playing Entropy Mastermind. We administered
these questions to assess potential effects of numeracy and
entropy knowledge on entropy assessments and control for
these effects. We designed four questions (Q1−Q4 in Figure
3) to test participants’ intuitions about the relative entropy in
different code jars. These questions asked participants which
of two code jars would be harder to play with. Response
patterns on these questions, if consistent with the formalism,
place participants along the order parameter axis (typically in
a range) of the Sharma-Mittal space (Figure 1). A 1 coded

the answer that the 50%,50% distribution is harder to play
with, 0 that both distributions are equally hard to play with
and -1 that the distribution containing 6 different item types
is harder to play with. The response patterns, derived from
the combined responses in Q1,Q2,Q3 and Q4, and associ-
ated order parameters are found in Table 1.

Entropy Mastermind gameplay Participants were re-
quired to correctly answer four questions about of the rules of
the game before starting. Participants were instructed to at-
tempt to guess the secret code with as few guesses as possible.
Participants played 12 rounds of Mastermind. In each game,
one of four entropy conditions was randomly selected, result-
ing in a corresponding fruit bowl icon array. The secret fruit
code was generated from this fruit distribution. In the very
high entropy condition, the proportions were (5,5,5,5,6,6),
in the high entropy condition (1,1,5,5,5,15), in the low en-
tropy condition (1,1,1,4,4,21) and in the very low entropy
condition, the secret code was sampled from the proportions
(1,1,1,1,1,27).

Results
In a first step, the order parameter characterizing each partic-
ipant was inferred from answer patterns on the four entropy
intuitions questions (Figure 3, following conversion rules in
Table 1). Out of the 34 = 81 possible response patterns,
only nine are consistent with the Sharma-Mittal formalism.
75.2% of participants responded to the questions in a consis-
tent way. We followed a strict exclusion criterion and labeled
any response pattern inconsistent with the 9 consistent pat-
terns as undefined, irrespective of their potential proximity
to a meaningful response. For example, the answer pattern
−1001 shows a clear ranking of code jars, yet the two “equal”
rankings would not allow for this participant to be mapped
onto the order parameter axis of the Sharma-Mittal space.

Distribution of participants across order parameters
A χ2 test revealed a significant deviation from a uniform dis-
tribution of participants across order parameters, both when
including undefined (χ2 = 158.8, df = 9, p < .001, V = 0.4),
and excluding undefined answers (χ2 = 158.37, df = 8, p
< .001, V = 0.49). Overall, the largest group of participants
(38.53%) answered the entropy intuitions questions following
an order parameter of 0−0.55. This response pattern always
deems the six item distribution to be higher in entropy than
the 50%,50% distribution. This behavior can be interpreted
as a heuristic strategy in which only the number of different
kinds of items in the distribution are counted and the relative
proportions of each type are discarded. A learner whose in-
tuitions correspond to Origin entropy, for which r = t = 0,
would respond in this way. The second-largest group among
the consistent response patterns (13.76 %), was formed by
participants with an order parameter of .56−0.96, rating the
6-item distribution as higher entropy, except for in Q4. This
response pattern still focuses mainly on the number of pos-
sibilities, yet pays some attention to the individual probabili-



Table 1: Ranking of response patterns and corresponding order parameters.

Response Pattern -1-1-1-1 -1-1-1 0 -1-1-1 1 -1-1 0 1 -1-1 1 1 -1 0 1 1 -1 1 1 1 0 1 1 1 1 1 1 1
Rank 1 2 3 4 5 6 7 8 9
Nr Participants 42 4 15 0 12 1 2 0 6
Order Parameter 0–.55 .55-.56 .56–.96 .96–.97 .97–1.51 1.51–1.52 1.52–2.58 2.58–2.59 2.59–∞

ties. This group was succeeded by 11 % of participants with
order parameter .97−1.51, who estimated the 6 item distribu-
tion to be higher in entropy in Q1 and Q2 and the 50%,50%
distribution as higher in entropy in Q3 and Q4. Order ranks
2, 4, 6, and 8 deemed exactly one of the 6-item distributions
equal to the 50%,50% distribution. These ties were rarely
used. The number of participants per order parameter and
the corresponding order parameter intervals (upper and lower
bound) are presented in Table 1.

Figure 5: Distribution of order parameters and game play vari-
ables by emotion condition. a) Order parameter by emotion condi-
tion. b) Average time to solve a game in seconds by emotion condi-
tion. c) Average number of queries per game by emotion condition.
d) Probability to select most probable items only in the first query
by emotion condition.

We conducted bootstrapped ANOVAs to analyse partici-
pants’ intuitive entropy assessments. Respondents with unde-
fined answer patterns were excluded from analyses, resulting
in a sample size of N = 82.

