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Abstract

How do humans generalize from observed to unobserved data? How does generalization
support inference, prediction, and decision making? I propose that a big part of human
generalization can be explained by a powerful mechanism of function learning. I put for-
ward and assess Gaussian Process regression as a model of human function learning that can
unify several psychological theories of generalization.

Across 14 experiments and using extensive computational modeling, I show that this model
generates testable predictions about human preferences over different levels of complexity,
provides a window into compositional inductive biases, and –combined with an optimistic
yet efficient sampling strategy– guides human decision making through complex spaces.

Chapters 1 and 2 propose that, from a psychological and mathematical perspective, function
learning and generalization are close kin. Chapter 3 derives and tests theoretical predictions
of participants’ preferences over differently complex functions. Chapter 4 develops a com-
positional theory of generalization and extensively probes this theory using 8 experimental
paradigms.

During the second half of the thesis, I investigate how function learning guides decision
making in complex decision making tasks. In particular, Chapter 5 will look at how people
search for rewards in various grid worlds where a spatial correlation of rewards provides a
context supporting generalization and decision making. Chapter 6 gauges human behavior
in contextual multi-armed bandit problems where a function maps features onto expected
rewards. In both Chapter 5 and Chapter 6, I find that the vast majority of subjects are best
predicted by a Gaussian Process function learning model combined with an upper confi-
dence bound sampling strategy. Chapter 7 will formally assess the adaptiveness of human
generalization in complex decision making tasks using mismatched Bayesian optimization
simulations and finds that the empirically observed phenomenon of undergeneralization
might rather be a feature than a bug of human behavior.

Finally, I summarize the empirical and theoretical lessons learned and lay out a road-map
for future research on generalization in Chapter 8.
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“Because any object or situation experienced by an individ-

ual is unlikely to recur in exactly the same form and context,

psychology’s first general law should, I suggest, be a law of

generalization.”

Roger N. Shepard, 1987

1
Introduction

This chapter motivates the study of function learning to construct

a theory of human generalization, introduces Gaussian Process re-

gression as the main algorithm of this thesis, and lays out a road-

map of the chapters ahead.
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1.1 The quest for a universal law

“Has psychology any hope for achieving a law that is comparable in generality (if not pre-

dictive accuracy) to Newton’s universal law of gravitation?” Roger Shepard asked in 1987 in

the light of the tercentenary of Newton’s Principia. Indeed, the quest for universal psycho-

logical laws has been as old (and perhaps even older) as psychology itself. Willhelm Wundt

tried to find the “elements of thoughts and what rules they adhere to” (Wundt, 1896). Her-

man Ebbinghaus lived a life of solitude collecting data only on himself in the attempt to

find the “elements of a general theory of learning” (Ebbinghaus, 1885). And even today, the

quest for generalized theories seems to be as timely and appropriate as ever with researchers

assessing different unifying principles of cognition such as simplicity (Chater & Vitányi,

2003), free energy (Friston, 2010), or Bayesian sampling (Sanborn & Chater, 2017), others

proposing ways of “how to grow a mind” (Tenenbaum et al., 2011), or yet even more ambi-

tious goals such as Google DeepMind’s agenda to “solve intelligence and then use it to solve

everything else” (Simonite, 2016).

Back in 1987, Shepard argued that psychology’s first general law should be a law of gen-

eralization as any object or situation experienced by an individual is unlikely to recur in

exactly the same form and context. Today, 30 years later, Gershman & Daw (2017) point

out that current theories of reinforcement learning cannot account for the fact that the

“data are relatively sparse and, indeed, precisely the same situation may never be encoun-

tered twice”. Whereas Shepard proposed an exponential similarity function in psychologi-

cal space, Gershman & Daw (2017) propose a non-parametric representational mechanism

guiding reinforcement learning. Yet, the overarching question remains the same: “How do

humans and other animals know what to do or think in novel situations?”. This question
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in turn immediately leads to other related questions such as “How are people able to learn

and search for rewards in scenarios where not all options can be exhaustively explored?” or

“What allows us to perceive and a draw inferences from patterns as efficiently as we do?”.

Shepard’s assertion seems to be as valid as ever: the core principle guiding decision making

and cognitive inferences is the ability to generalize beyond encountered observations (see

also Tenenbaum & Griffiths, 2001, for a similar argument).

The aim of this thesis is to develop an empirically grounded and mathematically refined

theory of human generalization. The main argument of this thesis is that if we want to

study generalization, then –really– what we have to study is function learning. Put dif-

ferently, the main premise of this thesis is that function learning, i.e. the ability to learn a

mapping from inputs to outputs that generalizes to novel input-output pairs, can explain a

big chunk of human generalization. If this is indeed true, then finding an expressive model

of human function learning will shed light on some of our most fundamental psychological

questions and would be applicable across many domains of cognition.

1.2 Generalization as function learning

I will define generalization as the ability to generate and act according to predictions for

new observations based on underlying commonalities, i.e. as the ability to make predictive

inferences about unobserved outcomes. At the core of this definition is the assumption

that generalization can be achieved by learning about an underlying function that allows

for generating predictions for both observed and novel inputs. This is different to other

forms of induction that, given a few examples, extract a global rule (for example, Holyoak,

1985), as the rule does not necessarily have to be extracted all at once (functions can be

learned piece-wisely) and predictions also come with a quantification of uncertainty (it is
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a case of Bayesian induction, so to say). It also goes beyond generalization in the “Shepar-

dian” sense as novel observations do not only produce the same response as the most similar

previously observed exemplar, but rather map onto a rich behavioral repertoire based on

functional inferences. Function learning allows for global inferences which generalize to

novel instances.

The presented results will be heavily based on the theory and application of Gaussian

Process regression (Rasmussen & Williams, 2006). Gaussian Process regression is a non-

parametric Bayesian approach towards regression problems that –instead of assuming a

particular parametric form a priori– acts as a universal function approximator which can

capture human behavior with mathematical elegance and computational ease (Williams

& Rasmussen, 1996). It is also based on prior research on human function learning (Lucas

et al., 2015) and can be extended to different psychological domains.

The focus of this thesis will be on simple function learning tasks first, that is the question

of how people learn, complete, make judgments about, and predict functional patterns.

Afterwards, Gaussian Process-based function learning will be extended to self-directed func-

tion learning scenarios in which participants have to both learn the mapping between in-

puts and outputs and make choices based on expectations generated by that mapping in

order to gain rewards.

The main questions of this thesis are threefold:

1. What does it mean for a theory of generalization to be grounded in function learn-
ing?

2. How do people utilize functional generalization to search for rewards?

3. How do insights gained from human function learning behavior generalize to other
domains?
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Gaussian Process regression provides a useful tool to address all of these questions. First,

as different forms of generalization can be encoded directly into Gaussian Process regres-

sion models, and as these forms can also be combined explicitly (Duvenaud et al., 2013), it

can be used to derive a compositional theory of functions in which smaller parts are com-

bined to explain complex structural patterns. Second, as Gaussian Process regression is also

a common tool for problems involving the optimization of unknown functions (Snoek

et al., 2012), it is an informative method to assess how humans approach tasks incorporat-

ing both function learning and the search for rewards. Third, as a mechanism of general-

ization can theoretically be applied to many other psychological domains, from learning

causal relata from observations (Hoyer et al., 2009) to inferring people’s intentions from

their actions (Wang et al., 2012), a final question will be how much a theory of generaliza-

tion grounded in function learning itself generalizes to other tasks, i.e. in what sense the

proposed model can indeed be seen as a universal law, a psychological process model, or just

a window into an empirically observed phenomenon.

1.3 Overview

This thesis consists of 9 chapters. Chapter 2 introduces the historical background of theo-

ries concerning human generalization and function learning. Therein, I argue that an un-

derstanding of function learning is cardinal to understanding human generalization. The

mathematical underpinnings of Gaussian Process regression, kernel-encoded functional

characteristics, structure search by kernel composition, as well as Bayesian optimization

are laid out in Chapter 3. Chapter 4 demonstrates how precise predictions can be derived

from Gaussian Process learning curves and demonstrate that factors theoretically influ-

encing a function’s generalizability equally influence participants’ judgments. Chapter 5
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introduces and extensively probes a compositional theory of function learning and general-

ization. Chapter 6 assesses how people explore and exploit options on a grid containing spa-

tially correlated reward allowing for functional generalization. The contextual multi-armed

bandit, a paradigm in which participants have to both learn about a functions mapping

features to outcomes and generate rewards, is assessed across different degrees of difficulty

in Chapter 7. Chapter 8 tries to shed more light onto the adaptiveness of human behavior

by assessing what happens to different Bayesian optimization routines in the case of mis-

matched prior assumptions about the generalizability of observations. Chapter 9 concludes

this thesis by summarizing the main lessons learned while laying out a road-map of how a

Gaussian Process-based theory of generalization could further unify different psychological

phenomena.
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“It is not sufficient to think in terms of the discrete response to

the discrete stimulus; what is being learned by these subjects is a

mediating function, a set of rules or programs for transmuting

an entire range of stimuli into a range of responses.”

