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Abstract
How do people plan ahead when searching for rewards? We
investigate planning in a foraging task in which participants
search for rewards on an infinite two-dimensional grid. Our
results show that their search is best-described by a model
which searches approximately 3 steps ahead. Furthermore,
participants do not seem to update their beliefs during plan-
ning, but rather treat their initial beliefs as given, a strategy
sometimes called root-sampling. This planning algorithm cor-
responds well with participants’ behavior in test problems with
restricted movement and varying degrees of information, out-
performing more complex models. These results enrich our
understanding of adaptive planning in complex environments.
Keywords: Planning; Decision Making; Tree Search; Forag-
ing; Reinforcement Learning; Monte Carlo Sampling

Introduction
An important trait of intelligent agents is their ability to plan
ahead before performing actions, resulting in deliberate be-
havior that avoids costly mistakes. During planning, chains
of hypothetical actions are played out until a certain depth
based on what is known about the reward structure of the
environment (Huys et al., 2015). For instance, De Groot
(1978) found that amateur chess players can plan between
4-6 steps ahead when considering their next move. While
flexible, planning is computationally expensive, and optimal
solutions are frequently intractable (Dolan & Dayan, 2013).
Recently, Balaguer et al. (2016) found that people can think
ahead to solve complex problems by clustering steps into dif-
ferent contexts. Still, surprisingly little is known about how
people plan ahead when searching for rewards. In part, this
may be be due to the inherent difficulty of separating explo-
ration from planning.

We investigate participants’ search for rewards in a com-
plex two-dimensional grid world. The task has a rich combi-
natorial structure in which the reward on a location depends
on row- and column-parameters, and is particularly challeng-
ing for many approximate planning algorithms proposed in
the machine learning literature. Our results indicate that par-
ticipants learn in this task and improve their performance over
time. Further computational model comparison shows that a
search algorithm with a planning horizon of 3 steps describes
participants’ decisions better than other cue-based or associa-
tive learning models. Importantly, this model uses root sam-
pling, initializing beliefs once at the start and then reasoning
about what to do on subsequent steps, rather than also up-
dating beliefs during the planning process. This provides a
tractable solution to complex and dynamic planning scenar-
ios. Our results advance our notion of how people plan ahead
in a computationally challenging search task.

Planning as tree-search
Tree-search algorithms are search algorithms that are used
to plan ahead in complex reinforcement learning problems
(Brown et al., 2012). Treating each state as a node of a tree,
these algorithms plan ahead by expanding nodes via specific
sampling routines. As exhaustive search of all possible action
and state sequences is generally impossible, tree-search algo-
rithms attempt to sample the most promising paths, ignoring
improbable states and unfavorable actions. Because of their
ability to solve challenging reinforcement learning problems,
tree-search routines are highly popular in machine learning
(Silver et al., 2016).

Several psychological studies have investigated the way
people might perform tree-like planning before executing an
action. In a relatively simple two-stage decision task, peo-
ple show evidence of model-based planning, requiring them
to think ahead for two steps in order to obtain maximum re-
wards (Daw, Gershman, Seymour, Dayan, & Dolan, 2011).

In more complicated and longer sequential decision tasks,
there is evidence that people adapt their search to aspects of
the problem or task demands. For instance, Huys et al. (2012)
showed that subjects adopted a simple tree-search strategy
in which they curtailed any further evaluation of a sequence
as soon as they encountered a large prospective loss (called
pruning). Huys et al. (2015) used a model-based behavioral
analysis to provide a detailed examination of participants’
performance in a moderately deep planning task and found
that participants plan by establishing subgoals in a way that
achieves a nearly maximal reduction in the cost of computing
values of choices. Keramati et al. (2016) developed a three-
stage decision task and found that increased time pressure
led to shallower planning, suggesting that a speed-accuracy
trade-off controls the depth of planning with deeper search
leading to more accurate evaluation. Interestingly, their anal-
ysis revealed that subjects integrate habit-based cached val-
ues directly into goal-directed evaluations. Van Opheusden
et al. (2017) also found that people perform shallower tree
search under time pressure, but that they search more as they
improve during learning. Taken together, these studies show
that people can use clever heuristics to adapt the depth of their
search by “pruning” relatively poor branches of the tree or
using cached habit-based values to avoid further computation
along a branch.

