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Abstract

How do people actively explore to learn about functional rela-
tionships, that is, how continuous inputs map onto continuous
outputs? We introduce a novel paradigm to investigate infor-
mation search in continuous, multi-feature function learning
scenarios. Participants either actively selected or passively ob-
served information to learn about an underlying linear func-
tion. We develop and compare different variants of rule-based
(linear regression) and non-parametric (Gaussian process re-
gression) active learning approaches to model participants’ ac-
tive learning behavior. Our results show that participants’ per-
formance is best described by a rule-based model that attempts
to efficiently learn linear functions with a focus on high and
uncertain outcomes. These results advance our understanding
of how people actively search for information to learn about
functional relations in the environment.
Keywords: Active learning; Function learning; Rule learning;
Self-directed sampling; Information search

Introduction
In everyday life, we constantly encounter situations where we
have to make sense of rule-like, functional relations. How
far can I drive if I put three gallons of gasoline in the tank?
How much force should I apply to a football in order to hit
the winning goal? How are different features of a food item
related to its taste or calorie content? Historically, human
function learning has often been treated as a passive informa-
tion processing routine in which participants are sequentially
confronted with different continuous stimuli (e.g., the length
of a line) that are directly followed by a continuous response
(e.g., the length of another line). In these studies, the input
is either randomly determined or preselected by the experi-
menter, so that learning occurs incidentally rather than in a
controlled, self-directed manner. This stands in contrast to
many real-world scenarios, in which we actively seek out in-
formation, manipulating input features to observe and learn
how they impact the outcome.

We present a multiple-feature function learning task to in-
vestigate how people actively select inputs to learn about
their underlying functional relation with a continuous output.
We use computational modeling techniques to gain insights
into participants’ active learning. Considering both rule-
based (linear regression) as well as non-parametric (Gaussian
processes regression) approaches to active function learning,
combined with different stepwise sampling strategies, we as-
sess which active learning model best explains participants’
information selection. We find that behavior is best accounted
for by a linear regression active function learning model that
tries to learn about both uncertain and high outputs over time.

Function Learning
Theories of function learning broadly coalesce around two
different categories. Rule-based theories (Carroll, 1963) as-
sume that participants learn explicit parametric representa-
tions, for example linear or polynomial functions. Even
though rule-based theories can successfully predict function
learning performance in some cases, they cannot account for
all phenomena observed in human function learning. For ex-
ample, they cannot explain why some rules, like linear func-
tions, are easier to learn than others, like exponential func-
tions (McDaniel & Busemeyer, 2005). Moreover, they fail
to fully predict extrapolation performance (DeLosh, Buse-
meyer, & McDaniel, 1997) and are unable to learn a par-
titioning of the input space based on additional knowledge
(Kalish, Lewandowsky, & Kruschke, 2004). On the other
hand, similarity-based theories (e.g., Busemeyer, Byun, De-
Losh, & McDaniel, 1997; DeLosh et al., 1997) assume that
people perform function learning by associating inputs and
outputs: if inputs x are paired with output y, then inputs simi-
lar to x should produce similar outputs to y. Busemeyer et al.
(1997) formalized this intuition using a connectionist model
(the Associative-Learning Model; ALM) in which inputs ac-
tivate an array of hidden units representing a range of pos-
sible input values. Learned associations between the hidden
units and the response units map the similarity-based activa-
tion patterns to output predictions. ALM broadly captures
interpolation performance, but fails to explain some aspects
of extrapolation and knowledge partitioning phenomena.