Douglas Carroll, 1963

2
From generalization to function learning

This chapter argues for function learning as a mechanism of gener-

alization and summarizes psychological studies on function learning.

Important effects and theories are explained.
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2.1 Shepard’s rule of generalization

Roger Shepard was among the first psychologists to study human generalization (Shepard,

1957, 1958). During the 1950s, operant conditioning was among the most popular theories

of human and animal behavior, such that many scientists believed that a universal law of

psychology should start with a law of how stimuli become associated with different re-

sponses (Watson et al., 1958; Skinner, 1945). However, Pavlov (1941) already observed that

dogs would not only salivate at the sound of a bell that had preceded feeding on multiple

trials before, but also at other stimuli, in particular sounds that were similar in pitch to the

original sound. Afterwards, many behaviorists were interested in the so-called “gradient of

stimulus generalization”, i.e. how similar two different stimuli had to be in order to pro-

duce the same response. For example, Guttman & Kalish (1956) found that pigeons’ ability

to discriminate between different spectra of color along the wave-length continuum was

predictive of the animals’ response rate during extinction, showing a continuous gradient

of generalization. This study led to a line of research investigating the factors that influence

the gradient curve of generalization (see Honig & Urcuioli, 1981, for a thorough review).

Shepard (1957) proposed a theory of generalization to explain how similar stimuli can

lead to the same response. The main idea behind his model was that the probability that

a response to one stimulus will be generalized to another stimulus is a function of the dis-

tance between the two. “Generalization” in Shepard’s theory is measured by means of con-

fusion error (i.e., how often a particular stimulus leads to different responses), while “dis-

tance” is defined as a comparison between stimuli in a pre-defined psychological space.

For example, in one of his first experiments, Shepard (1958) used colored circles of uni-

form size and a constant red hue but with varying brightness and saturation and randomly
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assigned numerical responses from “one” through “nine” to these stimuli. When partic-

ipants had to learn the labels of the different stimuli by being presented with a stimuli,

guessing the label, and then observing the actual label, Shepard found that the probability

of misclassification decreased with the distance between a stimulus’ brightness and satu-

ration. Later on, using further experimental evidence from both human and non-human

subjects, Shepard hypothesized that the probability of generalization g(d)will fall off expo-

nentially with the distance d between two stimuli scaled by a constant μ

g(d) = exp
(
−2d

μ

)
. (2.1)

An example of Shepard’s rule of generalization is shown in Figure 2.1. This plot shows

that the probability of generalizing a response to a new stimulus from an old one (the ones

shown left and right) decreases exponentially with their psychological distance.

2.2 Carroll’s idea to study function learning

Douglas Carroll, a PhD-student at Harvard at the time when Shepard had just taken up

a faculty position there, wondered whether Shepard’s theory of generalization really ex-

plained all there was to human generalization. Had a universal law of generalization finally

been discovered? And “what would happen when a large number of stimuli are associated

with a large number of responses in complex learning situations”?

Carroll’s idea was that only determining a “gradient of stimulus generalization” cannot

explain the richness of behavior we observe in both humans and other animals. In par-

ticular, Shepard’s idea was that a novel stimulus would lead to the same response as the

closest seen stimulus so far. However, often times people (and other animals too) can pro-

vide a completely novel responses to a previously unobserved stimulus indicating a much
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Figure 2.1: Example of Shepard’s rule of generalizaধon. As the distance between two sধmuli grows, the probability
to generalize one sধmuli onto the same response as the other decreases exponenধally. The dark red circle on the
boħom leđ and the light red circle on the boħom right are the observed sধmuli. The circles between the two sধmuli
are new observaধons. The dark red line marks the probability of a same responses as to the dark red circle. The light
red line marks the probability of a same responses as to the light red circle.

richer behavioral repertoire. Indeed, looking closer at the results presented in Shepard

(1958), there was some variance unexplained within the “colored dots”-task of which Carroll

thought that “one might suppose that, lurking within this large individual variability, there

could be something over and above generalization in the Hullian sense” (Carroll, 1963).

The studies described in Carroll’s doctoral thesis entitled “Functional Learning: The

Learning of continuous functional mappings relating stimulus and response continua”

(Carroll, 1963) mark the first psychological experiments directly probing human function

learning. They originated precisely from the intention to address questions about human

generalization that Shepard had seemingly left unanswered.

In his experimental paradigm, Carroll assessed how participants associate continuous in-

puts with continuous outputs in a task that he referred to as “subjective curve fitting”. His
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Figure 2.2: Carroll’s original paradigm (taken from the original publicaধon). Sধmulus distance is marked by a “V”.
Response distance is marked by a verধcal slash.

experiments asked people to first associate an input, marked as the horizontal distance from

the left side of a paper and a letter “V”, with a response marked as the horizontal distance

from the left side of a paper and a vertical slash (see Figure 2.2).

For the underlying functions connecting stimuli to responses, Carroll used –unknown

to participants– either a positive linear, a quadratic, or a random function. Moreover, after

the initial learning stage in which participants only had to learn the association between

inputs and outputs, Carroll asked participants to produce responses (i.e., to draw a new

vertical dash onto the paper) given both previously seen but also novel input dimensions.

Carroll’s model of human generalization was inspired by an idea put forward by von

Neumann et al. (1941) that treats curve fitting as an attempt to explain as much variance as

possible (measured by an “index of continuity” which is mathematically equivalent to min-

imizing least squares). By this definition, participants learn an association between a stim-

ulus S and a response R by fitting a function f such that as much of the variance between S

11



and R is explained as possible by using as few parameters pi as necessary.

R = f(p0, p1, · · · , pk, S) (2.2)

The function f then can be used to generate responses that can be very different from the

seen responses so far.

As an infinite number of possible functions are possible, Carroll focused on simple poly-

nomials*. His experiments showed that participants were indeed able to learn S-R combi-

nations better if these were governed by an underlying function instead of just a random

mapping such as the ones originally applied by Shepard. Moreover, linear functions were

easier to learn than non-linear functions. Most importantly, however, instead of simply

mapping the response to a novel stimulus to the response of the closest stimulus experi-

enced so far, participants were indeed able to correctly extrapolate to stimuli they had not

previously encountered, an empirical indicator of a facet of human behavior that goes be-

yond generalization as defined by operant conditioning.

Thus, Carroll’s was the first ever published theory on function learning and his model of

human generalization went beyond simple stimulus-response-matching.

Carroll’s theory belongs to the category of so-called rule-based accounts of function learn-

ing. These accounts propose that participants approach generalization by learning a set of

fixed functional rules (for example, polynomial regression weights of a fixed order) and

then try to find the best rule (for example, by optimizing the weights) in order to generalize

from observed to unobserved data.
*Carroll mentions that other functions, for example sinusoidal combinations, could also be incorporated

into his framework.
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2.3 Rule-based accounts of function learning and generalization

During the 1970s, Brehmer (1971) tried to further assess what kind of functional rules might

be harder to learn than others. His experiments utilized a similar design to Carroll’s with

the only difference that participants had to associate the length of a vertical line with a nu-

merical output between 0 and 40. Moreover, Brehmer assessed the ease of learning 4 types

of functions: a linear function with a positive trend, a linear function with a negative trend,

a U-shaped (quadratic) function, and a inverse U-shaped function. Interestingly, Brehmer

(1971) never mentions the discussion about psychological rules of generalization, but rather

only talks about how participants learn different functional rules. Thus, his work seems to

mark the time when psychologists began to study function learning for its own sake with-

out direct implications for rules of human generalization†.

The results of Brehmer’s experiments showed again that participants were able to learn

linear functions better than non-linear ones. Furthermore, linear functions with a positive

trend were easier to learn than linear functions with a negative trend. Surprisingly, there

was no reliable difference between the U-shaped and inverse U-shaped functions. In a later

study (Brehmer et al., 1974), participants had to learn different functions while also pro-

viding verbal reports. The results led Brehmer (1976) to postulate a hierarchical model of

functional hypothesis testing, according to which participants start out expecting a linear

function with a positive trend and adjust their hypothesis if the encountered evidence is

strong enough.

