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“In the beginner’s mind there are many possibilities, in
the expert’s mind there are few.” – Shunryu Suzuki

A general rule of human intelligence seems to be that im-
proving at a task simply requires repeatedly performing it
(Rock, 1957; Saxe, 2013; Tolman, 1934). The sort of tasks
at which people can improve range from the exceptionally
low-level, such as visual discrimination tasks (Poggio et al.,
1992), to the high-level, such as complex problem-solving
tasks (Funke, 2012). The usual explanation of this ability is
that repetition leads to learning which in turn leads to im-
proved performance.

Yet this rule has been repeatedly challenged (Birch & Ra-
binowitz, 1951; N. R. Maier, 1931). For example, people
can be limited to use an object only in the way it is tradition-
ally used. This effect was observed and described by Karl
Duncker who gave participants a candle, a box of thumb-
tacks, and a book of matches, and asked them to attach the
candle to the wall so that it did not drip onto the table below.
Participants tried to attach the candle directly to the wall with
the tacks, or to glue it to the wall by melting it. However, only
very few of them thought of using the inside of the box as a
candle holder. Duncker argued that participants were fixated
on the box’s usual function of holding thumbtacks and could
not re-conceptualize it in a manner that allowed them to solve
the problem at hand (Duncker & Lees, 1945).

One of the main psychological findings on how repeated
encounters with a task can lead to suboptimal behavior is the
Einstellung effect (A. S. Luchins, 1951). The Einstellung ef-
fect describes the development of a mechanized state of mind
and refers to a person’s predisposition to solve a problem in
a specific manner even though better or more appropriate so-
lutions are available. The effect itself has been observed in
many contexts. One of them is expertise, where, even though
expertise frequently leads to superior decision-making (Eric-
sson & Charness, 1994; Ericsson et al., 2007), people can
sometimes get worse at particular tasks with experience. For
example, when expert chess players were confronted with
problems that could be solved with either a common se-
quence of moves or with a less common but shorter sequence,
they tended to overlook the simpler solution (Bilalić et al.,
2008a, 2008b, 2010; Reingold et al., 2001). A similar ob-
servation has been made in medical decision-making, where
professional doctors can sometimes diagnose rare illnesses
less reliably than novices (Croskerry, 2003; Graaf, 1989).

The most famous set of experiments on the Einstellung
effect, however, are the ones that introduced it. These ex-
periments were conducted by Abraham Luchins and pub-
lished in his doctoral thesis in 1942 (A. S. Luchins, 1942).
In these experiments, participants were asked to assume that
there were three water jars, each of which had the capacity to
hold a different amount of water. Participants had to figure
out how to measure a certain amount of water using these
jars. When participants solved multiple such problems in

succession, Luchins found that subjects kept using methods
they had applied in previous trials, even if a more efficient
solution for the current trial was available. This means that
participants were influenced by their previous experience to
be less efficient at solving current problems, establishing the
original Einstellung effect.

Luchins conducted an impressive set of empirical studies,
collecting data of over 1000 participants in different condi-
tions and thereby mapping out the key determinants of the
Einstellung effect. We believe that such a remarkable col-
lection of knowledge should be preserved for future gen-
erations. Therefore, we have transcribed the experimental
data reported in Luchins’ thesis into a contemporary for-
mat, analyzed them using modern statistical tools, and made
them publicly available for further investigation.1 We fur-
thermore provide a simple computational model that can
capture the rich behavioral pattern found in Luchins’ data.
Whereas previous research has largely characterized the Ein-
stellung effect as maladaptive behavior, our analysis provides
a resource-rational account of the effect. In particular, our
model assumes that people attempt to find solutions with
maximum utility but that they are subject to information pro-
cessing constraints. These results enrich our understanding
of human problem-solving and shine new light on a historic
finding using the lens of current psychological theories.

The remainder of this paper is structured as follows. First,
we briefly recapitulate Luchins’ experimental setup. We then
introduce our resource-rational model of decision-making
and provide full simulation results for Luchins’ water jar
task. Subsequently, we go through the individual experi-
ments reported in Luchins’ thesis. For each experiment, we
reanalyze the transcribed data using modern statistical tools
and validate that our proposed model exhibits similar behav-
ior. To round up our analysis, we also conduct an ablation
analysis demonstrating that all components of the model are
indeed necessary to capture the richness in Luchins’ data.
Finally, we summarize our results, highlight the limitations
of our approach, and propose directions for future research.

Luchins’ experiments

Luchins adapted his water jar task from tasks that were
initially designed by Duncker and Zener2 and described by
N. R. F. Maier (1930):

“Zener, in some preliminary experiments at
the Psychological Institute of the University of
Berlin, in 1927, habituated his subjects to solve
certain types of problems in the same way. A

1The complete code for this project, including the reconstructed
data and all model simulations, can be accessed under https://github.
com/marcelbinz/Einstellung.

2Note that the results from Duncker and Zener were never pub-
lished but only described anecdotally by N. R. F. Maier (1930).

https://github.com/marcelbinz/Einstellung
https://github.com/marcelbinz/Einstellung
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test problem was then given. He found that an
obvious and simple solution of the test problem
was usually over-looked because the character-
istic method of solution, set up in the preceding
problems, was used in the test problem. Control
groups tended to solve the problem in the obvi-
ous and simple manner.”

A. S. Luchins (1942) argued that it was important to fur-
ther test this effect:

“It seemed important to conduct further exper-
iments of this kind because the quoted findings
of these preliminary experiments appeared to
show clearly an interesting result: The succes-
sive, repetitious use of the same method mecha-
nized many of the subjects—blinded them to the
possibility of a more direct and simple proce-
dure.”