In order to overcome some of these problems, hybrid ver-
sions of the two approaches have been proposed (McDaniel &
Busemeyer, 2005). Hybrid models of function learning con-
tain an associative learning process that acts on explicitly-
represented rules. One such hybrid is EXAM (Extrapolation-
Association Model; DeLosh et al., 1997), which assumes
similarity-based interpolation, but extrapolates using simple
linear rules. EXAM captures the human tendency towards
linearity, and predicts human extrapolations for a variety of
functions. However, it does not account for non-linear ex-
trapolation (Bott & Heit, 2004). Recently, Lucas, Griffiths,
Williams, and Kalish (2015) put forward a theory of function
learning based on Gaussian Process (GP) regression. GP re-
gression is a non-parametric method to perform Bayesian re-
gression and has been found to describe human functional
judgments across a range of traditional function learning
paradigms (Lucas et al., 2015). Moreover, GP models ex-
hibit an inherent duality which makes them both a rule-based
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and a similarity-based model of function learning (see Lucas
et al., 2015). As GP models have also been extended to ac-
count for exploratory behavior in function optimization tasks
(Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017), we will
utilize them as candidate active learning models here.

Active Learning
Active learning can be defined as a goal-directed behavior in
which an agent tries to select information based on a mea-
sure of usefulness (Settles, 2009). Common metrics are the
expected reduction of uncertainty, the extent of predictions’
improvement, or the maximization of future rewards (Nel-
son, 2005). Human active learning has been investigated
in both adults and children (Nelson, Divjak, Gudmundsdot-
tir, Martignon, & Meder, 2014; Ruggeri & Lombrozo, 2015;
Ruggeri, Lombrozo, Griffiths, & Xu, 2016), and in several
domains, including causal learning (Bramley, Dayan, Grif-
fiths, & Lagnado, 2017; Lagnado & Sloman, 2004), cate-
gorization (Meder & Nelson, 2012), and control tasks (Os-
man & Speekenbrink, 2012). Active learning can often lead
to better performance than passive learning (Markant, Rug-
geri, Gureckis, & Xu, 2016). For instance, Lagnado and
Sloman (2004) showed that participants actively interven-
ing on a causal system performed better inferences about
the underlying causal structure than yoked subjects who re-
ceived identical information in a passive fashion. In cate-
gory learning, Markant and Gureckis (2014) found that active
learners sampled more along the line of the category bound-
aries and performed better than passive learners. Parpart,
Schulz, Speekenbrink, and Love (2017) found that partici-
pants’ queries in a feature-based active learning task with bi-
nary outcomes were more in line with a weight-based strategy
than a rank-based strategy.

Experiment: Monster Top Trumps
Although there are several studies on active learning in dif-
ferent conceptual domains and experimental tasks, little is
known about how humans search for information to learn
about continuous functional relations. In the following, we
first describe an active function learning experiment that we
conducted and the obtained behavioral results. We then in-
troduce different computational models for evaluating active
learning strategies.

Participants and Design Participants were 98 adults, re-
cruited from Amazon MTurk and tested online. They were
randomly assigned to one of two learning conditions. In the
active condition (n = 45) learners could freely choose which
information they wanted to acquire, whereas in the passive
condition (n = 53) they were presented with a random se-
lection of instances. Average task duration was 14.61min
(SD = 20.11). Mean reimbursement was $1.49 (SD = 0.29).

Materials and Procedure Participants played a browser-
based card game, in which each card showed a different mon-
ster and values for its three features (Figure 1). The instructed
goal was to learn the relationship between the monsters’ fea-

tures (“friendly,” “cheeky,” and “funny”) and the number of
“magic fruits” picked by each monster (criterion). Partici-
pants were told they would be rewarded for good performance
in a subsequent test phase.

Figure 1: Screenshot of the multiple-feature function learning
paradigm. The task was to learn the function relating the monsters’
features (“friendly,” “cheeky,” and “funny”) to the criterion (number
of fruits picked, shown in top right corner of selected cards). The
monster images and their assignment to each card were randomized.

The underlying function connecting the features to the cri-
terion was the following:

y = f (x) = 6x1 +3x2 + x3−10 (1)

The weights for each dimension were decaying, to ensure
that participants attended to all features in order to achieve
good performance and could not easily use more simplistic
strategies, such as tallying. For every participant, each of the
features was randomly assigned to x1, x2 or x3. Feature values
varied between one and five (inclusive), in increments of one.
Participants were informed of this range before the learning
phase.