One of the first studies that assessed how well participants can control (instead of only
†Historically, this could also be due to the fact that generalization was then broadly discussed among psy-

chologists studying categorization, where Shepard’s ideas ultimately led to Nosofsky’s Generalized Context
Model (Nosofsky, 1986).
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learn) the output of different functions was conducted by Berry & Broadbent (1984). Within

a paradigm called the “sugar factory” participants had to learn how a continuous value

called “work force ” relates to the amount of sugar a factory can produce. Moreover, par-

ticipants had to later produce a given value of sugar per trial, thereby having to control the

output of sugar over time. These experiments also assessed whether participants are better

at controlling linear than exponential functions and found significant task improvements

when a non-linear function was “linearized” before the task started. This led to the belief

that participants generally have problems controlling non-linear functions such that Berry

& Broadbent (1984) suggested to present non-linear functions in a linear way to make con-

trol easier in applied settings. This led to a line of research investigating how participants

control complex systems (see Osman, 2010, for an extensive review).

Koh & Meyer (1991) let participants learn associations between a stimulus’ length and

the duration of a response where the underlying function was either a power law function,

a logarithmic function, or a linear function with a positive slope. They found a systematic

response bias during the early stages of learning for the logarithmic and linear functions

but not the power-law function. However, this bias gradually disappeared as training pro-

gressed. Koh & Meyer (1991) therefore proposed an adaptive regression model similar to

that of Brehmer (1976) but with the additional constraint that stimulus-response pairs are

treated as a power function. This idea was explicitly conceived by the way participants seem

to generalize cross-modally in psycho-physics experiment (Shepard, 1981).

A general problem for rule-based accounts of function learning is that the class of pos-

sible models a participant can represent might be extremely large or –possibly– infinite.

Thus, it is not a priori clear why only a particular set of parametric shapes should be con-

sidered. This means that it is not at all obvious how participants acquire knowledge of un-
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derlying rules, nor how they manage to assess all possible rules given some functional data.

Therefore, psychologists during the 1990s tried to overcome the problem of having to pre-

define a parametric set of functions by using models that only learn associatively, i.e. based

on simple input-output similarities. Interestingly, the resulting similarity-based accounts of

function learning are again very close to Shepard’s original theory of generalization.

2.4 Similarity-based accounts of function learning

Similarity-based accounts of generalization in function learning propose that people learn

functions by associating inputs with outputs: if input x is paired with output y, then inputs

similar to x should produce outputs that are similar to y. Busemeyer et al. (1997) formalized

this intuition using a connectionist model (Associative-Learning Model; ALM) in which

inputs activate an array of hidden units representing a range of possible input values; each

hidden unit is activated in proportion to its similarity to the current input. Learned asso-

ciations between the hidden units and the response units map the similarity-based activa-

tion pattern to output predictions. More specifically, when a cue value, x(t), is presented,

it activates input nodeXi from the set of n input nodes according to a Gaussian similarity

function:

ai[x(t)] =
1

exp
(
Xi − ψx(x(t))/σ

) . (2.3)

where ψ is a transformation function and σ scales the distance between the two values.

This means that inputs are related to each other by how far apart they are and then pro-

duce similar outputs as compared to the seen output for previously observed nearby inputs.

The output of the response node is governed by a weighted sum of associations for which

the weights are estimated by a simple delta-rule of learning (Stone, 1986). The Associative
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Learning Model contains 3 free parameters. The first one is simply the learning rate of the

delta-rule α and therefore is not so important for the discussion about generalization here.

However, Busemeyer et al. (1997) called the other two scaling parameters, σ1 and σ2, “the

generalization gradients for the physical continuum used to display the stimuli and the gen-

eralization criterion for the output”. Thus, this part of the Associative Learning Model ex-

plicitly ties back to Shepard’s original law but within a function learning context. However,

this also means that such a model, even though it is able to learn how participants respond

to stimuli they have previously encountered, naturally has problems accounting for the way

participants generalize to novel inputs. If new inputs are assessed based on how close they

are to previously observed inputs, then what is going to happen if a new input is far away

from the experienced input space?

DeLosh et al. (1997) conducted several studies focusing on extrapolation. As the title “Ex-

trapolation: the sine qua non for abstraction in function learning” suggests, DeLosh et al.

(1997) propose that extrapolation, i.e. generating predictions for novel inputs, should be

the yardstick to measure the performance of different function learning models. What is

interesting about this proposal, is that generalization to new observed points is now used to

compare different models of function learning, whereas, previously, function learning was

conceived specifically as a mechanism of generalization. To put this differently, one could

argue that learning step-wisely within an interpolation set already involves generalization

as points have to be observed for the first time at some point during training. Nonetheless,

DeLosh et al. (1997) brought the discussion about generalization back into research on hu-

man function learning. In their experiments, participants had to learn the relation between

scales of possible stimulus magnitudes which ranged from from 0 to 100 as indicated by an

unfilled horizontal bar labeled numerically in 10-point increments. However, to allow for
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extrapolation trials during the transfer phase of the experiment, the magnitudes presented

during training were limited to values between 30 and 70, and the test trials contained both

stimuli from within that range but also extrapolation trials that were either smaller than 30

or larger than 70. The underlying functions were either linear, exponential, or quadratic.

DeLosh et al. (1997)’s results showed again that linear functions are easier to learn than

exponential functions, which in turn are easier to learn than quadratic functions. More

importantly however, something unexpected occurred during extrapolation trials. Even

though participants were generally able to extrapolate all of the functions, extrapolation

was worse than interpolation and turned out to be more linear than expected. This “linear-

ity bias” even affected cases for which the underlying function had been non-linear; for ex-

ample, when trained on a quadratic function, participants’ average predictions fell between

the true function and straight lines fitted to the closest training points as seen in Figure 2.3.

Figure 2.3: Results of extrapolaধon experiment conducted by DeLosh et al. (1997). When learning a quadraধc func-
ধon, parধcipants’ extrapolaধon lines fall between the true funcধon and straight lines fiħed to the closest training
points.

That participants tend to extrapolate functions linearly is nowadays recognized as an
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established phenomenon (Kalish et al., 2004; Kwantes & Neal, 2006). Thus, although

similarity-based models are more flexible than rule-based parametric accounts, they face the

problem of having to explain how participants generalize beyond the encountered input

space. One possible solution to this problem is to combine the more powerful similarity-

based function approximation techniques with the extrapolative abilities of simple rules.

This leads to so-called hybrid accounts of function learning.

2.5 Hybrid accounts of function learning

Hybrid accounts of function learning normally contain an associative learning process that

acts on explicitly-represented rules. One such hybrid model, the Extrapolation-Association

Model (EXAM) put forward by Busemeyer et al. (1997), assumes similarity-based inter-

polation, but extrapolates using simple linear rules. The model does this by falling back

onto a parametric representation of the underlying function whenever generalization to

points outside of the input space is required. EXAM effectively captures the human bias

towards linearity, and predicts human extrapolations for a variety of functions. However, it

does not account for participants’ ability to extrapolate non-linear functions (Bott & Heit,

2004) and also has problems explaining other effect, such as the knowledge partitioning ef-

fect. This effect is based on the observation that participants’ functional knowledge can be

partitioned into distinct subsets based on a provided context. For example, Lewandowsky

et al. (2002) showed that fire fighters learn two distinct relationships between wind speed,

ground slope, and the rate at which a fire spreads, depending on whether the fire was la-

beled as a “standard forest fire”, or a “back burn” fire set to mitigate damage from future

fires. As EXAM generates uni-modal predictions for any given input, it cannot account for

this partitioning effect.
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A hybrid model that can explain this knowledge partitioning effect is the population of

linear experts model (POLE; Kalish et al., 2004). This model approximates functions using

piece-wise linear representations and captures the knowledge partitioning effect by approx-

imating partitioned functions with different locally linearized models‡. Moreover, it also

explains the order-of-difficulty effects collected and put forward by McDaniel et al. (2009),

i.e. that some functions are easier to learn than others. However, it is unclear if a combina-

tion of linear functions is able to explain human function learning in more complex and

naturalistic settings, especially given that participants are able to learn in non-linear settings

as well (see Bott & Heit, 2004). Additionally, Byun (1995) assessed whether participants can

learn more complex functions using either a systematically-increasing sequence of stimulus

magnitudes during training, or a randomly-organized sequence of the same magnitudes.

These training sequences facilitated learning of non-monotonic quadratic and cyclic func-

tions, with systematic sequences producing better performance later on. Thus, participants

seem to be able to learn more complex than linear functions if the learning procedure is

simplified.