Here, we assess participants’ decisions in a challenging re-
ward search task with (potentially) infinite states and deplet-
ing resources, providing challenging state-action-state dy-
namics.
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Figure 1: Screenshots of the potato farming game. The color
and size of the plants as well as the color and texture of the
soil provide visual cues for a tile’s quality. Further cues are de-
livered through the upper panel UI. The game can be played at
https://moritzkrusche.github.io/CoDeS-Project/experiment.html

Figure 2: Visual cues based on past success and exploration. Dis-
played soil and plant types served as quality indicators for rows and
columns (counterbalanced). The best soil/ plant type can be seen on
the right, and the worst on the left. Overlaid shades of gray indi-
cate information quality, with 3 being unexplored and 1 maximally
explored.

The potato farming task
To investigate planning in complex environments, we adapted
a task first conceived as a challenging machine learning prob-
lem (Guez, Silver, & Dayan, 2013). In order to make it suit-
able for human participants, we framed the task as a foraging
problem and implemented it as a browser-based game. Partic-
ipants control a farmer on a grid-like field in pursuit of pota-
toes. Movement is possible horizontally or vertically using
the 4 arrow keys (Figure 1). Every tile on the grid may yield
a single potato when visited, and is thereafter depleted. The
underlying structure of the task is determined by sampling,
independently, for each row i a probability pi ∼ Beta(α1,β1)
and for each column j a probability p j ∼ Beta(α2,β2). For
a tile in row i and column j, the probability of success (a
potato) is determined by the product of the two probabilities
p(potato) = pi× p j.

While in theory infinite, the number of possible moves
was limited to 100 (open) or 8 (test maps). Only a viewport
of 7× 7 tiles was shown during the game, with the farmer
character on the center tile. Upon movement, both farmer
and viewport shifted in the movement direction and the new
center tile was harvested with the probabililty of success as
above. Payoff values were —known to participants— tempo-
rally discounted with τ= 0.985 per move to further create op-
portunity costs for exploration, resulting in a 50% reduction

of the original payoff per reward after 45 moves. The game
contained distinct sound effects and animations that made re-
ward pursuit more engaging.

In order to help participants infer the quality of rows and
columns, tiles were displayed with visual cues. Different
plant and soil types for each tile represented inferred column
and row parameters, based on past reward frequencies (Fig-
ure. 2). Specifically, there were 5 quality levels which were
represented by distinct soil tones and textures, and by dif-
ferent plant shapes and sizes. Darker soil and larger plant
types represented higher inferred quality. Additionally, the
degree of information certainty, based on past exploration,
was shown through overlaid shades of gray, with darker gray
representing less explored tiles.

Information certainty levels were determined by a mono-
tonic rule based on the number of past moves within a row
or column. The criteria were: high uncertainty (0 visits of
row or column), medium uncertainty (between 1 and 4 visits),
and low uncertainty (more than 4 visits). In contrast, inferred
quality levels were presented based on a pseudo-Bayesian up-
dating rule that took into account past exploration and success
rates within a column or row. For every row or column k, this
was calculated as

qk =
αk +∑Potatoesk

αk +βk +∑Explored Tilesk
. (1)

At the first move of every map, the player is naı̈ve about
the reward structure (Figure 1, left). After every subsequent
move, the inferred quality and information levels for each vis-
ited row and column are updated (Figure 1, right). In order to
maximize rewards, players must seek to find a route over the
most rewarding tiles, for instance by traversing a column or
row with a high parameter pi or p j.

The experiment was conducted online, and participants
were recruited using the Prolific Academic platform. A to-
tal of 176 participants took part in the experiment, 8 of whom
did not sent data, either due to technical problems (5) or for
unknown reasons (3). Thus, 168 participants were included in
the analysis (101 female, mean age=32.1). Participants were
paid a flat participation fee of £2 and an additional bonus de-
pendent on the number of potatoes harvested. The average
reward over all participants was £2.51, and the average time
taken was 19 minutes. Ethics approval was obtained from the
UCL Research Ethics Committee.

The experiment contained 2 stages. First, participants nav-
igated 5 open maps, each of which was dynamically gener-
ated and allowed for 100 unrestricted moves. Maps were cre-
ated by sampling the row (pi) and column (p j) probabilities
from one of two beta-distributions as a between-subjects con-
dition. For one group the parameters were α1 = 1, β1 = 2,
α2 = 2, and β2 = 1 (henceforth the 2-1-group, Figure 3 right),
and for the other group they were α1 = α2 = β1 = β2 = 0.5
(henceforth the 0.5-0.5-group, Figure 3 left). This was done
to create different reward structures, where rewards in the 2-1
condition were more clustered around rows or columns.
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Figure 3: Between-subjects conditions for open maps. Probabili-
ties were derived by multiplying realizations of two different Beta-
distributions, i.e. the 2-1 and the 0.5-0.5 group. In the 2-1 group,
following column j implies a collection of 2p j/3 reward on average
(2/3 is the mean of a Beta(2,1)-distribution) whereas following any
row i implies a collection of pi/3 reward on average. In the 0.5-
0.5 group, the row and column probabilities are more extreme and
rewards more uniformly distributed over the map.