Learning Phase Participants had to learn the function by
step-wisely observing how a given monster’s feature values
related to its criterion value. The learning phase card set con-
sisted of 27 cards generated by factorially combining all fea-
ture values between 2 and 4, such that participants observed
only a restricted part of the function. All 27 cards were dis-
played with the feature values visible but the criterion value
hidden (Figure 1). In the active learning condition, partic-
ipants freely selected cards to observe their criterion value.
Participants in the passive learning condition selected ran-
domly highlighted cards to see their criterion value. Thus,
each participant received the same amount of information,
but in one condition learners actively decided which data they
wanted to observe, whereas the passive learners received ran-
domly selected data points. All participants viewed the crite-
rion value of 22 of the 27 cards. Once revealed, this value
remained visible throughout the learning phase. However,
they were not told exactly how many cards could be selected,
such that the active learning group was incentivized to make
the most informative selections from the beginning, while the
passive group was encouraged to pay close attention to avoid
missing any important information.
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Test Phase The test phase consisted of two tasks: a pair
comparison task and an criterion estimation task (order coun-
terbalanced across participants). No feedback was given dur-
ing the test phases.

In the pair comparison task, participants were shown eight
card pairs whose feature values ranged between 1 and 5, such
that these profiles contained both known and unknown fea-
ture values. For each pair they had to decide which monster
had gathered more fruits; $0.04 was awarded for every cor-
rect selection. This task assessed how well they could judge
the relative weights of each feature in the function they had
to learn. For three of these trials, the card pairs were assem-
bled such that one of the three features varied between cards
while the values for the other two features were held constant.
For the other five trials, card pairs were assembled so that the
value of the first, second or last feature outweighed the com-
bined value of the two other features on each card, so that
this feature was the main determinant of the number of fruits
collected.

The criterion estimation task consisted of three types of
estimates: five recall trials, five interpolation trials, and
eight extrapolation trials (18 cards in total; order randomized
block-wise across participants). Recall cards consisted of five
new monster cards with feature profiles for which participants
had observed the criterion in the learning phase. Interpolation
cards consisted of five new monsters with feature profiles cor-
responding to the five cards that had not been observed dur-
ing the learning phase. Comparing performance on recall and
interpolation trials enabled us to determine the relative con-
tribution of memory versus inductively formed beliefs about
the part of the function learners had been trained on. Fea-
tures on the extrapolation cards had values of 1 or 5, corre-
sponding to input values and combinations thereof that partic-
ipants had not been trained on. For each card, estimates were
given by moving a slider horizontally between 0 and 40 (in
increments of 1) until it reached the desired criterion value.
Performance was incentivized: estimates within 5 of the true
criterion value were rewarded with $0.06; estimates within
10 were rewarded with $0.04; estimates within 20 were re-
warded with $0.02; estimates further than 20 away from the
criterion were not rewarded.

Behavioral Results
Learning Outcomes
Pair Comparison Overall, participants performed well in
this task, with a mean accuracy of 77.14% (SD = 20%).
Performance did not differ significantly between the ac-
tive (Mdn = 75.0%) and passive (Mdn = 88.0%) conditions
(Mann-Whitney-U, U = 1215.5, p = .87).

Criterion Estimation Performance in the criterion estima-
tion task was assessed in terms of the estimation error (mean
absolute deviation between participants’ estimates and the
correct criterion value). Overall, performance did not dif-
fer between conditions (Mdnactive = 5.60, Mdnpassive = 6.38;
U = 11232.5, p = .49). Performance was also evaluated sep-

arately for each trial type, aggregated across training condi-
tions. There was a significant difference in estimation er-
ror between trial types (Kruskal-Wallis: H(2) = 16.83 ad-
justed for ties, p< .01). Post-hoc pairwise comparisons using
the Dunn-Bonferroni method (Bonferroni-corrected) revealed
that error on the extrapolation trials was significantly higher
than on the interpolation (p < .05) and recall (p < .001) tri-
als; there was no difference between interpolation and recall
trials (p = 1.00).