2.6 Function learning everywhere?

The studies described so far have shown how the study of human generalization has in-

spired the study of function learning. However, generalization more broadly and func-

tion learning in particular are also important in many other psychological domains. Even

though many of these studies do not mention the terms “function learning” or “generaliza-

tion” directly, some of them have nonetheless come up with related theories and discovered

related phenomena.
‡Any differentiable function can be represented in locally linear terms
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Another area explaining how people make sense of and generalize from functional struc-

ture are investigations of human forecasting. Within studies about forecasting, participants

are normally confronted with multiple data points at once and then have to predict future

or otherwise left-out points. At least 4 different factors that can influence the way in which

participants forecast visually presented data have been established (see Bolger & Harvey,

1998; Goodwin & Wright, 1993, for detailed reviews). First, participants have a tendency to

dampen trends when generating forecasts from noisy data. This means that their forecasts

lie below upward trend lines but above downward ones. Therefore, it appears that forecast-

ers tend to underestimate the steepness of functions (Andreassen & Kraus, 1990; Keren,

1983). Trend damping is greater for downward than for upward trended data, especially

when the data representation format is visual rather than in a data table (Harvey & Bolger,

1996). Second, forecasts tend to overestimate functions lacking a trend (Eggleton, 1982), i.e.

sometimes people perceive a linear trend where there is none. Thirdly, participants seem

to deliberately attach random noise to their forecasts, and add more noise to forecasts from

noisier data series. This means that their forecasts appear to represent the way the series will

appear once the outcome has occurred instead of a smooth prediction line (Harvey Teresa

Ewart Robert West, 1997). Finally, forecasts for independent series should lie on the series

mean, but instead they have been found to lie between the mean and the last revealed data

point (Eggleton, 1982), a finding very similar to the results of the more traditional function

learning paradigms.

A related paradigm which is also heavily based on function learning is multiple cue prob-

ability learning (MCPL, Kruschke & Johansen, 1999; Speekenbrink & Shanks, 2008). In

MCPL tasks, participants are shown an array of cues that are probabilistically related to

an outcome and have to learn the underlying function mapping the cues’ features to ex-
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pected outcomes. One well-known paradigm of such studies is the “Weather Prediction

Task” (Speekenbrink et al., 2008). In this task, participants predict the state of the weather

(“rainy” or “fine”) based on a set of “tarot cards”. Gluck et al. (2002) found that partici-

pants broadly seem to use three different strategies to learn within this task. The first is an

optimal multi-cue strategy, in which they respond to each pattern on the basis of associa-

tions of all cues with each outcome, thus learning the function reasonably well. The second

is a one-cue strategy, in which they respond on the basis of presence or absence of a single

cue, disregarding all other cues. Finally, the third strategy is a singleton strategy, in which

they learn only about the four patterns that have only one cue present and all others absent.

Function learning has also been discussed in the reinforcement learning literature. Al-

ready in Watkins (1989), different methods on how to generalize expected rewards over

continuous or large state spaces are discussed and possible function approximators such

as neural networks or the so-called “Cerebellar Model Articulation Computer”, a hash func-

tion to retrieve values over spaces, are introduced. Sutton (1996) proposed generalization

by function learning as a method to further improve reinforcement learning algorithms.

Nowadays, deep neural networks, a powerful methods of function approximation and

generalization, aid reinforcement learning models to reap rewards in complex tasks such as

playing Atari games (Mnih et al., 2015) or Go (Silver et al., 2016).

Psychologically, Ludvig et al. (2008) recently proposed linear value function approxima-

tions for generalization across time in order to predict future rewards. Finally, Gershman

& Daw (2017) argue for a kernel-based approximation of the value function that maps past

episodes onto future expected values. Again, all of these proposals essentially propose func-

tion learning as a tool for generalization.
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2.7 Discussion

Studies involving participants’ understanding and representation of functions were orig-

inally inspired by fundamental questions about laws of human generalization and are

nowadays scattered around different psychological sub-fields. Whereas original theories

of human function learning focused on generalization explicitly and postulated rule-based

mechanisms, later studies promoted similarity-based learning algorithms and frequently

studied function learning without explicit claims about generalization. The current state

of the science are hybrid accounts that were introduced to explain how people generalize

to unobserved data. Within the field of subjective forecasting, a list of possible “forecasting

biases” has been put forward, some of which seem to mirror established findings within the

more traditional function learning literature. Multiple cue probability learning paradigms

ask participants to make predictions based on multi-variate functions. Here too it has been

found that participants tended to learn in a linear way but can adapt to non-linear func-

tions if necessary. Within reinforcement learning approaches, function learning can be seen

as a mechanism of value function approximation and generalization and has been put for-

ward as a proposal within the framework of episodic reinforcement learning.

These studies show that function learning is important for various psychological do-

mains. Moreover, the topics described here are only the ones that directly mention the

term “function”. Beyond that, there are also plenty of other branches of psychological re-

search that –in one way or another– can be conceptualized as function learning. For ex-

ample, multi-attribute decision making (Bröder & Schiffer, 2003) requires participants to

learn to associate different features with expected outcomes, pattern completion paradigms

(Kanizsa et al., 1976) ask participants to extrapolate a pattern from seen points, and gener-
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alization across environments (Gershman & Niv, 2015) requires participants to extrapolate

from features of the current environment to novel ones. That function learning is seen a

separate subfield of psychology is mostly due to historical developments and practical con-

ventions.
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“It is a friendship made in heaven and executed on earth.”

Eric Kandel about Aplysia (Eric Schulz about GPs)

3
From function learning to generalization

This chapter introduces Gaussian Processes regression as a tool to

investigate function learning and shows how assumptions about the

kernel correspond to assumptions about human generalization.
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3.1 Motivation

Let me first define the set-up of learning a function more formally before then discussing

how it relates to generalization. If f denotes an (unknown) function which maps inputs

x to outputs y, f : X → Y, then function learning is the task to learn about f as well as

possible provided the current input-output observationsD = {X, y}. Learning about f can

progress by the 3 following ways.

In a single function learning scenario, the task is to find the best model of f given the cur-

rent dataD. This is normally required in tasks that focus on either forecasting or pattern

completion (as all of the data is revealed at once) and the representation of f is used to gen-

erate summaries of the presented patterns or to generalize the underlying function to novel

input points. Somewhat misleadingly, psychology normally defines interpolation as gen-

erating predictions for input points within a provided set during the learning stage and ex-

trapolation as generating predictions for input points from outside the learning set. How-

ever, generalization can technically already happen when generating predictions for input

points within a learning set which have not been observed previously, i.e. there is a differ-

ence between interpolative judgments that require functional knowledge as compared to a

more simplistic cued recall. I will nonetheless adhere to the traditional distinction between

interpolation and extrapolation in this thesis.

A sequential function learning task is made of a sequence of multiple single function

learning tasks such that a participant is confronted with input-output pairs, i.e. the dataD,

step-wisely and –conventionally– has to generate predictions at every step. After making a

prediction, the participant is shown the next data points, supposedly updates her underly-

ing model, and so forth. This process makes up the key assumption of models used in the
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more traditional function learning tasks such as the ones described in Chapter 2*.

The other variant of function learning differs from the previously described two vari-

ants in the way data points are selected. Whereas in single and sequential function learning

tasks, the participant receives data points either randomly or in a way pre-determined by

the experimentalist (for example, presented from left to right, etc.), in self-directed function

learning tasks participants have to actively select input points (and then observe the output

for the selected input points) in order to either learn about or optimize the underlying func-

tion f as well as possible (Gureckis & Markant, 2012). This requires participants to form

expectations about the usefulness of different possible observations given their current rep-

resentation of f, then to select the input they think promises to be be maximally useful, ob-

serve the output, update their model, and so forth. This thesis will particularly focus on

function exploration-exploitation tasks in which participants are asked to produce the high-

est sum of outputs over trials. This in turn asks for a delicate trade off between exploration,

that is to sample unknown points in order to learn more about the underlying function,

and exploitation, that is to sample points that are expected to produce high outputs.

To summarize, the following two ingredients are needed to characterize all function

learning scenarios:

1. A model of f that is used to learn and generalize about f’s shape.

2. A sampling strategy to select inputs based on the current knowledge of f.

The difference between 1 and 2 also maps onto the distinction between belief and sam-

pling models, central to theories in statistics (Lindley, 1956), active learning (Nelson, 2005),

and philosophy of science (Crupi & Tentori, 2014).
*Note that one could equally differentiate between visually presented points (sometimes called “curve

fitting”) and sequentially presented outputs of different magnitudes. Function learning really comes in many
forms.
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Whereas all variants of function learning need to address what kind of model partici-

pants utilize to represent the underlying function, assessing which sampling strategy de-

scribes participants best will only be prevalent in studies concerning function exploration-

exploitation. The next sections will first describe how to find a useful mathematical model

of how participants learn about f before one particular sampling strategy to optimize un-

known functions is introduced.

