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Abstract

How does misspecifying prior smoothness assumptions about the target function
affect the performance of Bayesian optimization routines? We show that misspeci-
fying smoothness leads to an increase in regret, that this effect gets worse in higher
dimensions, and that it remains substantial even if hyper-parameters are optimized.

1 Introduction

The goal of Bayesian optimization is to find the maximum of a target function f(x) on some bounded
set X , which we will take to be a subset of RD [1, 10, 9] by using a Gaussian Process (GP) as a
probabilistic model for f(x) and then exploiting this model via an acquisition function to decide
where in X to evaluate the function next [2]. Even though many acquisition functions have been
compared before [cf. 1, 10] and theories about how GPs behave in mismatched learning scenarios
have been put forward [see 14, 11], little is known about how choosing a particular kernel affects
Bayesian optimization routines in practice.

2 Gaussian Process

Let f(x) be a function mapping an input x = (x1, . . . , xd)
> to an output y. A GP defines a

distribution p(f) over such functions [8]. A GP is parametrized by a mean function m(x) and a
kernel function, k(x,x′) :

m(x) = E [f(x)] (1)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (2)

At time t, we have collected observations y1:t = [y1, y2, . . . , yt]
> at inputs x1:t = (x1, . . . ,xt). For

each outcome yt, we assume yt = f(xt) + εt with ε ∼ N (0, σ2). Given a GP prior on the functions
f(x) ∼ GP (m(x), k(x,x′)), the posterior over f is a GP with

mt(x) = k1:t(x)>(K1:t + σ2It)y1:t (3)

kt(x,x
′) = k(x,x′)− k1:t(x)>(K1:t + σ2It)

−1k1:t(x
′) (4)

where k1:t(x) = [k(x1,x), . . . , k(xt,x)]>, K1:t is the positive definite kernel matrix
[k(xi,xj)]i,j=1,...,t, and It is a t by t identity matrix.
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3 Acquisition Functions

Upper Confidence Bound Sampling Upper confidence bound (UCB) sampling picks the next
point that currently has the highest upper confidence bound [12]:

UCB(x) = µ(x) + βσ(x) (5)

UCB sampling is an optimistic strategy that samples based on an explicit exploration-exploitation
trade-off, and has been proven to produce sub-linear regret, rt = f(xmax)− f(xt) [13].

Probability of Improvement The Probability of Improvement (POI) sampler picks the next point
that currently shows the highest probability of being better than an incumbent point which is normally
set to x+ = argmaxxi∈x1:t

f(xi)—i.e., the best outcome observed so far [5]:

POI(x) = P (f(x) ≥ f(x+ + ξ) = Φ

(
µ(x)− f(x+ − ξ)

σ(x)

)
(6)

where Φ(·) is the normal CDF and ξ ≥ 0 is a trade-off parameter controlling exploration.

Expected Improvement The Expected Improvement (EXI) assesses each point by how much in
expectation it promises to be better than an incumbent point x+ [7]:

EXI(x) =

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z), if σ(x) ≥ 1

0, if σ(x) = 0
(7)

where φ(·) is the normal PDF and Z = (µ(x)− f(x+)− ξ)/σ(x).

Predictive Entropy Search Predictive entropy search (PES) is an information-based acquisition
function that samples points that promise to maximally reduce the differential entropy of an unknown
optimizer x∗ = argmaxx∈X f(x) [3, 4]. After having observed data Dn, the posterior distribution of
x∗ is p∗(x|D). The predictive entropy search sampler then is

PES(x) = H(y|Dn,x)− Ex∗|Dn
[H(y|Dn,x,x∗)] (8)

where H(x∗|Dn) denotes the differential entropy of p∗(x|D). We will approximate the differential
entropy by Monte Carlo sampling from the posterior GP [4].

Minimum Regret Search Minimum regret point (MRP) sampling samples the point producing the
lowest simple regret [6]. The expected simple regret (ER) of selecting x under p(f) can be expressed
as Ep(f)[Rf (x)] = Ep(f)[f(xmax)− f(x)]. MRP picks the point which has the minimal expected
regret under pn(f), x̃ = argminxER(pn)(x).

MRP(x) = min ER(pn)(x̃)− Ey|pn(f),x[min
x̃

ER(p[x,y]n )(x̃)] (9)

where p[x,y]n = p(f |D ∪ {xq, y}) is the updated probability distribution of f after having queried
xq and observing y = f(xq) + ε. MRP sampling can also be modified to account for the inherent
uncertainty about x̃ via marginalization leading to Minimum Regret Search (MRS) as described in
detail by [6].