After consulting with Max Wertheimer, Luchins ended
up using similar problems to those utilized by Zener and
Duncker. The resulting task is now known as Luchins’ water
jar task, and it asks people to write down, using pen and pa-
per, how they would obtain a target quantity of water using
three jars which each hold a specific quantity.3 We refer to
the quantity each jar holds as G1, G2, G3 and the target quantity
as H (Fig. 1b). Participants first get a problem with only two
jars in which G1 = 29, G2 = 3 and H = 20. This problem can
be easily solved by G1 − 3G2, that is removing the quanitity
measued by the second jar from the first jar. The next five
problems are referred to as the E-problems and are used to
induce the Einstellung. This is because all of these problems
can be solved using the same method: G2 − G1 − 2G3. The
following two problems are referred to as the C1- and C2-
problem. They can be solved both by the previous method
but also by a simpler method, such as G1 + G2. In C1, for
example, the available jars are G1 = 23, G2 = 49, G3 = 3 and
the target quantity is H = 20. This means that this problem
can be solved by G2 − G1 − 2G3 but also by using the shorter
G1− G3. Applying G2− G1−2G3 to these problems is called an
E-solution (where the E stands for Einstellung), whereas the
shorter solutions, i.e. G1+G2 or G1−G3, are called D-solutions
(where the D stands for direct). C1 and C2 are followed by
a problem that can not be solved using the E-solution but
only by using a shorter D-solution. Finally, participants are
confronted with two problems, C3 and C4, that can again be
solved by both E- and D-solutions. Luchins’ original design
is shown in Fig. 1a.

Luchins mostly focused on participants’ responses to the
problems C1/C2 and C3/C4. If participants were more likely
to solve these problems using the E-solution than the D-
solution, an Einstellung effect was observed. He normally
compared a “plain” group going through all of the problems

Figure 1
Overview of Luchins’ water jar task. a: Experimental de-
sign. After a warm-up problem, participants observe five
problems that require the complicated E-solution, followed
by five problems that can be solved using a shorter D-
solution. b: Water jars. Participants were asked to combine
the quantities of three jars to reach at a target quantity. c:
Results of first experiment reported in A. S. Luchins (1942).
Luchins reported all results in tables showing the percentage
of participants who solved the presented problems using E-
or D-solutions.

shown in Fig. 1a to other groups, for example, participants
who did not have to solve problems E1-E5. For example,
in Luchins’ very first study, he compared a control group
of students not receiving E1-E5 with the plain group who
received these problems. His results showed that the plain
group solved C1 and C2 using the E-solution between 77%
and 82% of the time, and C3 and C4 between 27% and 84%
of the time. The control group, however, never applied any
E-solutions. Luchins’ very first results, taken from the first
table of his thesis, are shown (as displayed in his thesis) in
Fig. 1c.

In his doctoral thesis, Luchins also reported many other
experiments assessing how different manipulations influ-
enced the presence and strength of the Einstellung effect.
These additional experiments show an impressive data col-
lection effort. In particular, Luchins’ results showed that the
Einstellung effect was stronger for earlier (C1/C2) than later
(C3/C4) test trials, decreased when participants were asked
to pay more attention, increased with the number of training
tasks, vanished when E- and D-problems were interleaved
during training and increased when participants were put un-
der time pressure.

Luchins reported all of his results in tabular form (see
Fig. 1c), indicating how many people were assigned to
which group as well as the frequency of E-solutions and –
sometimes– D-solutions. For him, this format was sufficient

3Assuming that subjects have access to an infinite source of wa-
ter.



4 RECONSTRUCTING THE EINSTELLUNG EFFECT

to draw conclusions about what conditions induced an Ein-
stellung effect. He did, however, not analyze his data quanti-
tatively as current statistical software and analysis practices
did not exist in the 1940s. To fill this gap, we transcribed
Luchins’ results into usable data files by going through his
tables and coding the reported percentages as the number of
participants who showed a certain response. This reconstruc-
tion allows us to analyze his results using modern-day statis-
tics, as well as to reinterpret the Einstellung effect from the
perspective of current approaches to reasoning and decision-
making.

Explaining the Einstellung effect

To improve our understanding of the Einstellung effect,
we have to ask ourselves why people would show the ef-
fect in the first place. In this section, we present a compu-
tational model that allows us to interpret Luchins’ findings
from the perspective of resource-rational decision-making
(Bhui et al., 2021; S. J. Gershman et al., 2015; Lieder &
Griffiths, 2019). This model assumes that people attempt to
maximize their performance in Luchins’ water jar task but
do so while spending as little physical and mental effort as
possible. In the subsequent section, we will then show that
these simple principles are sufficient to explain the rich set of
behavioral phenomena observed by Luchins.

Problem setting

Recall that G = (G1, G2, G3) denotes the capacity of each
water jar, and H the total amount of water to be measured.
The goal of a decision-making agent is to find a combination
F = (F1, F2, F3) of integers, such that F>G = H. To each
setting of F, we assign the following utility*:

* (F, G, H) =
{

1 − _ | |F | |2 if F>G = H
−_ | |F | |2 if F>G ≠ H

(1)

Equation 1 assigns a utility of 1 to valid solutions, and a
utility of 0 to invalid solutions. In addition, it also contains
a second term that favors simple solutions, i.e., those with a
low squared Euclidean norm. Intuitively, this term captures
that solutions which require fewer steps to execute, i.e., those
that require less physical effort, should be preferred. The im-
portance of the latter term (relative to finding a valid solution)
is controlled by a hyperparameter _, which we set to 0.05 in
all of our simulations unless stated otherwise.

A perfectly rational decision-maker should simply search
through all candidate solutions, and select the solution F∗

with the highest utility. However, as it has been repeatedly
pointed out in the literature (e.g. Gigerenzer & Selten, 2002;
Simon, 1990), searching through the entire space of pos-
sible solutions is normally not feasible beyond simple toy
problems. In the present task it would, for example, require

nearly 10000 evaluations even if we restricted ourselves to
F8 ∈ {−10,−9, . . . , 9, 10}.

Resource-rational decision-making

How can we make progress if searching the entire solution
space is not feasible? The framework of resource rational-
ity offers a solution to this problem. Like perfectly rational
decision-makers, resource-rational decision-makers attempt
to find an optimal solution, but do so while taking limited
computational resources into account. There exist a number
of implementations of this idea (for example, S. J. Gersh-
man, 2020; Lieder & Griffiths, 2017; Sanborn et al., 2010;
Vul et al., 2014). The approach we pursue in this work is
an extension of the information-theoretic model proposed by
Ortega et al. (2015). In this model, the decision-maker starts
with a prior preference over solutions ?(F), which is then
transformed into a posterior policy @(F |G, H) once a deci-
sion has to be made. More specifically, this transformation
is done such that the posterior policy maximizes excepted
utility, while keeping the cost of the transformation minimal:

@ = argmax
@̂

∑
F

@̂(F |G, H)* (F, G, H)︸                        ︷︷                        ︸
expected utility