3.2 Linear regression: the weight space view

I begin by considering the most frequent approach to model unknown functions: linear

regression (here defined as Bayesian linear regression). This can also be seen as a Bayesian

variant of the rule-based approaches described in Chapter 2 and seems to capture the way in

which participants generalize to unseen input spaces reasonably well.

As an example, I will use the set of stimulus-response pairs presented in Table 3.1. These

contain observations of stimuli (inputs) xt and responses (outputs) yt at different time

points t. The running example will also include having to make a new prediction of the

value of y given a new stimuli x⋆ = 3. In linear regression, it is assumed that the outputs are

Table 3.1: Observaধons for the funcধon learning example. Inputs xt and corresponding outputs yt observed at ধmes
t = 1, . . . , 6.

t xt yt
1 0.9 0.1
2 3.8 1.2
3 5.2 2.1
4 6.1 1.1
5 7.5 1.5
6 9.6 1.2
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a linear function of the inputs with additional noise:

yt = f(xt) + εt (3.1)

= β0 + β1xt + εt, (3.2)

where the noise term εt follows a normal distribution

εt ∼ N (0, σ2ε) (3.3)

with mean 0 and variance σ2ε . This can also be written in matrix algebra as

yt = x⊤t w+ εi (3.4)

defining the vectors

xt =

 1

xt

, w =

β0

β1

 . (3.5)

To predict the output for x⋆, one needs to estimate the weights from the previous observa-

tions

Xt =


1 0.9

1 3.8
...

...

1 9.6


, yt =


0.1

1.2
...

1.2


. (3.6)
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In a Bayesian set-up, this is done through the posterior distribution over the weights. If a

Gaussian prior over the weights p(w) = N (0, Σ) is used and likelihood is also Gaussian

p(yt|Xt,w) = N (X⊤
t w, σ2

εI), then the posterior distribution is

p(w|yt,Xt) ∝ p(yt|Xt,w)p(w)

= N
(

1
σ2ε

A−1
t Xtyt,A−1

t

)
(3.7)

where At = Σ−1 + σ−2
ε XtX⊤

t . As inference here is performed over the weights (i.e., one tries

to find the best estimate for the β-weights), this is also sometimes referred to as “the weight

space view of regression”. To predict the output y⋆ at a new test point x⋆, the error term

can be ignored and the focus is on the expected value which is provided by the function

f, predicting f⋆ = y⋆ − ε⋆ = f(x⋆). In the predictive distribution of f⋆, the uncertainty

regarding the weights is averaged out

p(f⋆|x⋆,Xt, yt) =
∫

p(f⋆|x⋆,w)p(w|Xt, yt)dw

= N
(

1
σ2ε

x⊤⋆ A−1
t Xtyt, x⊤⋆ A−1

t x⋆
)

(3.8)

A good prediction is the mean of this predictive distribution and comparing the mean to

that in (3.7), one can simply multiply the posterior mean of w with the new input x⋆, result-

ing in the prediction 0.56 + 3 × 0.12 = 0.92.

Bayesian linear regression suffers from the same drawbacks as the rule-based accounts of

function learning introduced before: it assumes that encountered functions have indeed

a linear shape. However, adaptive generalization makes it necessary to learn about non-

linear dependencies as well. One straight-forward adjustment is to use a projection of the
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inputs x onto a “feature space” by using a function φ(x). A common projection is to use

polynomials, resulting in polynomial regression. For example, in cubic regression, which

assumes a function f(x) = β0+ β1x+ β2x2+ β3x3, this results in a Bayesian equivalent of the

most complex model put forward by Carroll (1963). Deriving the posterior for this model

is similar to the linear regression described before, with the only difference that the input

matrix Xt is replaced by its projection

Φt = φ(Xt) =


1 0.9 0.81 0.729

1 3.8 14.44 54.872
...

...
...

...

1 9.6 92.16 884.736


. (3.9)

In the aforementioned example, this would result in the prediction f⋆ = −0.67 + 0.98 ×

3 − 0.13 × 32 + 0.01 × 33 = 1.37.

Projecting input variables onto a feature space offers considerably more flexibility and

allows one to encode functions of many different shapes. Therefore, it is not a surprise that

this method was put forward by earlier theories of human function learning (Carroll, 1963;

Brehmer et al., 1974)†.

However, this flexibility is also a drawback. There are infinitely many projections possi-

ble and one has to choose one either a priori or by model comparison within a set of pos-

sible projections. Especially if the task is to learn about a completely unknown function,

which is a problem people frequently face in the real world, this approach will not be feasi-

ble as there is little guidance as to which projections should be included. From a psychologi-
†Of course the frequentist proposals of function learning models at that time also went hand in hand with

statistical advances in computing regression weights (Zellner, 1962; Hoerl & Kennard, 1970), an interdepen-
dency that is frequently found in the history of psychology (Gigerenzer, 1991)
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Figure 3.1: Example of performing Bayesian linear and cubic regression. Green lines indicate predicধons for different
sampled posterior weights. Dots mark empirical observaধons. Yellow lines mark the current mean posterior predic-
ধons. The red triangle shows the predicধon for the newly presented sধmuli x⋆ = 3.

cal perspective, if the aim is to find universal rules of generalization based on the parametric

Bayesian regression approach, then one would have to test out many different parameteri-

zations and how they combine, distinguishing between idiosyncratic and nomothetic para-

metric rules. Gaussian Process regression, which I will introduce next, offers a principled

solution to the problem of choosing between many functional forms as the projections are

chosen implicitly, effectively letting the observed data directly contribute to the decision

about model complexity. Moreover, the properties of the chosen kernel function directly

correspond to a gradient of generalization in function space. Nonetheless, I will return to

the problem of assessing how different subparts are combined in Chapter 5.
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3.3 The function space view

In the weight space view of the previous section, the focus has been on distributions over

weights. As each set of weights implies a particular function, a distribution over weights

also implies a distribution over functions. Gaussian Process regression focuses on such dis-

tributions over functions directly. A Gaussian Process (GP) defines a distribution over

functions such that, if any two points are picked, observations of the outputs of the func-

tion at these two points follow a joint Gaussian distribution. More formally, a Gaussian

Process is defined as a collection of random variables, any finite number of which have a

multivariate Gaussian distribution. In Gaussian Process regression, the output y of a func-

tion f at input x can be written as

y = f(x) + ε (3.10)

with ε ∼ N (0, σ2ε). Note that this is similar to the assumption made in linear regression,

i.e. that an observation consists of an independent “signal” term f(x) and a “noise” term ε.

Different in Gaussian Process regression, however, is that the assumption that the signal

term is also a random variable which follows a particular distribution. This distribution is

subjective in the sense that the distribution reflects the uncertainty regarding the function.

The uncertainty regarding f can be reduced by observing the output of the function at dif-

ferent input points. The noise term ε reflects the inherent randomness in the observations.

In Gaussian Process regression, the function f(x) is taken to be distributed as a Gaussian

Process:

f(x) ∼ GP (m(x), k(x, x′)) . (3.11)
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A Gaussian Process GP is defined by amean and a covariance function. The mean function

m(x) reflects the expected function value at input x:

m(x) = E[f(x)], (3.12)

i.e. the average of all functions in the distribution evaluated at input x. The prior mean

function is frequently set tom(x) = 0 in order to avoid expensive posterior computations

and only perform inference via the covariance directly. The covariance function k(x, x′)

models the dependence between the function values at different input points x and x′:

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (3.13)

The function k is normally called the kernel of the Gaussian Process (Jäkel et al., 2007).

Commonly, the choice of an appropriate kernel is based on assumptions such as smooth-

ness and likely patterns to be expected in the data. One very popular choice of a kernel func-

tion is the radial basis function kernel, which is defined as

k(x, x′) = σ2f exp
(
−∥x− x′∥2

2λ2

)
. (3.14)

The radial basis function provides an expressive kernel to model smooth functions. It

models the correlation between points in dependency of their distance.