During the second stage, we presented 8 pre-designed test
maps that included unnavigable tiles, displayed as water. The
test maps were presented in random order. Every test map
was created based on a simple trade-off between a proximal
and almost certain reward and a superior, but distal option
covering several tiles at the edge of the display. A limit of
only 8 moves forced participants to pursue either option, and
they could plan their moves from the start: In contrast to the
open maps, information about both uncertainty and quality
levels was revealed from the start (by using pseudo-counts,
suggesting prior experience with columns and rows). There
were two levels for both the degree of movement restriction
and the simulated information certainty (see Figure 5). We
hypothesized that higher certainty would lead to better plan-
ning and that more restrictions would lead to planning further
ahead (as less options have to be considered).

Behavioral results
Open maps
We first analyzed performance in the open maps. Figure 4A
shows participants’ average number of harvested potatoes
over the 5 consecutive rounds of open map scenarios and
Figure 4B shows the average rewards for the 100 trials (i.e.,
moves) per open map averaged over participants and rounds.
To further assess the effect of trials, rounds, and condition, we
regressed those variables onto rewards (i.e., whether or not a
potato was gained) in a logistic regression. The results of this
model are shown in Table 1.

As expected, participants improved over rounds (β =
0.039, p < .001) and trials (β = 0.004, p < .001), indicat-
ing that they were able to learn in this task. Furthermore,
participants in the 0.5-0.5 condition performed better on av-
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Figure 4: Behavioral results for open maps. A: Participants’ aver-
age reward per block. B: Participants average reward per condition.
C: Auto-correlation of participant’s reward vectors as compared to
random movements.

Table 1: Results of logistic regression for behavior in open maps.
Results are based on fixed effects estimates.

Estimate Std. Err. z-value P(>|z|)
Intercept -1.150 0.0238 -48.32 <.000

Round 0.040 0.0054 7.41 <.001
Trial 0.004 0.0003 15.47 <.001

Group 0.5-0.5 0.126 0.0152 8.26 <.001

erage than participants in the 2-1 condition. This means that
performance is better if rewards are more extreme and evenly
distributed rather than clustered within rows or columns.

Finally, we wanted to check for behavioral signatures of
planning ahead in the open map trials. For this, we created
a vector of traversed probabilities of success for every round,
and then assessed the autocorrelation function over these vec-
tors backwards, comparing the result against a random base-
line. The idea behind this analysis is that planning ahead
should lead to positive autocorrelation, as participants will
move towards promising tiles, which makes future rewards
predictive of current rewards. The results of this analysis are
shown in Figure 4C. The autocorrelations were significant for
a horizon of 1 (t(167) = 3.45, p < .001, d = 0.27), a horizon
of 2 (t(167) = 10.23, p < .001, d = 0.78), a horizon of 3
(t(167) = 3.45, p < .001, d = 0.26), but not for any higher
horizons (all p > .05). This indicated that participants might
plan ahead by considering the next 3 moves.
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Figure 5: Test maps and corresponding heat maps. Two levels of movement restriction, visualized by water tiles, as well as two levels of
information certainty, resulted in 4 combinations with distal rewards along one corner. Each combination also featured a 90 degree spatial
rotation (not shown here) for a total of 8 maps. Adjacent heat maps highlight participant movement: The most common route always goes to
the better distant location, indicating planning. Both more restriction of movements and more information lead to better planning.

Table 2: Results of mixed-effects regression for behavior in test
maps. Shown estimates are simple fixed effects.

Estimate Std. Err. t value P(>|t|)
Intercept 3.79 0.076 49.83 <2e-16

High info 0.19 0.087 2.24 .02
Restricted 0.38 0.088 4.30 1.83e-05

Test maps

Next, we analyzed participants’ performance in the test maps.
Figure 5 shows a heat map of participants’ moves for each
type of test map. Participant trajectories frequently aimed to-
wards the distant, more promising tiles instead of the proxi-
mal but less promising ones, indicating that they were indeed
planning ahead.