We also examined differences in accuracy for each trial
type according to the active vs. passive learning condi-
tion (Figure 2). Contrary to expectations, learning condi-
tion only marginally affected accuracy for recall (Mdnactive =
4.2; Mdnpassive = 4.6;U = 1206.0, p = .096), interpolation
(Mdnactive = 4.8; Mdnpassive = 6.0; U = 1250.0, p = .69)
or extrapolation trials (Mdnactive = 7.1; Mdnpassive = 8.4;
U = 1289.5, p = .41).
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Figure 2: Estimation error (mean absolute difference) for the three
criterion-estimation trial types, in each learning condition. Box plot
whiskers indicate 1.5 IQR; diamonds show the mean, and lines show
the median. Dots show individual data points.

Active Learning Queries
We analyzed participants’ card selection in the active learn-
ing condition. Figure 3 shows how frequently participants
selected different feature values for the top-most, the center,
and the bottom-most feature. Participants tended to select
extremes of the top-most feature during earlier trials, then
switched focus and selected extreme values for the middle
feature during intermediate trials, before then selecting ex-
treme features for the bottom-most feature during later trials
of the experiment. Comparing participants’ queries from the
active condition against the (random) queries from the pas-
sive conditions, we found that queries within the first 10 trials
significantly differed from random (Kolmogorov-Smirnov:
D = 0.09, p < .001), whereas the last 10 queries did not
(D = 0.036, p = .28). This suggests that the most system-
atic behavior occurred throughout the first few trials.

Modeling active function learning
We compared two function learning models combined with
different sampling strategies to see which model best ac-
counted for participants’ active function learning behavior.

Regression models for active function learning
We used two different regression models to describe partici-
pants’ active function learning behavior: a rule-based linear
regression and a non-parametric GP regression.
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Figure 3: Proportions of chosen features across training trials. A
indicates the top, B the middle, and C the bottom feature. Bandwidth
of density estimates was set jointly to 0.27.

Linear Regression A linear regression assumes that the
outputs at time point t are a linear function of the inputs plus
some added noise:

yt = f (xt)+ εi = β0 +β1xt + εt , (2)

where the noise term εt follows a normal distribution εt ∼
N (0,σ2

ε) with mean 0 and variance σ2
ε . In matrix algebra,

this can be written as

yt = x>t w+ εi

defining the vectors

xt =

[
1
xt

]
, w =

[
β0
β1

]
Within a Bayesian framework, we can compute the posterior
distribution over the weights. Assuming a Gaussian prior
p(w) = N (0,Σ) and a Gaussian likelihood p(yt |Xt,w) =
N (X>t w,σ2

εI), the posterior is

p(w|yt ,Xt) ∝ p(yt |Xt ,w)p(w) = N
(

1
σ2

ε

A−1
t Xtyt ,A−1

t

)
(3)

where At = Σ−1 +σ−2
ε XtX>t . To predict a new output y? at a

new test point x?, one ignores the error term and only focuses
on the expected value which is provided by the function f ,
predicting f? = y?−ε? = f (x?). In the predictive distribution
of f?, the uncertainty regarding the weights is averaged out
leading to:

p( f?|x?,Xt ,yt) = N
(

1
σ2

ε

x>? A−1
t Xtyt ,x>? A−1

t x?
)

(4)

Gaussian Process Regression The other active function
learning model is based on Gaussian Process (GP) regres-
sion. A GP regression is a non-parametric Bayesian way to
model regression problems. It can theoretically learn any sta-
tionary function by the means of Bayesian inference (Schulz,
Speekenbrink, & Krause, 2017). If f : X → R is a function
over input space X that maps to real-valued scalar outputs,
then this function can be modeled as a random draw from a
GP:

f ∼ GP (m,k). (5)

Here, m is a mean function that is commonly set to 0 to sim-
plify computations. The kernel function k specifies the co-
variance between outputs.

m(x) = E[ f (x)] (6)

k(x,x′) = E
[
( f (x)−m(x))( f (x′)−m(x′))

]
. (7)