As in Shepard’s universal law of generalization, the radial basis function kernel models

this dependency as a exponential function. The two hyper-parameters λ (called the length-

scale) and σ2f (the signal variance) can be varied to increase or reduce the correlation between

points and consequentially the smoothness of the resulting function from a mathematical
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perspective. However, from a psychological perspective, λ could also be called the “gradient

of functional generalization” as it determines how quickly the correlation between points

decays as their distance grows longer and thereby how similar a function will be at two dif-

ferent points given their mutual distance. Figure 3.2 shows differently broad gradients of

functional generalization resulting from setting the length-scale parameter λ to different

values.
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Figure 3.2: Different gradients of funcধonal generalizaধon as induced by seষng the length-scale λ = {0.5, 1, 2}.
The correlaধon is assessed as the mean correlaধon between two points in dependency of their mutual distance. For
bigger λ-parameters, the correlaধon decays more slowly leading to broader generalizaধon.

This also means that, theoretically, observations are expected to look more similar to the

overall mean as their distance to the observed points grows longer. A radial basis function

kernel therefore operationalizes Shepard’s exponential rule of generalization in function

space.
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3.3.1 Sampling functions from a GP

Although Gaussian Processes are continuous, sampling a function from a Gaussian Process

is generally done by selecting a set of input points. Theoretically, a function can be repre-

sented as a vector of infinite size; however, as one only has to make predictions for finitely

many points in practice, it is feasible to simply draw outputs for these points by using a

multivariate normal distribution with a covariance matrix generated by the kernel. Let X⋆

be a matrix with on each row i a new input point x⋆i , i = 1, . . . , n. To sample a function,

the covariances between all inputs in X⋆ is first computed between all points and collected

in a n× nmatrix:

K(X⋆,X⋆) =


k(x⋆1 , x⋆1 ) k(x⋆1 , x⋆2 ) . . . k(x⋆1 , x⋆n)

k(x⋆2 , x⋆1 ) k(x⋆2 , x⋆2 ) . . . k(x⋆2 , x⋆n)
...

...
...

k(x⋆n, x⋆1 ) k(x⋆n, x⋆2 ) . . . k(x⋆n, x⋆n).


(3.15)

Choosing the usual prior mean functionm(x) = 0, sample values of f at inputs X⋆ from

the GP are generated by sampling from a multivariate normal distribution

f⋆ ∼ N (0,K (X⋆,X⋆)) (3.16)

where the notation f⋆ = [f(x⋆1 ), . . . , f(x⋆n)]⊤ is used. Note that f⋆ is a sample of the function

values. To sample observations y⋆, an additional and independent sample of the noise term

ε has to be added.
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3.3.2 Posterior predictions and generalization with GPs

Suppose observationsDt = {Xt, yt} have been collected and the goal is to make predictions

for new inputs X⋆ by drawing f⋆ from the posterior distribution p(f|Dt). By definition,

previous observations yt and function values f⋆ follow a multivariate normal distribution.

This distribution can be written as

yt

f⋆

 ∼ N

0,

K(Xt,Xt) + σ2εI K(Xt,X⋆)

K(X⋆,Xt) K(X⋆,X⋆)


 (3.17)

where I is an identity matrix (with 1’s on the diagonal, and 0 elsewhere) and σ2ε is the as-

sumed noise level of observations (i.e. the variance of ε). Using standard results, the con-

ditional distribution p(f⋆|Xt, yt,X⋆) is then a multivariate normal distribution with mean

K(X⋆,Xt)[K(Xt,Xt) + σ2εI]−1yt (3.18)

and covariance matrix

K(X⋆,X⋆)− K(X⋆,Xt)[K(Xt,Xt) + σ2εI]−1K(Xt,X⋆) (3.19)

Note that this posterior is also a GP with mean function

mt(x) = K(x,Xt)[K(Xt,Xt) + σ2εI]−1yt (3.20)
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and kernel

kt(x, x′) = k(x, x′)− K(x,Xt)[K(Xt,Xt) + σ2εI]−1K(Xt, x′) (3.21)

To predict f⋆, the mean function in (3.20) can be used, or functions from the GP with this

mean function and kernel (3.21) can be sampled as described in the previous section.

Figure 3.3 shows samples from a GP prior parameterized by a radial basis function kernel

and the posterior mean functions after the data in Table 3.1 has been observed.
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Figure 3.3: Green lines indicate predicধons for different sampled posterior weights. Dots mark empirical observa-
ধons. Yellow lines mark the current mean of the GP (λ was set to 0.5). The red triangle shows the predicধon for the
newly presented sধmuli x⋆ = 3.

Notice how Gaussian Process regression does not predict the same response for x⋆ =

3 as for the closest other observed value. Instead, it generalizes to this point by using the

underlying kernel mapping the distance of the newly observed input points and all other

points to an expectation of an underlying functional value.
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3.3.3 Switching back to the weight view

The mean function (3.20) can also be rewritten as

mt(x) =
t∑

i=1

wik(xi, x) (3.22)

where each xi is a previously observed input value in Xt and the weights are collected in the

vector w = (K(Xt,Xt) + σ2εI)−1 yt. What this equation tells us is that Gaussian Process

regression is equivalent to a rule-based regression model using basis functions k to project

the inputs into a feature space. To make new predictions, every output yt is weighted by

how similar the corresponding input xt was to the to be predicted point x by a similarity

measure induced by the kernel. This results in a simple weighted sum to make predictions

for new points. The posterior predictive mean then is a linear combination of the features.

This means that a conceptually infinite parameter space boils down to a finite sum when

making predictions. This sum only depends on the chosen kernel k and the dataDt ob-

served thus far (Kac & Siegert, 1947). More importantly, this means that a specific gradient

of functional generalization can be induced by an underlying kernel to define a regression

that is both a rule-based and a similarity-based model of function learning. The shape and

form of the kernel then directly implies a particular gradient of generalization. Thus, Gaus-

sian Process regression offers a unifying bridge between the two psychological accounts of

function learning. Moreover, this means that assessing which kernel (or process of kernel

construction) describes human generalization will provide insights about psychological

rules of generalization more broadly.

Details for generating a prediction for x⋆ = 3 given a radial basis function kernel with

length scale λ = 1, and observation variance σ2ε = 0.01 are provided in Table 3.2.
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Table 3.2: Example of generaধng a predicধon using a Gaussian Process with a radial basis funcধon kernel. wi =
(K(X,X) + σ2εI)

−1 yi; x⋆=3;

t xt yt wt k(xt, x⋆) wtk(xt, x⋆)
1 0.9 0.1 0.51 0.38 0.19
2 3.8 1.2 -3.88 0.87 -3.37
3 5.2 2.1 13.3 0.34 4.53
4 6.1 1.1 -12.55 0.12 -1.48
5 7.5 1.5 5.83 0.01 0.06
6 9.6 1.2 -0.34 0.00 0.00∑6

t=1 wtk(xt, x⋆): -0.06

3.3.4 Optimizing hyper-parameters

As the kernel normally contains hyper-parameters such as the length-scale λ and the sig-

nal variance σ2f , a point estimate of the hyper-parameters is frequently computed by maxi-

mizing the marginal (log) likelihood. This is similar to parameter estimation by maximum

likelihood and is also referred to as type-II maximum likelihood (ML-II, cf Williams & Ras-

mussen, 2006).

Given the dataD = {X, y} and hyper-parameters θ, the log marginal likelihood is

log p(y|X, θ) = − 1
2
y⊤K−1

y y − 1
2
log |Ky| −

n
2
log 2π (3.23)

where Ky = K(X,X) + σ2εI is the covariance matrix of the noisy output values y. The

marginal log likelihood can be viewed as a penalized fit measure, where the term 1
2y

⊤K−1
y y

measures the data fit, that is how well the current kernel parametrization explains the de-

pendent variable, and 1
2 log |Ky| is a complexity penalization term. The final term n

2 log 2π

is a normalization constant. The marginal likelihood is commonly maximized through a
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gradient-ascent based optimization using the partial derivatives w.r.t. ϑ:

∂

∂θj
log p(y|X, θ) = 1

2
y⊤K−1y − 1

2
tr
(
K−1 ∂K

∂θj

)
(3.24)

=
1
2
tr
(
(αα⊤ − K−1)

∂K
∂θj

)
(3.25)

with α = K−1y.

This method optimizes the gradient of generalization given some empirical observations.

However, the goal of this thesis will sometimes be different from that. In particular, I will

try to find a particular gradient, shape, or construction of a kernel to explain human behav-

ior.