− 1
V

KL [@̂ | |?]︸         ︷︷         ︸
transformation

cost

(2)

Equation 2 uses the Kullback-Leibler (KL) divergence to
measure the cost of transforming prior preferences into the
posterior policy. We will return to how this cost can be in-
terpreted from a psychological perspective below. The trade-
off between this transformation cost and the excepted util-
ity is controlled by an inverse temperature parameter V. For
V→∞, Equation 2 recovers the solution that maximizes ex-
pected utility without considering computational resources,
i.e., @(F |G, H) = XFF∗ . For V → 0, it corresponds to
the trivial solution of not transforming the prior at all, i.e.,
@(F |G, H) = ?(F). For any arbitrary V, optimal solution to
Equation 2 is given by the Gibbs distribution (Ortega et al.,
2015):

@(F |G, H) = 1
/
?(F)4V* (F,G,H) (3)

/ =
∑
F

?(F)4V* (F,G,H) (4)

Looking at Equations 3 and 4, we can observe a close con-
nection to Bayesian inference. In particular, we can interpret
the exponentiated utilities 4V* (F,G,H) as a likelihood term in
the standard Bayesian framework, with the hyperparameter
V acting as a scaling factor for utilities.

Importance sampling

To act optimally, a resource-rational decision-maker has
to draw a sample from its posterior policy. The naive method
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of obtaining such a sample is to first compute @(F |G, H) ac-
cording to Equations 3 and 4, followed by sampling from
it. However, this would still require to iterate over the en-
tire search space, making it seem like we have gained noth-
ing from the resource-rational problem formulation. Luck-
ily, it turns out that it is possible to obtain a sample from
the posterior policy without explicitly computing it. Havasi
et al. (2018) proposed a simple importance sampling proce-
dure for doing exactly that. Their algorithm draws " sam-
ples F1, . . . , F" ∼ ?(F) and selects F< with probability
?accept ∝ @ (F< |G,H)

? (F<) . In the limit of " → ∞, this procedure
will generate an unbiased sample from @(F |G, H). But how
accurate is this procedure when the number of samples is
limited? Havasi et al. (2018) showed that one only has to
draw " =

⌈
4 ! [@ | |?]

⌉
samples to ensure that the bias re-

mains low. In our context, this result allows us to interpret
the minimization of  ! [@̂ | |?] as a reduction in the number
of candidate solutions to be inspected for obtaining a sample
from the posterior policy. Therefore, this term measures the
number of thinking steps, i.e., the required mental effort to
solve a problem. We may say that an agent that does not care
about the transformation cost (i.e., an agent with high V) has
to inspect many candidate solutions before setting on one of
them, while an agent that does care about the transformation
cost (i.e., an agent with low V) only has to inspect a few can-
didate solutions.

The choice of prior preferences

We have remained agnostic about the choice of prior pref-
erences up to now. However, for a full model specifica-
tion, we have to ask: what prior should a resource-rational
agent use? A reasonable modeling choice is to assume that
the agent employs the most economic prior for its decision-
making environment, i.e., the prior that on average leads
to the least costly decisions. Tishby et al. (2000) showed
that this prior is given by the marginal distribution ?∗ (F) =∑
G,H @(F |G, H)?(G, H). The problem with this line of rea-

soning is that an agent in Luchins’ water jar task does not
have access to the distribution of decision-making problems
that can be encountered ?(G, H), and thus it can not compute
?∗ (F). Instead of using ?∗ (F) directly, we suggest a heuris-
tic strategy to approximate it. In particular, we start from an
initial prior distribution ?(F |\) that is parametrized through
a softmax function:

?(F |\) =
∏
8=1

?(F8 = :) =
∏
8=1

4\8:∑
:′ 4

\8:′
(5)

and then adjust this prior with a single gradient step after
each trial, such that the probability of selecting the previous
solution FC is increased:

\ ← \ + U∇\ log ?(FC |\) (6)

This updating procedure approximates the optimal prior
?∗ (F) after sufficiently many interactions with the environ-
ment. We treat the learning rate U as a free parameter in
our upcoming modeling simulations, and initialize \8: = 0
for all 8 and : , leading to a uniform initial prior preference.
For convenience, we restrict the space of possible settings to
F8 ∈ {−10,−9, . . . , 9, 10}.

Model simulations
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Figure 2
Model simulation results from the resource-rational
decision-maker for different learning rates U and inverse
temperatures V. a: Percentage of valid solutions in the
problems C1-C4, regardless of their complexity. b: Number
of samples to be inspected in order to make a decision
(shown on a logarithmic scale). c: Einstellung effect for
different model parameters. The upper panels show the
proportions of E-solutions for C1-C4, whereas lower panels
show the proportions of D-solutions for the same tasks.

We simulated our proposed model when performing
Luchins’ original task for different values of the learning
rate U and the inverse temperature parameter V. For this
simulation, we varied the learning rate U from 0 to 1, and
the inverse temperature V from 1 to 50. The results of let-
ting agents perform the task 100 times and averaging per
unique (U, V)-constellation are summarized in Fig. 2. Fig. 2a
shows the percentage of valid solutions in the problems C1-
C4. We observed that any agent with an inverse temperature
V & 8 solves the task reliably and interpret this as a valida-
tion that our model exhibits the expected behavior. For lower
V-values, the influence of the transformation cost dominates,
causing agents to stick sampling from their prior preferences.
Fig. 2b displays the number of samples to be inspected in or-
der to make a decision. We observed, for example, that a
resource-rational decision-maker with U = 0.6 and V = 25
only needs to inspect 10 samples to make a decision, which
is much less demanding from a computational perspective
compared to the perfectly rational decision-maker, who has
to inspect each of the 213 = 9261 possible choices. In gen-
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eral, we see that as V decreases, the number of required sam-
ples also decreases. The number of samples required is fur-
thermore reduced drastically for medium to large learning
rates, indicating that an agent can save a substantial amount
of computational resources by learning a prior that is appro-
priate for its decision-making environment. Finally, we show
the percentage of D- and E-solutions in Fig. 2c for both the
experimental group (i.e., plain) and the control group. While
most of the agents in the experimental group were able to
solve the task reliably, they did so in very different ways:
resource-rational decision-makers with low inverse tempera-
tures tended to apply the E-solution, whereas those with high
inverse temperatures tended to apply the D-solution. The
point of transition from E- to D-solution was mediated by
the learning rate. In contrast to this, we found that agents
that were not exposed to any E-problems (the control group)
exclusively relied on D-solutions, regardless of the chosen
parameters. We will next use this model to take a closer look
at several of Luchins’ experimental findings.