Entropy evaluations, numeracy and entropy
knowledge
To test whether entropy intuitions were predicted by numer-
acy (cumulative numeracy score from the Berlin Numeracy
test and the Schwarz et al. questions) and entropy knowledge
(cumulative answer scores on questions such as in Figure 4),
a bootstrapped ANOVA with order parameter as dependent
variable and numeracy and entropy knowledge as indepen-
dent variables was conducted. Neither numeracy (p = .94)

nor entropy knowledge (p = .2) predicted entropy intuitions,
suggesting that differences between entropy types cannot be
explained by differences in numeracy or entropy knowledge.
To test whether numeracy and entropy knowledge predicted
whether respondents’ answer patterns were consistent with
the Sharma-Mittal formalism, we conducted nonparametric
Wilcoxon tests between the defined and undefined groups of
participants. We found that respondents in the defined group
had higher entropy knowledge (M = 3, SD = 1.05) than re-
spondents in the undefined group (M = 2.56, SD = 0.87; W
= 1378, p = .05, d = .47). Groups did not differ in numeracy
(p = .59).

Entropy Mastermind game play
As the entropy intuitions questions were based on the Mas-
termind game, we were interested in the relationship be-
tween participants’ intuitive entropy perceptions and subse-
quent game play behavior. Particularly, we wanted to test
whether number of queries needed, time spent on games and
the composition of first guesses were related to the entropy
order parameter of respondents. We conducted bootstrapped
ANOVAs with order parameter as predictor and a) Reaction
Time (average time spent on games in seconds), b) Queries
(average number of queries needed to break the code per
game) and c) 1st Query All Most Probable (probability that
respondent’s first guess is exclusively comprised of items of
the type which dominates the distribution) as dependent vari-
ables. Results were not significant (all p> .05), indicating
that entropy intuitions and basic game play parameters are
not related to the order parameter characterizing people’s en-
tropy assessments.

Emotions, entropy evaluations and entropy
reduction
Next, we looked at the effects of the emotion manipulation on
subjective entropy assessments. In a bootstrapped ANOVA,
the effect of emotion condition on order parameter was sig-
nificant (p = .04). Closer examination of distributions re-
vealed that the main difference in order parameter was driven
by the difference between the control condition and the emo-
tion conditions (see Figure 5, top left). This was confirmed
by a bootstrapped ANOVA with the binary variable emotion
vs. control as predictor and order parameter as dependent
variable (p = .003). The emotion manipulation pushed par-
ticipants’ order parameter estimates towards more heuristic
low-order assessments of entropy. Interestingly, differences
between groups in game play showed a more nuanced pic-
ture: Independent Wilcoxon tests revealed that the two uncer-



tain emotion groups (anxiety and curiosity) differed signifi-
cantly from the two certain emotion groups (pride and anger)
in average number of queries needed per game (W = 344, p
= .01, d = 0.27) and average time spent on games in seconds
(W = 386, p = .04, d = 0.34), but not time spent on individ-
ual queries (p = .26). On average, respondents in the high
uncertainty conditions needed fewer queries (M = 4.64, SD
= 2.4) and spent less time on games (M = 31.5, SD = 47.12)
than those in the low uncertainty conditions (M = 5.71, SD
= 3.65 and M = 42.81, SD = 36.36). These differences were
not significant when grouping conditions based on valence,
i.e. when comparing the two positive (curiosity, pride) and
the two negative (anxiety, anger) emotions (all p > .05). The
probability to select only the most probable items in the first
query was not affected by emotion.

To investigate the relationship between uncertainty ap-
praisals and probabilistic uncertainty assessments, we tested
whether people’s order parameter was predicted by subjec-
tively reported uncertainty appraisals. We also tested whether
basic assumptions of cognitive emotion theories, i.e. effects
of emotions on uncertainty appraisals, were reproduced in our
experiment. Contradicting appraisal-based emotion theories,
bootstrapped ANOVAs revealed no effect of emotion condi-
tion on uncertainty appraisals (p = .59) and no difference in
uncertainty appraisals between the high and low uncertainty
emotion conditions(p = .26). Neither were subjective uncer-
tainty appraisals correlated with assessments of probabilistic
uncertainty (p = .75).

Discussion
In this study, we investigated how people intuitively evaluate
the relative entropy of probability distributions in different
emotional states. Our research provides novel evidence on
people’s basic perceptions of probabilistic uncertainty.

We found that the majority of participants (75.2 %) showed
a response pattern consistent with the Sharma-Mittal formal-
ism and could be positioned along the order axis of the space.
This gives reason to assume that for most people the Sharma-
Mittal space is an adequate formalism to capture entropy per-
ceptions. Yet participants with little knowledge about en-
tropy, as measured with the entropy axiom questions, were
less likely to give consistent answers. This indicates that a ba-
sic understanding of entropy axioms promotes intuitions that
are consistent with any Sharma-Mittal entropy metric. The
most common response pattern suggested an order parameter
between 0 and 0.55. This response pattern can be interpreted
as a heuristic, in which entropy is largely or solely evaluated
based on the count of items in the distribution, with larger
counts indicating higher entropy, irrespective of the relative
proportions. The second largest (13.8 %, order parameter be-
tween 0.56 and 0.96) and third largest (order parameter be-
tween 0.97 and 1.51) groups of respondents also followed a
relatively low order entropy assessment, with the number of
items still prominent in the evaluation. Emotion induction
increased respondents’ tendency to use this heuristic strat-

egy, supporting cognitive load theory. In all four emotional
states, irrespective of uncertainty and valence characterizing
the emotion, participants’ order parameters were lower than
in the control group.