3.4 Encoding smoothness

The radial basis function kernel is a special case of a general class of kernel functions called

the Matérn kernel. The Matérn covariance between two points with distance τ = |x − x′|

is

kν(τ) = σ2 2
1−ν

Γ(ν)

(√
2ντλ

)ν
Kν

(√
2ν τλ

)
(3.26)

where Γ is the gamma function,Kv is the modified Bessel function of the second kind,

and λ and ν are non-negative covariance parameters with λ again encoding the gradient

of smoothness as before. A GP with a Matérn covariance has sample paths that are ν − 1

times differentiable. When ν = p+ 0.5, the Matérn kernel can be written as a product of an
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exponential and a polynomial of order p.

kp+0.5(τ) = σ2f exp
(
−
√

2ντ
λ

)
Γ(p+ 1)
(2p+ 1)

×
p∑

i=0

(p+ i)!
i!(p− i)!

(√
8ντ
λ

)p−i

(3.27)

Here, p directly determines how quickly the covariance between two points thins out in

dependency of how far the two points are apart. If p = 0, then this leads to the Ornstein-

Uhlenbeck kernel

k0.5(τ) = σ2f exp
(
− τ
λ

)
, (3.28)

which encodes the prior assumption that the function is extremely unsmooth (rough)

and that observations do not provide much information about points that are close to

the points observed so far. As p → ∞ in the limit, the Matérn kernel becomes the radial

basis function kernel introduced before. Figure 3.4 shows the gradient of functional gener-

alization for both an Ornstein-Uhlenbeck (Matérn 1/2) and a radial basis function kernel.

Whereas the correlation for the Ornstein-Uhlenbeck kernel thins out very quickly but has

fat tails, the correlation for the radial basis function kernel does not thin out that quickly

but has thinner tails.‡.

Figure 3.5 shows prior and posterior samples for both the Ornstein-Uhlenbeck and the

radial basis function kernel. Notice how the prior samples are a lot more “rugged” for the

former and much smoother for the latter. How encoding different prior smoothness as-

sumptions leads to different posterior samples after having observed the same set of points

as before can also be observed. In particular, expecting very rough functions a priori leads
‡In fact, it can be shown that the radial basis function kernel’s spectral density is normally distributed,

whereas the density for the Ornstein-Uhlenbeck kernel is a Student’s t-distribution, see also Rasmussen &
Williams (2006).
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Figure 3.4: Different gradients of funcধonal generalizaধon as induced by different Matérn kernels. The correla-
ধon is assessed as the mean correlaধon between two points in dependency of their mutual distance. For bigger
λ-parameters, the correlaধon decays more slowly leading to broader generalizaধon.

to posteriors that do not generalize far beyond the encountered observations, whereas ex-

pecting smooth functions leads to posterior samples that generalize more broadly beyond

the encountered points.

3.5 Composing kernels

So far, I have only talked about Gaussian Process regression models that generate predic-

tions which reverse back to the overall mean as the distance to the observed set grows longer.

Comparing these kind of kernels is similar to assessing different (more traditional) gradients

of functional generalization. However, the assumption of decaying gradients might not
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Figure 3.5: Example of samples from differently smooth Gaussian Process priors and their posteriors ađer having
observed the same set of points. Grey lines indicate samples from the GP. Black dots mark empirical observaধons.
The dark gray line marks the current mean of the GP. The red triangle shows the predicধon for the new data point.

capture all phenomena of human function learning and generalization. First of all, as I have

described before, subjects tend to extrapolate in a linear fashion which does not correspond

to correlations between points that thin out over longer distances. Secondly, another obser-

vation comes from the previously mentioned study by DeLosh et al. (1997). Therein, not

all participants extrapolated an underlying quadratic function as shown in Figure 2.3. Some

participants also extrapolated this function as shown in Figure 3.6.

Even though these participants were classified as not extrapolating the function correctly,

they nonetheless seem to have picked up a pattern, i.e. periodic extrapolation, a result simi-

lar to what was later found by Kalish (2013). Thus, a truly unifying model of generalization

should also be able to capture these more elaborate patterns of generalization.

An advantage of Gaussian Process regression is that different kernels can be combined,

thereby creating a rich set of interpretable and reusable building blocks (Duvenaud et al.,
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Figure 3.6: Results of extrapolaধon experiment conducted by DeLosh et al. (1997), possibly showing periodic extrap-
olaধon.

2013). For example, adding two kernels together models the data as a superposition of inde-

pendent functions, while multiplying a kernel with the radial basis function kernel, locally

smooths the effect of the first kernel.

Figure 3.7 shows a data set of atmospheric concentration of carbon dioxide over a forty

year horizon. This is a frequently use data set for structure discovery algorithms and it is im-

mediately clear that there is a pattern within this data. The CO2-concentration seems to in-

crease over the years, there seems to be some periodicity by which at some times within each

year the CO2 emission is higher, and this period may not be perfectly replicated every year.

Using a Gaussian Process regression framework, different kernels can be combined as build-

ing blocks in the attempt to explain these patterns. Figure 3.7 shows the posterior predictive

mean of different kernel compositions. The first one shows a radial basis function kernel

alone, the second a sum of a radial basis function kernel and a linear kernel, k(x, x′) =
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Figure 3.7: Example of composing kernels by combining simpler kernels in order to explain a complex funcধon. Data
were mean-centered before fiষng the Gaussian Process and predicধons were transformed back ađerwards. Grey
lines show observed CO2 emissions. Red lines show posterior predicধons of Gaussian Process regressions with
different kernels: RBF is a radial basis funcধon kernel, RBF+Lin is a kernel composed by adding a RBF and a linear
kernel, RBF×Per + Lin is a kernel composed by mulধplying a radial basis funcধon and periodic kernel and adding a
linear kernel.

(x− c)(x′− c), and the third one the sum between a linear kernel and the product between a

radial basis function kernel and a periodic kernel, k(x, x′) = σ2f exp
(
− 2 sin2(π|x−x′|)

λ2

)
. As the

radial basis function kernel tends to reverse back to the mean over time, it does not capture

the linear trend of the data. Therefore, adding a linear kernel to the radial basis function

kernel already improves predictions. Finally, multiplying the radial basis function kernel

with a periodic kernel to create a locally smoothed periodic kernel, which is then combined

with an increasing trend by adding a linear kernel seems to predict the data best. This shows

that the kernel can also be used to encode structural assumptions about the underlying

function more explicitly, especially when one wants to explain more complex patterns than

just generalizing over smooth functions (see Lloyd et al., 2014).
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3.6 Exploration-Exploitation

I have discussed Gaussian Process regression as a tool to be applied in single function learn-

ing or sequential function learning settings. However, as mentioned before, the third vari-

ant of function learning, self-directed function learning, requires participants to direct

their own sampling behavior (Gureckis & Markant, 2012). In particular, in an function

exploration-exploitation scenario the goal is to find the input to a function that produces

the maximum output

xmax = argmax
x∈D

f(x) (3.29)

as quickly as possible. where xmax is the input that produces the highest output. Explo-

ration here means to sample from more uncertain parts of the input space in order to gain

more knowledge about the function that can be useful later on, whereas exploitation means

choosing inputs that are likely to produce high outputs. One way to measure the quality of

learning in a function exploration-exploitation scenario is to quantify regret (Bubeck et al.,

2012). Regret is the difference between the output of the currently chosen argument and

the best output possible, i.e. how much on every trial you could have chosen better

r(x) = f(xmax)− f(x). (3.30)

The total regret is the sum of the regret over all trials, and the goal in an exploration-exploitation

scenario is to minimize the cumulative regret:

Rt =
t∑

u=1

r(xu) (3.31)
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It can be shown that finding a strategy that chooses the inputs to minimize the expected cu-

mulative regret is NP-hard (Krause & Guestrin, 2005). That is, determining the sequence

of queries (i.e. input choices) that leads to the lowest total regret is impossible for all but

the most trivial cases. However, there is a greedy trick one can apply in this scenario, which

starts by reinterpreting the function maximization – or regret minimization – problem as

a multi-armed bandit task (see Steyvers et al., 2009). In a bandit task, there are multiple

options (arms) with unknown probability of producing a reward and the goal is to choose

the best arm in order to maximise the overall reward (the name stems from the one armed

bandits that can be found in casinos). In the current situation, we can view the discretized

input points as the arms of a multi-armed bandit, and the output of the function at those

points as the unknown rewards that are associated to each arm. What distinguishes this

situation from traditional bandit tasks is that the rewards of the arms are correlated in de-

pendency of the underlying covariance kernel. Nevertheless, viewing the task as a multi-

armed bandit allows to use sampling strategies that have been devised for traditional bandit

tasks. One popular sampling strategy is called the upper confidence bound (UCB) algo-

rithm. This algorithm relies on the following sampling strategy:

UCBt(x) = μt−1(x) + βσt−1(x), (3.32)

where β is a free parameter that determines the width of the confidence interval, μt−1(x)

and σt−1(x) are the predictive mean and standard deviation at a point x. For example, set-

ting β = 1.96 results in a 95% confidence interval for a single value x given a Gaussian dis-

tribution. The UCB algorithm chooses the arm for which the upper confidence bound

is currently the highest. The upper confidence bound is determined by two factors: the
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current estimate of the mean of f at a particular point (the higher the estimate, the higher

the bound) and the uncertainty attached to that estimate (the higher the uncertainty, the

higher the bound). Therefore, the UCB algorithm trades off naturally between expectation

and uncertainty, that is exploitation and exploration. An example of how the UCB algo-

rithm works, using the same data as before, is shown in Figure 3.8.
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Figure 3.8: GP-UCB example. The yellow line marks the current mean of the GP. The dashed line marks the GP’s up-
per confidence bound. The light green lines are samples from the GP. The red triangle marks the point that currently
produces the highest UCB.