The main Einstellung effect

For his very first experiment on the Einstellung effect,
Luchins recruited several subjects from New York University
as well as New York high schools and public schools. There
were 310 participants in total whose responses we recon-
structed from Luchins’ thesis (A. S. Luchins, 1942). From
these participants, 155 were in the plain group and therefore
went through all of the problems shown in Fig. 1a, and 155
were in the control group and therefore did not experience
problems E1-E5.

Reanalyzing this data (see Fig. 3a), we found that 128 out
of 155 participants in the plain group responded by using an
E-solutions to problems C1 and C2, whereas none of the 155
participants in the control group responded to these problems
by using E-solution. The plain group, therefore, showed a
stronger Einstellung effect than the control group on C1 and
C2 (0.83 vs. 0.00; j2 = 218.02, ? < .001, Bayes Factor:
�� ≈ 9.8 × 1057). Moreover, 100 of the 155 participants in
the plain group responded by using E-solutions to problems
C3 and C4, whereas again none of the 155 participants in
the control group did. Thus, the plain group also showed a
stronger Einstellung effect than the control group on C3 and
C4 (0.65 vs. 0.00; j2 = 147.62, ? < .001, �� ≈ 7.9×1038).
Finally, participants in the plain group showed a stronger
Einstellung effect when responding to C1 and C2 than when
responding to the later problems C3 and C4 (0.83 vs. 0.65;
j2 = 13.00, ? < .001, �� ≈ 109.8).

We next attempted to reproduce these response patterns
using our model of resource-rational decision-making (see
Fig. 3b). We picked a model with a medium learning rate
of U = 0.5 and an inverse temperature parameter of V = 25.
We then let this model run for 100 simulations for both con-
ditions and tracked whether or not it responded by using the
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Figure 3
Results of Luchins’ main experiment. A Reconstructed ex-
perimental effect. Participants in the experimental condition
showed a strong Einstellung effect, whereas participants in
the control group did not show an Einstellung effect. b: Sim-
ulated effects. Our resource-rational decision-making model
can reproduce the observed effects. Error bars indicate the
standard error of the mean.

E-solution for the problems C1-C4. We do not report signif-
icance tests for these simulations, since any simulated differ-
ence can become significant if only repeated for long enough.
Looking at the simulated behavior, we saw that in 90 out of
100 simulations the agents responded by using E-solutions to
problems C1 and C2 in the plain group, whereas 0 out of 100
agents used E-solutions for the same problems in the control
group. The simulated behavior of agents in the plain group,
therefore, showed a stronger Einstellung effect on C1 and C2



BINZ & SCHULZ 7

than the simulated behavior of agents in the control group
(0.90 vs. 0.00). Furthermore, 84 out of 100 agents in the
plain group responded by using the E-solution to problems
C3 and C4, while again 0 out of 100 agents in the control
group responded by using E-solutions. Thus, agents in the
plain group showed a stronger Einstellung effect on C3 and
C4 than agents in the control group (0.84 vs. 0.00). Finally,
simulated agents also applied more E-solutions to C1 and C2
than to C3 and C4 (0.90 vs. 0.84). Based on these results,
we conclude that our model can fully reproduce the observed
human behavior in Luchins’ original experiment.

Don’t be blind

Already in his very first experiments, Luchins added an-
other condition that had not been part of Duncker and Zener’s
original design. In this condition, called the “Don’t be
blind!” –or short DBB– condition, the following procedure
was applied:

“Before any problems were presented, other
members had been taken outside of the class-
room and had been told, in the absence of the
other subjects ‘After returning to the classroom
you will get a number of problems. After you
will have completed Problem Six, write on your
papers the words Don’t be blind!’.”

This condition became a standard manipulation in
Luchins’ tasks. It is akin to debiasing participants by directly
telling them to pay attention to possibly occurring flaws in
their decision-making (Morewedge et al., 2015). In these
studies, it is normally assumed that asking participants to pay
more attention will drive them to perform better and therefore
solve the task using the shorter D-solution. For example,
Lane and Jensen (1993) showed that simply telling partici-
pants about the Einstellung effect can reduce the proportion
of E-solutions significantly. Chrysikou and Weisberg (2005)
also found that using de-fixation instructions (i.e., explicitly
asking people to avoid using previously provided example
solutions) eliminated set effect of the example solutions in
problem-solving. Here, we report the main results of the
DBB condition, taken from tables 1-5 of Luchins’ thesis,
comparing participants in the DBB group with participants
from the plain group from before.

Reanalyzing this data (see Fig. 4a), we found that 87 out of
153 participants from the DBB group responded by using E-
solutions to problems C1 and C2, showing a weaker Einstel-
lung effect than the plain group on C1 and C2 (0.57 vs. 0.83;
j2 = 24.16, ? < .001, �� ≈ 32156.9). Moreover, 57 of the
153 participants from the DBB group responded by using
E-solutions to problems C3 and C4, thereby also showing a
weaker Einstellung effect than the plain group on these prob-
lems (0.37 vs. 0.65; j2 = 24.16, ? < .001, �� ≈ 14250.9).
Finally, participants in the DBB group showed a stronger
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Figure 4
Results of the “Don’t be blind!” condition. a: Empirical re-
sults as reconstructed from Luchins’ thesis. b: Simulated re-
sults as produced by our model of resource-rational decision-
making. Error bars indicate the standard error of the mean.

Einstellung effect when responding to C1 and C2 than when
responding to the later problems C3 and C4 (0.57 vs. 0.37;
j2 = 11.81, ? < .001, �� = 52.1).

We then again reproduced these effects by simulating from
our model (see Fig. 4b). In our model, paying more atten-
tion corresponds to an increase in the inverse temperature
parameter V, which leads to exerting more mental effort. We,
therefore, increased this parameter to V = 30 while keeping
the learning rate at U = 0.5. In 68 out of 100 simulations for
the DBB condition, the model solved C1 and C2 using the
E-solution. For problems C3 and C4, the model used the E-
solution in 46 out of 100 simulations. Thus, our model was
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able to reproduce the Einstellung effect observed in the DBB
condition. These simulation results show that the reduction
of the Einstellung effect in the DBB condition can be seen
as a result of more extensive, and therefore more effortful,
updating of the distribution over possible solutions.