MRS(x) = Ex̃∼p∗n [ER(pn)(x̃)]− Ey|pn(f),xq [Ep∗Dn∪{(xq,y)}
[ER(p[x,y]n )(x̃)]] (10)

4 Encoding Smoothness

The Matérn class of kernel functions encodes the expected smoothness of the target function explicitly.
The Matérn covariance between two points separated by τ distance units is

kν(τ) = σ2 21−ν

Γ(ν)

(√
2ν
τ

ρ

)
Kν

(√
2ν
τ

ρ

)
(11)
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where Γ is the gamma function, Kv is the modified Bessel function of the second kind, and ρ and ν
are non-negative covariance parameters. A GP with a Matérn covariance has sample paths that are
ν − 1 times differentiable. When ν = p+ 0.5, the Matérn kernel can be written as a product of an
exponential and a polynomial of order p.

kp+0.5(τ) = σ2 exp

(
−
√

2ντ

ρ

)
Γ(p+ 1)

(2p+ 1)
×

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8ντ

ρ

)p−i
(12)

We will compare two extreme cases in our simulations, the Ornstein-Uhlenbeck process, k(τ) =
σ2 exp(−τ/ρ), that results when setting p = 0 and the radial basis function kernel that results when
p→∞, k(τ) = σ2 exp(−τ2/2ρ2). Figure 1 shows prior samples of differently smooth GPs.

Matern 1/2 RBF

Figure 1: Prior GP-samples from Matérn 1/2 and RBF kernel.

5 Simulations

We created a function yt = f(xt) + ε by sampling f ∼ GP(0, kmat(x,x
′)) and ε ∼ N (0, 10−3)

from a teacher kernel and then used a student kernel to optimize it. This procedure was repeated 100
times for every student-teacher-acquisition function combination.

5.1 Simple regret

In the first simulation, we fixed the length-scale parameter to ρ = 0.1 for all student and teacher
kernels. Figure 2 shows the median regret (left) and the median distance to the best input point
(right) over 100 trials. Maximizing an unsmooth function seems to be harder than maximizing a
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Figure 2: Median simple regret (left) and median distance to best input space (right).

smooth function. Beyond that, mismatched optimization leads to worse performance as compared to
expecting the right level of smoothness. The worst possible regret results when expecting a smooth
function and in reality optimizing a very rough function. Information-based acquisition functions
performed best overall. Mismatch mattered more than specifying the right acquisition function.

5.2 Regret in higher dimensions

We repeated the same simulation but this time over 50 trials and for d = {2, 3, 4} dimensions of
the input space over which the function had to be optimized. Figure 3 shows the root mean squared
difference between each acquisition function’s performance in the mismatched setting compared to
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Figure 3: Median counter-factual regret over 50 trials for different input-dimensions.

the same acquisition function’s performance in the matched setting for each dimension. This provides
a relative measure of counter-factual regret, i.e. by how much could each of the acquisition function
have done better on each trial if it had been specified with the right smoothness prior. We can see that,
whereas most acquisition functions seem to recover from misspecified assumptions in the bi-variate
case, the effect of misspecifications seems to exacerbate over time in higher dimensions.

5.3 Optimizing hyper-parameters

Next, we assessed the effect of mismatch when the student kernel’s hyper-parameters θ are optimized
via the log marginal likelihood log p(y|X, θ) = − 1

2y
>K−1y y − 1

2 log |Ky| − n
2 log 2π.
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Figure 4: Median regret (left) and distance to best input space (right) with optimized hyper-parameters.

Figure 4 shows that mismatch still affected the performance of the Bayesian optimization routine.
When the teacher and student both come from a Matérn kernel, than the lowest overall reached regret
is in the region of 10−2, whereas the best regret when trying to optimize the Matérn kernel by using a
RBF kernel is 10−1.5. The effect of mismatch is even stronger in the case of a RBF-teacher, where
the best overall regret in the matched case is 10−10 but only 10−4.5 for the mismatched case.

6 Conclusion

Bayesian optimization is a popular method to maximize black box functions. However, taking the
term “black box” too literally can lead to noticeable under-performance. We have shown that encoding
the wrong prior assumptions about a target function’s smoothness can lead to an increase in regret,
that this effect gets worse in higher dimensions, and remains even if hyper-parameters are optimized.
Therefore, our results tell a cautionary tale about how thinking hard about prior assumptions can
sometimes be more important than choosing one particular acquisition function over another.
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