Conditional on observed data D = {xn,yn}N
n=1, where yn ∼

N ( f (xn),σ
2) is a draw from the underlying function, the pos-

terior predictive distribution for an input x∗ is Gaussian with
mean and variance:

E[ f (x∗)|D] = k>∗ (K+σ
2I)−1y (8)

V[ f (x∗)|D] = k(x∗,x∗)−k>? (K+σ
2I)−1k∗, (9)

where y = [y1, . . . ,yN ]
>, K is the N ×N matrix of covari-

ances evaluated at each pair of observed inputs, and k∗ =
[k(x1,x∗), . . . ,k(xN ,x∗)] is the covariance between each ob-
served input and the new input x∗. The kernel function k en-
codes prior assumptions about the underlying function. Here,
we used the radial basis function (RBF) kernel to model the
underlying functional dependencies:

kRBF(x,x′) = exp
(
−||x−x′||2

λ

)
(10)

where λ governs the amount of correlation between x and x′.

Active Sampling Strategies
Both function learning models generate predictions about the
expected mean and associated uncertainties of outputs pro-
duced by different inputs. What is additionally required to
guide active function learning is a sampling strategy that
maps models’ predictions onto utilities. One simple sam-
pling strategy is uncertainty sampling, which selects as the
next point the one that is currently most uncertain, i.e., shows
the highest predictive posterior standard deviation.

at(x) = argmax σt−1(x) (11)

This drives down the uncertainty across the predictive
space quickly. If the underlying parametric shape matches
the used model of learning (for example, learning a linear
function using linear regression), then this strategy results in
theoretically fast learning. Moreover, this is the only active
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learning model that has proven guarantees when paired with
Gaussian Process regression as it achieves at least a constant
fraction of the maximum information gain possible (Krause,
Singh, & Guestrin, 2008).

Another sampling strategy is mean sampling which selects
as the next input point the one that currently promises to pro-
duce the highest output:

at(x) = argmax µt−1(x) (12)

This strategy does not attempt to learn efficiently but rather
learns about the function only serendipitously by the attempt
to produce high outputs.

Upper confidence bound sampling tries to both reduce un-
certainty and high outcomes by sampling the input that cur-
rently shows the highest upper confidence bound

at(x) = argmax µt−1(x)+βσt−1(x) (13)

where β is a free parameter governing the extent to which par-
ticipants sample uncertain options. UCB sampling will, on
average, converge to both high knowledge about the underly-
ing function and sampling the highest possible outcomes. It
has recently been found to describe human behavior well in a
function exploration-exploitation paradigm (Wu et al., 2017).

We also combined the linear regression model with two
additional sampling strategies. The weight-based sampling
strategy samples points that are expected to reduce the vari-
ance of the different regression weights maximally. The ex-
tent to which different observations reduce the weights’ vari-
ances is assessed by forward Monte Carlo sampling (i.e.,
sampling from the predictive distribution, concatenating that
observation to the data, updating the Bayesian regression, as-
sessing how much the weights’ variance has been reduced,
and so forth). The focused sampling strategy is similar to
the weight-based sampling strategy but instead of sampling
points that promise to reduce the variance over all weights,
only focuses on one weight at a time, namely the one that
currently has the highest estimated variance. We combine the
GP regression model with one additional sampling strategy,
active sampling as proposed by Cohn (Cohn, Ghahramani,
& Jordan, 1996). This sampling strategy selects as the next
point the one that is expected to maximally reduce the pre-
dictive variance over the whole input space. This reduction is
again assessed by using one-step ahead Monte Carlo samples
as proposed by Gramacy and Lee (2009).