Varying the number of training tasks
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Figure 5
Effect of number of training tasks. a: Empirical results
as reconstructed from Luchins’ thesis. b: Simulated re-
sults as produced by our model of resource-rational decision-
making. Error bars indicate the standard error of the mean.

Another variation that Luchins tried was to give one group
of participants two E-problems and another group of partic-
ipants ten E-problems. He did this to assess how the num-
ber of E-problems influenced the Einstellung effect. We
transcribed this data from tables 12-13 in Luchins’ thesis.

The participants were students from public schools recruited
around the New York area.

Reanalyzing this data (see Fig. 5a), we found that 112 out
of 112 participants receiving ten E-problems responded by
using E-solutions to problems C1 and C2, whereas only 79
of the 108 participants receiving two E-problems responded
to these problems by using E-solutions. The group receiv-
ing more E-problems, therefore, showed a stronger Einstel-
lung effect on C1 and C2 than the group receiving fewer E-
problems (1 vs. 0.73; j2 = 34.64, ? < .001, �� ≈ 3.2×108).
Furthermore, whereas 111 of the 112 participants receiving
ten E-problems responded by using E-solutions to problems
C3 and C4, only 59 of the 108 participants receiving two E-
problems did. Thus, participants receiving more E-problems
also showed a stronger Einstellung effect on C3 and C4 (0.99
vs. 0.55; j2 = 61.93, ? < .001, �� ≈ 1.5 × 1015).

We also analyzed the behavior of simulated agents for
this task. While we kept the learning rate the same as be-
fore, we had to decrease the inverse temperature parame-
ter to V = 15 to fully capture human behavior in this task.
This was because participants already showed a strong Ein-
stellung effect even after only having seen two E-problems.
Whether this increase in savings of mental effort was specific
to the population collected for this task (i.e. public school
students) or something that is generally the case for shorter
experiments remains an open question for future investiga-
tions. We then trained the resulting agents on either ten or
two E-problems as described above. When trained on ten E-
problems, 100 of the 100 agents applied E-solutions to all
problems C1-C4, thereby showing an increased Einstellung
effect. When trained on only two E-problems, 52 of 100
agents responded by using E-solutions to problems C1 and
C2, and 40 of 100 agents responded by using E-solutions
to problems C3 and C4. Thus, agents trained on fewer E-
problems showed a weaker Einstellung effect. Taking these
results together, we can conclude that our model reproduces
the effect of the number of training tasks on the Einstellung
effect as described by Luchins.

Interleaving E- and D-problems during training

Another experimental condition that Luchins had run, was
to present one group of participants with alternating E- and
D-problems during training, whereas the other group only
received E-problems. In this manipulation, one group of par-
ticipants received seven problems that alternated between E-
and D-problems, whereas the other group only received E-
problems. Both groups were then tested on the problems
C1 and C2 from the original design (Fig. 1a). That alter-
nated training can make heuristic decision-making disappear
has previously been shown in other domains. For exam-
ple, Koehler (1996) argued that base rate neglect only ap-
pears when base rates are manipulated between rather than
within subjects, and several studies have found support for
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Figure 6
Effect of alternating E- and D-problems during training. a:
Empirical results as reconstructed from Luchins’ thesis. b:
Simulated results as produced by our model of resource-
rational decision-making. Error bars indicate the standard
error of the mean.

Koehler’s argument for example, see Fischhoff et al., 1979.
Additionally, other studies have shown that interleaved train-
ing improves mathematical problem-solving (Rohrer et al.,
2015) and category learning (Kornell & Bjork, 2008), among
others. However, there have also been studies showing that
blocked training can be better for both humans and neural
networks (Flesch et al., 2018).

We transcribed the data from tables 14-15 in Luchins’ the-
sis. There were 124 participants in the alternating condition
and 121 participants in the plain condition. Participants were
college students recruited from New York universities. When

being trained on alternating problems, only 20 of 124 partic-
ipants responded by using E-solutions to problems C1 and
C2, while 97 of 121 participants receiving the plain training
used E-solutions for the same problems. Thus, the group re-
ceiving alternate training showed a weaker Einstellung effect
than the group receiving the normal training tasks (0.16 vs.
0.80; j2 = 100.65 ? < .001, �� ≈ 4.5 × 1022).

We next assessed the behavior of simulated agents when
E- and D-problems were either alternated or not (again keep-
ing the learning rate U = 0.5 and the inverse temperature
V = 25). The results of this simulation showed that 90 of 100
agents responded by using E-solutions to problems C1 and
C2 when trained only on E-problems, whereas only 23 of 100
agents responded by using E-solutions to the same problems.
Thus, our model was able to reproduce the differences of the
Einstellung effect when either trained on plain or alternating
tasks.

Interestingly, multiple past studies have also shown that
one way to reduce set effects more than by just telling peo-
ple to pay more attention is to show them different solutions
to the preceding problems (Crilly, 2015; Neroni & Crilly,
2020). Likewise, our model reduces the proportion of E-
solutions if it has seen different solutions in the past, because
there will be more probability mass on these different solu-
tions.

The Einstellung effect under time pressure

Luchins also investigated how the Einstellung effect
changed when people were put under time pressure. He
started the description of these experiments with the obser-
vation that many students were relatively tense when they
had to perform the task, and that they seemed to be behave
almost as if they had to pass an exam. This led him to the
following observation:

“It may even be an intelligent response to such
conditions, the subject reasoning that he will get
through quickly, or will finish first, etc., by re-
peating a previously mastered process, and that
more time will be consumed if he stops to look
for new methods.”

This observation is actually relatively close to our pro-
posed model, which can save time by not updating its policy
too much. To further test whether increasing this pressure
could lead to a stronger Einstellung effect, Luchins put his
subjects under time pressure by telling them that their re-
sponses will be evaluated based on how fast they were and
emphasized the time pressure further “by a large laboratory
clock at the front of the room, by the recording of the minutes
on the blackboard, and by three stopwatches on the instruc-
tor’s desk.”