To further assess participants’ behavior in the test maps, we
created 2 dummy variables, one indicating high vs. low infor-
mation and one indicating high vs. low movement restriction.
Subsequently, we regressed these two variables onto partici-
pants’ total scores per test maps. Results of this regression
(Table 2) indicate that participants performed better in test
maps with higher information certainty. As can be seen in
Figure 5, such maps feature more salient distal rewards. Even
though the distal reward is always superior, increased salience
might inhibit spontaneous movement and increase the likeli-
hood of planning. Additionally, further restricting movement
also improved performance. Thus, participants’ propensity to
plan might increase if the number of options is limited.

Model comparison
To further assess planning, we defined 4 candidate models
that differed in how they plan ahead and generate predictions
about a movement’s expected value, and assessed how well
they describe participants’ moves on the open maps.

Candidate models
The first model is a simple Associative Learning model. This
model learns to select directions more frequently over time
based on how often they have led to success in the past. It is
completely feature-free and involves no planning whatsoever.
Instead, each option’s estimated value at trial t + 1 is driven
by an update of its valence based on the discrepancy between
current valence and outcome, i.e. the prediction error:

Vt(Move) =Vt−1(Move)+ γ(Outcomet −Vt−1(Move))

where γ is a free parameter governing the speed of the update
over trials, i.e. how strongly the prediction error relates to
adjustments of belief.

The second model is a Neural Network model. We fit this
model to participants’ data from all but one blocks and then
perform leave-one-block-out cross-validation. In particular,
this model takes as input the current observable feature infor-
mation in a game (the whole 7×7 matrix) at a time point t to
predict a move at time point t + 1. To do so, we take a par-
ticipant’s data for all but one block, find the best parameters
to predict movements in this learning set, and then use the
resulting neural network to make out-of-sample predictions
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for participant’s moves in the left-out block. This procedure
is repeated for each participant and every block. The neural
network consists of 1 hidden layer that can vary between a
size of 1 to 4 nodes (best size chosen given all but the left-out
blocks). The neural network model provides a good compar-
ison to other, more explicit planning models as it takes in all
available features at a time but is not based on any explicit
planning (although it can capture planning implicitly).

The third model is a Bayesian Monte Carlo search model.
This model takes in the current history of a participant’s
moves and outcomes so far and then calculates the estimates
of the row and column parameters (pi and p j) using the
pseudo-Bayesian updating formula described in Equation 1.
Afterwards, it plans ahead by executing random moves, col-
lecting the sampled realizations of rewards from the multi-
plied probabilities, always performing a Bayesian update af-
ter each move and sampled outcome. Moreover, this model
also correctly assigns a value of 0 to all previously visited
tiles when planning future moves, thereby taking into account
depleting resources. It is nonetheless still a relatively simplis-
tic planning model as it does not better its moves as it looks
ahead. We approximate the value of moves by using 10,000
random moves of a depth of d = {2,3,4,5} steps to assess
how far participants plan ahead in our task.

The final model is a Heuristic Monte Carlo search model.
This models is similar to Bayesian Monte Carlo search, but
instead of performing a Bayesian update after each simulated
move, it only samples realizations of values for pi and p j
once at the start and then executes all actions based on the ini-
tial samples. This strategy is sometimes called root sampling
as the probabilities are only sampled once at the root of the
planning tree (Guez et al., 2013). Root sampling can greatly
simplify planning, especially in complex environments and
therefore will be used as a heuristic planning model in our
comparison. We again approximate the value of moves by us-
ing 10,000 random moves of a depth of d = {2,3,4,5} steps.

For all models, we use a softmax function to convert the
value of an action Vt(Move) into a choice probability

Pt(Move) =
exp(Vt(Move)/τ)

∑
N
j=1 exp(Vt(Move j)/τ)

where τ is a free temperature parameter. As τ→ 0 the highest-
value action is chosen with a probability of 1, and when τ→
∞, all options are equally likely.

We calculate, for every participant and round, a model’s
AIC(M ) = −2log(L(M )) + 2k and use this to compute a
pseudo-R2 measure as an indicator for goodness of fit, com-
paring each model Mk to a random model Mrand:

R2 = 1−AIC(Mk)/AIC(Mrand).