We did not assess any sampling strategy that considered
more than one-step-ahead simulations. All models were as-
sessed by submitting their predictions, generated by feeding
participants’ observations up until trial t−1 into a model and
then predicting means and uncertainties for trial t over all tri-
als, into a softmax function to convert the predicted utilities
into choice probabilities

P(x) =
exp(at(x))/τ)

∑
N
j=1 exp(V (at(x))/τ)

(14)

where τ is a free temperature parameter. For each partici-
pant we calculated a model’s AIC(M ) =−2log(L(M ))+2k

and standardized it using a pseudo-R2 measure as an indi-
cator for goodness of fit, comparing each model Mk to a ran-
dom model: Mrand, R2 = 1−AIC(Mk)/AIC(Mrand). The free
temperature parameter was optimized using differential evo-
lution optimization (Mullen, Ardia, Gil, Windover, & Cline,
2009).

Model Comparison Results
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Figure 4: Results of model comparison. Error bars show the stan-
dard error of the mean. Dots show R2 for individual participants.

Figure 4 shows the model comparison results. Overall, the
linear models described participants better than the GP mod-
els (averaged over mean, uncertainty and UCB; t(44) = 4.48,
p < .001, d = 0.67). Only looking at the GP models, the
uncertainty sampling strategy performed worse than chance
(t(44) = −9.90, p < .001, d = 1.47), indicating that partic-
ipants did not sample the most uncertain options, and per-
haps even avoided highly uncertain inputs. Furthermore, the
UCB sampling strategy did not perform better than the mean
sampling strategy when combined with a GP (t(44) =−1.55,
p < .13, d = 0.23). Only looking at the linear model, the
UCB sampling strategy turned out to be best overall, di-
rectly followed by the mean sampling (linear model only;
t(44) = 3.97, p < .001, d = 0.59) and the uncertainty re-
duction strategy (linear model only; t(44) = 5.24, p < .001,
d = 0.78). The linear model paired with UCB-sampling per-
formed marginally better than the GP paired with UCB sam-
pling (t(44) = 1.78, p = .08, d = 0.27). Thus, the best over-
all model was a linear regression function learning algorithm
paired with a UCB sampling strategy.

Discussion and Conclusion
Function learning plays a crucial role across many domains,
from completing basic visual patterns to predicting the fu-
ture to gain rewards. We have developed and tested a novel
paradigm to assess active function learning, exploring how
participants step-wisely select inputs for which they want to
observe outputs in order to learn about an underlying func-
tional relation. To evaluate active learners’ behavior we com-
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pared linear and GP regression models combined with dif-
ferent sampling strategies. We found that the best overall
model was a linear regression combined with an UCB sam-
pling strategy. This means that participants adapted well to
the overall task structure, which was set up to be linear, a
finding which is in line with previous work showing that par-
ticipants rely more on rule-based than similarity-based rea-
soning in simple linear environments (Hoffmann, von Hel-
versen, & Rieskamp, 2016). Moreover, they sampled inputs
to learn about both the overall shape of the function as well
as the location of high outputs. Interestingly, this result mir-
rors recent evidence that participants solve the exploration-
exploitation dilemma in reinforcement learning problems in
a similar fashion (Wu et al., 2017), thereby hinting at the
possibility of a universal sampling strategy underlying both
information search and the search for rewards. Participants
may not easily be able to turn off the exploitation part of their
sampling strategy as they normally encounter a mix of explo-
ration and exploitation problems in real life.

Surprisingly, our results showed no advantage of active in-
formation selection over passively observing outputs, possi-
bly due to a ceiling effect after having observed 22 exemplars
whose output remained on the screen during learning. In fu-
ture studies, we intend to re-assess the possible advantage
of active over passive function learning by further restrict-
ing participants’ sampling horizon. In fact, the considered
models also predict no difference between conditions as they
can learn the underlying function almost perfectly well within
the 22 trials provided. Furthermore, it may be informative to
add a condition where participants are informed of the search
horizon, so that they can plan their search accordingly. In ad-
dition, as we have only investigated a linear function, follow-
up studies should attempt to analyze the effect of nonlinear
functions on participants’ active function learning behavior;
this in turn could lead to an increased performance of the GP
model, which can learn functions well across many paramet-
ric forms. Finally, we believe that experimentally mapping
out developmental differences in active function learning be-
tween children and adults promises to open an informative
window onto the interplay between generalization and self-
directed sampling across the lifespan.
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