Nowadays, we know that people will frequently repeat
previous actions despite intending to choose an alternative
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Figure 7
Effect of time pressure. a: Empirical results as reconstructed
from Luchins’ thesis. b: Simulated results as produced by
our model of resource-rational decision-making. Error bars
indicate the standard error of the mean.

action when put under time pressure (Betsch et al., 2004).
Reaction times are also facilitated for response repetitions in
serial choice reaction (Bertelson, 1965) and bandit tasks (Wu
et al., 2019). Moreover, it has been argued that time pres-
sure causes participants to rely more on intuitive decision-
making (Kahneman & Frederick, 2002), making immediate
outcomes more salient (Ariely & Zakay, 2001) such that peo-
ple rely more on fast, recognition-based processes rather than
slower, more analytical processes (Klein, 1993).

We transcribed the data from these speed experiments
from tables 28-30 in Luchins’ thesis. Participants were New
York college and senior high school students. There were

153 participants in the plain group and 98 participants in the
speedy group. Whereas 126 out of 153 participants from
the plain group responded using E-solutions to problems C1
and C2, 95 out of 98 participants from the speedy group
used E-solutions for the same problems. The speedy group,
therefore, showed a stronger Einstellung effect than the plain
group on C1 and C2 (0.97 vs. 0.82; j2 = 12.08, ? < .001,
�� ≈ 187.8). Furthermore, whereas 100 of the 153 par-
ticipants in the plain group responded by using E-solutions
to problems C3 and C4, 94 of the 98 participants of the
speedy group did. Thus, participants in the speedy group also
showed a stronger Einstellung effect on C3 and C4 (0.99 vs.
0.55; j2 = 31.8, ? < .001, �� ≈ 1.8 × 107).

We then again tried to reproduce the observed effects us-
ing our proposed resource-rational decision-making model.
Time pressure can be induced in our models by lowering the
inverse temperature parameter. We, therefore, set this param-
eter to V = 25 (for the plain group) and to V = 15 (for the
speedy group) to match the assumption of both conditions.
For the plain condition, we found that 90 of 100 simulated
agents responded using E-solutions to problems C1 and C2,
and 84 of 100 simulated agents responded using E-solutions
to problems C3 and C4. For the speedy condition, 97 of 100
simulated agents solved problems C1 and C2 by applying E-
solutions, and 98 of 100 of applied E-solutions to problems
C3 and C4. Thus, our model can reproduce the observation
of an increased Einstellung effect when put under time pres-
sure.

Developmental differences

Luchins also tested several children using his experiment.
His main interest was to assess how education and intelli-
gence influenced the observed effect. After many studies
in different schools, Luchins did not find any strong influ-
ence of general intelligence or education on the general size
of the Einstellung effect. However, Luchins did not check
how the effect changed with age itself. Only later, in the
1950s, Luchins and his colleagues could show that the Ef-
fect increased with age (A. S. Luchins & Luchins, 1959;
Ross, 1952), even when controlled for IQ. Recent research
has shown that children can sometimes explore more than
adults (Schulz et al., 2019), which can even lead to better per-
formance when different hypotheses need to be considered
(Gopnik et al., 2017). It has also been shown that 5-year-old
children show no signs of functional fixedness (German &
Defeyter, 2000).

Interestingly, Luchins’ original data already contained
the necessary information to compare the Einstellung effect
across different age groups. Specifically, there were four dif-
ferent age groups in Luchins’ data, which can be separated
into primary school children, junior high school students, se-
nior high school students, and freshmen college students. In
total, there were 504 different subjects in this data set, which
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Figure 8
Developmental differences in the Einstellung effect. a: Em-
pirical results as reconstructed from Luchins’ thesis. b: Sim-
ulated results as produced by our model of resource-rational
decision-making. Error bars indicate the standard error of
the mean.

we split into the aforementioned groups by creating four dif-
ferent age ranks, from very young children to adults. Rean-
alyzing this data, we found that the proportion of respond-
ing to C1 and C2 by using an E-solution increased with age
(A (503) = 0.19, C = 4.39, ? < .001, �� ≈ 1207), while the
proportion applying D-solutions in the same tasks decreased
(A (503) = −0.18, C = −3.99, ? < .001, �� ≈ 242.7).

We tried to replicate this effect using our model of
resource-rational decision-making. To account for the dif-
ferences in the age groups’ Einstellung effects, we manip-
ulated the learning rate U to model differences in learning

for the different age groups. This can be justified by previ-
ous studies that have shown an increase in learning rates for
older children and adolescents (Davidow et al., 2016; Master
et al., 2020), and research that argued learning rates become
more adaptive to task demands as children get older (Meder
et al., 2021; Nussenbaum & Hartley, 2019). In particular, we
used four different learning rates U = {0.45, 0.5, 0.55, 0.66}
to account for differences in learning. We found that the
agents responded more frequently by using E-solutions (61,
75, 82 and 91 out of 100 simulations) and less frequently
by using D-solutions (39, 26, 18 and 9 out of 100 simula-
tions) to C1 and C2 as the learning rate increased. Thus,
our model was able to reproduce the observed developmental
differences through a manipulation of the learning rate.

Ablation analysis

Finally, we wanted to investigate which parts of our model
are crucial for capturing Luchins’ effects and therefore con-
ducted an ablation analysis in which we removed individual
components of the model. The following ablations were con-
sidered in our analysis:

1. A fully-rational model that does not include a cost for
transforming prior preferences into posterior policies,
and therefore does not take any mental effort in consid-
eration. This model is a limiting case of the full model
in which the inverse temperature parameter V goes to
infinity. Because this model does not use prior infor-
mation at all, it is invariant to changes in the learning
rate U.

2. A model that does not adjust its prior preferences to
the decision-making environment, i.e., one that does
not learn. This model is a special case of the full model
in which we restrict the learning rate to U = 0.

3. A model that does not include a term for penalizing
complex solutions in its utility function, and therefore
does not take any physical effort into consideration.
This model is a special case of the full model in which
we set the complexity parameter to _ = 0.

As before, we simulated these models for 100 runs in
each of Luchins’ conditions. The outcome of this ablation
analysis is summarized in Table 1. We discuss each indi-
vidual result in more detail below. The complete simulation
results can be found in the accompanying code repository:
https://github.com/marcelbinz/Einstellung.

No cost for mental effort (V→∞)

Let us first consider the fully-rational model. This model
always selects the option with the highest utility regardless of
the observation history. Therefore, it will solve C1-C4 using
the D-solution in both the plain and control condition, and

https://github.com/marcelbinz/Einstellung
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Table 1
Model ablation analysis. If a model can reproduce an effect, then this is indicated by a check mark (3), whereas a failure to
do so is indicated by a cross (7).