Modeling results
Figure 6 shows the results of our model comparison pro-
cedure. The Heuristic Monte Carlo search models de-
scribed participants’ moves better than both the neural net-

work (t(167) = 2.89, p < .01, d = 0.22) and the Associa-
tive Learning model (t(167) = 23.31, p < .001, d = 1.80).
The Bayesian Monte Carlo Search model also performed bet-
ter than the Neural Network model (t(167) = 2.63, p < .01,
d = 0.20) and the Associative Learning model (t(167) =
21.78, p < .001, d = 1.68). The Neural Network model de-
scribed participants’ moves better than the Associative Learn-
ing model (t(167) = 7.38, p < .001, d = 0.57). Importantly,
the Heuristic Monte Carlo search model performed better
than the Bayesian Monte Carlo search model (t(167) = 4.72,
p < .001 d = 0.36). Overall, 104 participants were best de-
scribed by the heuristic Monte Carlo search model, whereas
only 64 participants were best described by the Bayesian
Monte Carlo search model. None of the participants was
best described by either the neural network or the associa-
tive learning model. Further analyzing the heuristic Monte
Carlo search model, a planning horizon of 3 described partic-
ipants significantly better than a horizon of 2 (t(168) = 9.35,
p < .001, d = 1.39), whereas planning horizons of higher
than 3 did not lead to any further significant improvements
(all p > .05). Thus, a Heuristic Monte Carlo search model
with a planning horizon of a size d = 3 provides the best de-
scription of human behavior in our task.

Next, we assessed how well the different models performed
at predicting participants’ moves in the test maps. For this,
we used the parameters estimated from the open maps to per-
form out-of-sample predictions for participants’ decisions in
the test maps, calculating the overall median performance of
each model per participant over all test maps. As before,
the Bayesian Monte Carlo model performed better than the
Neural Network model (t(167) = 2.56, p < .05 d = 0.20)
and the Associative Learning model (t(167) = 4.7, p < .001
d = 0.36). The Heuristic Monte Carlo model also led to bet-
ter predictions for the test maps than the Neural Network
(t(167) = 2.54, p < .05 d = 0.20) and associative learning
model (t(167) = 3.55, p < .001 d = 0.27). As before, the
Neural Network lead to better predictions for the test maps
than the Associative Learning model (t(167)= 3.55, p< .001
d = 0.27). The Heuristic Monte Carlo search model captured
participants’ behavior equally well as the Bayesian Monte
Carlo search model (t(167) = 1.87, p = .07, d = 0.19). A
horizon of 3 steps again turned out to be sufficient to explain
participants’ behavior, describing participants’ decisions bet-
ter than a horizon of 2 (t(167) = 2.78, p< .001 d = 0.21) and
was indistinguishable from a horizon of 4 or 5 (all p > .05).

Taken together, these results imply that a simple model
without belief updating, which plans the next move by sam-
pling random sequences of moves with a horizon of 3, de-
scribes human behavior in our task far better than a purely
associative reinforcement learning model, a simple neuronal
network model, and other models of search with smaller hori-
zons or more sophisticated belief updating.

Discussion and conclusion
Planning ahead to search for rewards is an ubiquitous part of
our everyday lives. Yet the process by which people do so has
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Figure 6: Results of the model comparison procedure. Left: Model fit for different models and horizon length. Error bars represent the
standard error of the mean. Points show median fit per participant. Right: Number of participants best described by each model.

previously not gained much scientific attention. We inves-
tigated participants’ planning in a challenging foraging task
with depleting rewards. Our results revealed that participants
managed to learn in this task, improving their performance
over time and seemingly planning ahead for the next 3 steps.
Using computational modeling, we defined several models
of planning and search and compared them based on how
well they described participants’ moves in our experiment.
This comparison revealed that people are best-described by
a simple heuristic model of search that —instead of updat-
ing believes on every step— initializes beliefs only at the
start and plans ahead for the next 3 moves. As this mecha-
nism of planning has been found to lead to competitive per-
formance and –in the limit– leads to optimal behavior (Guez
et al., 2013), people seem to plan ahead heuristically yet ef-
ficiently in this complex search task. In future studies, we
aim to assess the importance of generalization in a modifi-
cation of this task in which outcomes are spatially correlated
(Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017) as well
as probe how introducing losses might influence participants’
search (cf. Huys et al., 2015; Schulz, Wu, Huys, Krause, &
Speekenbrink, 2017). Moreover, we intend to tease apart the
different models of planning further by creating test sets to
optimally discriminate between the models. We have also de-
veloped an updated version of the game that makes the visual
aids even more explicit (see moritzkrusche.github.io/potato-
game). Importantly, our models only involved very simplistic
planning by random roll-out; comparing more sophisticated
tree-search models is therefore the most promising next step
ahead.
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