The low order parameter we found is surprising, as it is not
only less than found in previous research (Crupi et al., 2018;
Nelson et al., 2010), but in the first two largest groups even
below Shannon entropy. Among the possible explanations of
our findings are attentional processes which favor count over
proportion and which may be promoted by emotional arousal.
Future work could address the nature of the attentional pro-
cesses at work during entropy assessments in emotional and
non-emotional states by using eye tracking. Key questions
could be whether subjects in emotional and non-emotional
states differ in gaze direction, attention allocation to different
parts of the six-item probability distributions and between the
two-item and six-item probability distributions. A prediction
in line with our findings would be that the increased cogni-
tive load in emotional states leads to more heuristic informa-
tion processing as fewer resources are available, manifesting
in increased attention allocation to low-probability items and
less eye movement (and thus fewer comparisons) between
code jars. Motivation could also play a role: it requires rela-
tively low-effort to rate all the 6-item distributions as higher
in entropy than the 50%,50% distribution. As students partic-
ipated in our study as part of the lecture without credit or pay-
ment for participation, they may have had little incentive for
performing well on the task. Future work could test whether
incentivising participants changes entropy evaluations.

Despite the general low-order entropy intuitions we found,
participants’ responses varied widely, including even 2.59 to
∞ order responses. These responses might reflect meaningful
individual differences. Among the potential modulators of
entropy assessments are individual differences related to un-
certainty perceptions, such as neuroticism, trait anxiety, and
psychological disorders associated with altered uncertainty
evaluations. Another interesting research question is whether
entropy intuitions are modulated by experience. In our study,
respondents’ answers were based on visual information about
the probability distributions only. Assessing entropy intu-
itions after having played Mastermind with differently en-
tropic code jars could reveal changes in assessments due to
experience. In this context, testing diverse populations differ-
ing in experience with probabilities and entropy, for example
students in mathematical versus non-mathematical subjects,
and at different ages, would shed light on the role of expe-
rience, expertise and cognitive development in the formation
of entropy intuitions over the life course.

Our findings suggest that the general tendency to employ a
low order heuristic strategy was increased by the induction of
emotions. One interpretation of this finding is that experienc-
ing emotions detracts capacities from cognitive tasks. Inter-
estingly though, this general effect did not show in game play,
where the difference between high and low uncertainty emo-
tions predicted people’s time spent on queries and average



number of queries needed, not emotion per se. Surprisingly,
we did not find an effect of emotion condition on subjective
uncertainty appraisals. This contradicts previous work within
the Appraisal Tendency Framework and other cognitive emo-
tion theories. One explanation could be that we rephrased
items measuring uncertainty appraisals to capture uncertainty
appraisals in the current situation instead of appraisals as-
sociated with the emotional episode reported in the emotion
manipulation. As cognitive emotion theories predict that the
cognitive effects of emotions carry over to situations unre-
lated to the emotional event, we expected to find an effect of
emotions on uncertainty appraisals reported directly after the
emotion manipulation. Our findings challenge this core as-
sumption of cognitive emotion theories. Yet we did find an
effect of uncertainty associated with the induced emotion on
game play: respondents in high uncertainty emotional states
needed fewer queries and less time to solve games than re-
spondents in low uncertainty emotional states. One could in-
terpret this finding in terms of increased motivation to reduce
uncertainty in high uncertainty emotional states. Our mixed
findings highlight the need for further research on the carry-
over effect of emotions and associated cognitive processes on
unrelated situations, and on the relationship between entropy,
uncertainty appraisals and emotions. This research could then
feed into the development of a comprehensive theory of the
role of incidental emotions in different kinds of uncertainty
assessments.

Summing up, we found that a surprisingly low order pa-
rameter best described participants’ evaluations of the rela-
tive entropy of different probability distributions. This sug-
gests that in our task, many participants focused exclusively
or almost-exclusively on the number of possibilities, largely
or completely disregarding the overall probability distribu-
tion. This tendency was increased by emotion induction. Un-
certainty associated with people’s emotional state modulated
game play. More research is required to validate and extend
our findings, exploring psychological variables associated
with entropy intuitions and the role of experience, expertise
and age in the formation of entropy intuitions. Adding ques-
tions quantifying respondents’ degree parameter and mod-
elling of game play data could extend our model of human
entropy intuitions and give insight into the relationship be-
tween behavioural entropy reduction strategies and entropy
intuitions.
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