Full model No mental No prior No physical
effort adaptation effort
V→∞ U = 0 _ = 0

Einstellung effect 3 7 7 3
C1/C2 versus C3/C4 3 7 7 7
Don’t be blind 3 7 3 7
Number of tasks 3 7 7 3
Interleaved tasks 3 7 7 3
Time pressure 3 7 3 7
Developmental differences 3 7 7 3

consequently not show an Einstellung effect. The same rea-
soning can be applied to recognize that this model does not
exhibit a difference in the percentage of E-solutions between
C1/C2 and C3/C4 (in both cases it applies the D-solution
without exception). Because the fully-rational model is in-
variant to the observation history, it also does not capture
changes that arise from varying the number of tasks or from
interleaving E- and D-problems during training. Further-
more, the fully-rational model does not contain any parame-
ter that could be manipulated to emulate the changes Luchins
observed in the DBB condition, under time pressure, or when
inspecting participants in different age groups.

No adaptation of prior preferences (U = 0)

We may also consider a model that does not adjust its
prior preferences to the encountered decision-making envi-
ronment. In this model, the probability of selecting the E-
solution in C1-C4 increases as the inverse temperature pa-
rameter decreases. However, it is dominated by the probabil-
ity of selecting the D-solution for all values of V (see Fig. 9).
Therefore, this model is unable to account for the main Ein-
stellung effect. In addition, we can note that the average util-
ities for C1/C2 and C3/C4 are identical, and thus the model
shows no difference in the percentage of E-solutions in those
two phases. Because prior preferences remain constant over
time, the model is invariant to the observation history. There-
fore, it can not capture any effect from varying the number
of tasks or from alternating between E- and D-problems dur-
ing training. Furthermore, the model can not account for de-
velopmental differences, which we have previously done by
manipulating the learning rate.

There are, however, two of Luchins’ findings that this
model can capture by manipulating the inverse temperature
parameter. Increasing this parameter will increase the per-
centage of D-solutions, mirroring the results of the DBB con-
dition. Decreasing this parameter, on the other hand, will
increase the percentage of E-solutions, mirroring the results
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Figure 9
Percentage of D- and E-solutions for the model that does not
adjust its prior preferences to the decision-making environ-
ment.

of Luchins’ studies under time pressure. Taken together, this
model only captures a very limited set of Luchins’ results.

No cost for physical effort (_ = 0)

From the ablated models, only the one without the term
for penalizing complex solutions captures the main Einstel-
lung effect. This model still assigns the majority of its prob-
ability mass to the E-solution in C1-C4. However, the prob-
ability of selecting such solutions is lower than in the full
model because a larger number of alternatives with equal
utility has to be considered (e.g., the solution F = [9,−4, 3]
for G = [23, 49, 3] and H = 20 is just as likely as F =
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[1, 0,−1]). In contrast to the other two ablated models, this
model adjusts its prior preferences to the encountered en-
vironment and is hence able to capture an increase in E-
solutions after previous encounters with such problems, as
well as a decrease in E-solutions when E- and D-problems
are interleaved during training. Finally, we can also relate
increases in learning rate within this model to the develop-
mental differences found in Luchins’ studies as we did for
the full model.
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Figure 10
Percentage of E-solutions. a: For the full model (reproduced
from Fig. 2). b: For the model that does not include the term
for penalizing complex solutions.

However, we did not observe any difference in the percent-
age of E-solutions between C1/C2 and C3/C4. We also ob-
served that the percentage of E-solutions in C1-C4 is largely
independent of the inverse temperature parameter V (see
Fig. 10b). Therefore, this model does not show an increase in
E-solutions under time pressure and neither does it show an
increase in D-solutions in the DBB condition. We speculate
that this is the case because a higher number of solutions is
equally valuable in the initial training phase, and hence an
Einstellung effect is not developed for a fixed percentage of
runs even when increasing the inverse temperature parameter
V.

Summary

The previous ablation analyses demonstrated that each
component of our model is crucial to capture the complete set
of effects described by A. S. Luchins (1942). Not including a
cost for transforming prior preferences into posterior policies
prevented the model from showing any effect. If we remove
the ability to adjust to the encountered decision-making en-
vironment, the model becomes invariant to the observation
history and it is hence not able to replicate history-dependent
effects. If we remove the term that favors simple solutions,
the percentage of E-solutions becomes independent of the
inverse temperature parameter, and hence the model can no
longer account for human choices under time pressure and
in the DBB condition. Finally, it is important to note that it
is not just the sum of the components but the interaction be-
tween them that gives rise to the complete set of effects: the

observation that the Einstellung effect is stronger in C1/C2
than in C3/C4 is captured by none of the ablated models but
only arises from the combination of all components.

Discussion

The Einstellung effect is an empirical phenomenon in
which previous experience with a problem leads to appar-
ently inefficient solutions for a current problem. This effect
was first established by Abraham Luchins and published in
his doctoral thesis in 1942. In this doctoral thesis, Luchins
collected data from over 1000 participants in different condi-
tions. To make this data amenable to modern statistical anal-
ysis, we have reconstructed Luchins’ results by transcribing
his tables into digital data formats. Doing so, we were not
only able to reanalyze the original Einstellung effect, but also
many of Luchins’ additional experiments that probed various
factors influencing the effect. This showed that the Einstel-
lung effect is higher for earlier than for later test problems,
decreases when participants are told to not be blind, increases
with the number of training problems of the same type, di-
minishes when problems that require different solutions are
interleaved during training, increases under time pressure,
and increases with participants’ age.

It is typically assumed that the best solution for any partic-
ular problem is necessarily the shortest, and thus previous re-
search has largely characterized the Einstellung effect as mal-
adaptive behavior. In the present paper, we have challenged
this assumption and provided a resource-rational interpreta-
tion of the effect. We did so with the help of an information-
theoretic model of decision-making. The central premise of
this model is to transform prior preferences into posterior
policies in a way that trade off expected utility with the time
it takes to make a decision. The resulting model incorporates
three basic principles: (1) people prefer simple solutions, i.e.,
they attempt to spend as little physical effort as possible, (2)
they avoid costly computations, i.e., those that require high
mental effort, and (3) they adapt to their environment, i.e.,
they learn about statistics of the problem they interact with.
We found that these simple principles are sufficient to capture
the rich characteristics found in Luchins’ data. An additional
ablation analysis confirmed that all of these principles are
necessary to reproduce the entire set of phenomena reported
in Luchins’ thesis.

Limitations and future directions

There are several limitations of our work that deserve to
be mentioned. The first shortcoming concerns the data re-
ported in Luchins’ thesis. Luchins only collected population-
level statistics, which prevented us from investigating indi-
vidual differences. He also did not record participants’ re-
action times, which potentially could provide another win-
dow into how people approach the task. The model we have
proposed especially makes strong predictions concerning the
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latter, and it would be interesting to examine whether these
predictions can be confirmed experimentally.

We have also only studied the Einstellung effect in a
limited domain, namely Luchins’ original water jar task.
Luchins’ doctoral thesis from 1942 already encompassed
other domains in which people showed similar behavioral
patterns, such as a maze navigation problem and a word puz-
zle task. Following Luchins’ seminal work, these ideas have
been extended to an even wider range of domains, includ-
ing chess (Bilalić et al., 2008a, 2008b, 2010; Reingold et
al., 2001) and medical diagnostics (Croskerry, 2003; Graaf,
1989). To further validate our model, we plan to apply it to
these domains in future studies. In this context, it is notewor-
thy to mention that earlier work of Braun et al. (2011) has al-
ready extended the modeling principles discussed here to the
setting of path integral control, which could be used to build
agents for Luchins’ maze navigation problem. Moreover,
our model could also be adapted to explain human behav-
ior in more complex planning tasks, including the observed
Einstellung effect of professional chess players, by equip-
ping deep learning models’ planning capacity with resource-
rational decision-making.

Furthermore, our analysis focused on Marr’s computa-
tional level of analysis (Marr, 1982), meaning that it an-
swers the question of what goal a decision-maker is trying
to achieve. It does not provide a concrete mechanistic de-
scription of the decision-making process. In particular, we
have suggested that a resource-rational decision-maker can
use importance sampling to draw a low-bias sample from its
posterior policy. In the outlined importance sampling pro-
cedure, the decision-maker draws multiple samples from the
prior in parallel and then selects one in proportion to their
importance weights. Doing so is theoretically appealing as
it allows us to link the KL divergence between prior pref-
erences and posterior policy to the time it takes to make a
decision. However, we imagine that this process looks quite
different within the human mind. For example, it might be
possible that people do inspect samples sequentially instead
of in parallel, or that they are willing to accept some bias in
order to make even quicker decisions.

Finally, we do not claim that the proposed model is the
only way to explain the data from Luchins’ experiments.
There are, for example, several alternative approaches to con-
strain computational resources that could induce similar be-
havior. In this context, the frameworks of rate-distortion the-
ory (Genewein et al., 2015; S. J. Gershman, 2020) and ratio-
nal meta-reasoning (Lieder & Griffiths, 2020; Russell & We-
fald, 1991) provide two obvious alternative theories. Another
interpretation of the presented results is that people selec-
tively reuse outcomes from previous computations, i.e., that
they engage in amortized inference (Dasgupta et al., 2018;
S. Gershman & Goodman, 2014). It might also be possible
that similar decision-making strategies can be meta-learned

and implemented via deep neural networks (Binz et al., 2020;
Dasgupta et al., 2020).

Related work

Our proposed model can be connected with several lines
of historical findings. First of all, it has been well-
documented that animals sometimes repeat actions in a mal-
adaptive fashion, leading to fixation (Krechevsky & Honzik,
1932) as well as stereotyped behavior (Dantzer, 1986). Fur-
thermore, the human lack to change one’s line of thinking
has also been studied in the domain of rigidity (Schultz &
Searleman, 2002), which is normally seen as the inability to
change one’s habits or attitude. We believe that our model of
resource-rational decision-making could also explain some
of these past findings as an adaptation to an environment that
requires agents to save mental and physical effort.

From a modeling perspective, there exists a range of
resource-rational approaches that are closely connected to
the one we have employed (Bhui et al., 2021; S. J. Gershman
et al., 2015; Lieder & Griffiths, 2019). Most relevant to our
work are approaches based on rate-distortion theory (Tishby
et al., 2000). In this framework, one attempts to maximize
some measure of performance, while simultaneously placing
an upper bound on the number of bits required to store an
object of interest. S. J. Gershman (2020) applied this idea
to limit an agent’s policy complexity and showed that this
accounts for perseveration effects in human learning. Math-
ematically, this can be realized by maximizing the objective
from Equation 2 averaged over all data-points. While, on
the surface, this account seems quite similar to the one we
have suggested, the resulting interpretation is quite different.
A rate-distortion theoretic approach stores a policy for each
data-point in memory and simply queries it whenever a par-
ticular data-point is encountered. In contrast, our approach
does not keep a policy in memory but instead searches for
a solution from scratch once a new data-point is encoun-
tered. We may ask ourselves which of the two approaches
is appropriate under which conditions. If a problem is fre-
quently encountered, it might make sense to cache the policy
for that problem in memory (as in the rate-distortion theo-
retic approach). If, however, the specific problem is rarely
encountered, or storing a policy for it is expensive, one is
better off by searching for new solutions from scratch upon
interacting with the problem (as in the approach employed
in this work). In Luchins’ water jar task, a problem is never
encountered twice, and thus we believe that it is more ap-
propriate to search for solutions from scratch in this setting
instead of storing each of them in memory.

Conclusion

We have combined the reconstruction of historical data
with the use of modern computational tools to reinterpret a
classic effect of human problem-solving. To the best of our
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knowledge, we are not aware of any prior work that involved
such a combination of methods. In particular, we have ex-
plained the results of Luchins’ doctoral thesis (A. S. Luchins,
1942) using a computational model based on three simple
principles: (1) people prefer simple solutions, i.e., they want
to reduce physical effort, (2) they avoid costly computations,
i.e., they want to reduce mental effort, and (3) they adapt
to the environment, i.e., they learn over time. Ever since
Herbert Simon’s work bounded rationality (Simon, 1972),
psychologists have argued that models of human behavior
should be based on these principles. However, only recently
researchers have been able to translate these principles into
computational models. Having access to these new models
allows us to reevaluate historical data from a fresh perspec-
tive, not only in the context of the Einstellung effect but also
in domains beyond.
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