Even though the greedy UCB strategy is optimistically naïve (i.e., it inflates expectations

by their uncertainties), it can be shown that its regret is sublinear, using an argument that

relies on the submodularity and monotonicity of the overall information gain (Srinivas

et al., 2010). Sublinear regret means that the regret per round goes down in expectation,

thereby guaranteeing that the algorithm picks better points over time.

The Gaussian Process upper confidence bound sampling strategy is only one out of

many Bayesian optimization sampling strategies (Snoek et al., 2012; Brochu et al., 2010). All
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of these optimization routines essentially use Gaussian Process regression as a model to rep-

resent and generalize the underlying function but apply different sampling strategies, that

is different ways to map current expectations and their attached uncertainties, onto choices.

Therefore, functional generalization is also important when searching for rewards that can

be predicted by context or other features.

3.7 Past and present research utilizing Gaussian Process regression

Gaussian Process regression provides a concrete language for constructing and comparing

priors over functions. As priors over functions can be explicitly encoded by the kernel, this

means that the kernel can be used to describe expectations about functional regularities

(e.g., linear trends, periodic patterns, etc.), thereby creating inductive biases that make gen-

eralization easier.

Previous work has begun to study what kind of kernels might describe human function

learning and generalization. One experimental technique, known as iterated learning, es-

timates priors by simulating a Markov chain across multiple people—essentially a “game

of telephone”. Under certain assumptions, the Markov chain is guaranteed to converge

to a stationary distribution, such that –asymptotically– it will generate samples from the

prior (Griffiths & Kalish, 2007). In a function learning version of this task, participants see

a set of points, which they then have to remember and re-draw. The resulting points are

presented to another participant, who is asked to repeat the same procedure. Iterating this

procedure multiple times will reveal participants’ priors over functions. Kalish et al. (2007)

showed that participants consistently converged to linear functions with a positive slope,

even when the starting points came from a linear function with a negative slope, quadratic

functions, or when they were generated at random.
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Lucas et al. (2015) were the first to propose Gaussian Process regression as a model of hu-

man function learning. In their seminal work on Gaussian Process-based function learning,

they explained the iterated learning results by postulating a GP with a mixture of experts

kernel that is mostly dominated by a positively linear kernel generating functions with a

linear upwards trend, but can also generate smooth non-linear extrapolations by utilizing a

non-linear radial basis function kernel. Additionally, their proposed kernel contained neg-

atively linear and quadratic components. Samples from the GP parameterized in this way

tend to be linear lines with a positive slope. This parametrization was able to explain most

of the findings explained in Chapter 2, such as the partitioning of the learning space, the

mixture-like patterns of extrapolations, and the difficulty of learning some functions (e.g.,

exponential patterns) relative to others (e.g., linear patterns).

Going further, Wilson et al. (2015) attempted to infer the “human kernel” by having par-

ticipants generate extrapolations for different functions sampled from a radial basis kernel

and fitting a non-parametric kernel (the spectral mixture defined by Wilson & Adams, 2013,

which I will describe in detail in Chapter 5) to their extrapolations. This approach is actu-

ally quite close to the attempt of finding a functional gradient of generalization by reverse

engineering what a gradient explaining human behavior looks like. The results showed that

participants expected long-distance correlations between points. These correlations can be

viewed as arising from a mixture between linear and radial basis components. In a second

experiment, they showed that participants can effectively learn functions sampled from a

mixture of a product of linear and spectral kernels. These results can be interpreted in two

different ways. Either participants’ functional gradient of generalization is adaptive to the

situation at hand or there is something beyond just a gradient guiding participants’ extrapo-

lation judgments. I will further probe this difference in Chapter 5.
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Borji & Itti (2013) were the first to compare human behavior to that of Gaussian Process-

based function optimization models within a uni-variate search task in which participants

had to optimize unknown functions. Their results showed that participants sometimes

outperform Bayesian optimization algorithms but overall generate similar queries and show

similar regret as a Gaussian Process upper confidence bound sampling algorithm.

3.8 The current proposal

To summarize, Gaussian Process regression as a model of generalization unites both rule-

based and similarity-based accounts of function learning. The form and shape of the kernel

of a Gaussian Process regression directly corresponds to assumptions about laws of gener-

alization which might describe human behavior. My previous definition of generalization

as the ability to generate and act according to predictions for new observations based on un-

derlying commonalities directly leads (as it has historically too) to studying the psychology

of function learning as a framework to discover human laws of generalization. Provided

that Gaussian Process regression is a powerful method to assess different kinds of function

learning, I propose to use it to study generalization. What this will mean concretely, is that

I will use Gaussian Process regression to model human function learning, assess what kind

of kernels and kernel parameterizations describe and predict behavior best, and then use the

empirical results as indicators of psychological rules. For this, Gaussian Process is a vessel

providing a window into human generalization. Thus, my proposal is similar to common

approaches of Bayesian cognitive science (Chater & Oaksford, 2008; Chater et al., 2006)

in that I do not restrict myself to one particular proposal (for example, one particular rule

of generalization) and then assess the resulting restricted set to produce theoretical claims.

Instead, I used Gaussian Process regression as a unifying model of generalization that incor-
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porates as many different candidate rules as possible and then infer which one of those best

explains human generalization.

With the framework of Gaussian Process regression in hand, I will now start to assess

generalization across various paradigms.
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“Theorems deduced which concern phenomena not already

known must be submitted to carefully controlled experiments.”

Clark Hull, 1935

4
From theory to behavior

This chapter derives characteristics influencing GP learning curves

and assesses if participants' perceived predictability of intuitive

functions are influenced by the same factors.
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4.1 Better noisy than complex?

Previous research on human function learning has mostly focused on either single or sequen-

tial function learning tasks. Yet, there might be other aspects of function learning that can

be derived from a formal theory of generalization.

Imagine having to pick between two different learning situations. The first one is rel-

atively complex but not so noisy and the latter is relatively simple but noisy. Which one

would you prefer Put differently, do you think it is easier to adapt to a system that is com-

plex but not very noisy or to a system that is more noisy but in which observations general-

ize more broadly?

As it turns out, the theory of Gaussian Process regression can provide some guidance on

what a sensible decision maker would prefer. Even though this guidance is not necessarily

the only possible answer to this problem, it can nonetheless be informative about whether

it is easier to learn in a simple yet noisy or a complex but deterministic system. Moreover,

predictions that are directly derived from statistical learning theory can in this case be com-

pared to participants’ judgments about how well they think they can predict presented

functions.

In order to asses this, I will first introduce the concept of Gaussian Process learning

curves, which theoretically relate the expected generalization error of newly sampled input

points to a function’s smoothness (which in this case is just another measure of complexity),

its attached noise, as well as the number of sample points previously observed. I will show

that these theoretically derived learning curves predict that a rational learner should prefer

to reduce complexity over noise, or taking the example from above, would rather choose to

work for a noisy but currently simple start-up than for a deterministic but complex bank.
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Afterwards, I will assess these predictions empirically by eliciting participants’ predictability

judgments, that is asking them how well they think they could generalize from given points

sampled from different functions, to predict newly sampled points. I find that their judg-

ments align well with the theoretical predictions derived from Gaussian Process learning

curves.

4.2 Gaussian Process learning curves

Theoretically, learning curves relate the expected generalization error of a model to the

amount of training data (Opper & Vivarelli, 1999; Williams & Vivarelli, 2000; Sollich &

Halees, 2002). They can be seen as a mathematical expression of a function’s predictability,

given assumptions about Gaussian Process-based priors over functions, the noise process,

and the distribution of inputs. Intuitively, a function exhibits a higher predictability if it is

easier to predict new input points that are randomly and uniformly chosen from the input

space. If points are easier to predict, then the generalization error is lower as predictions will

be closer to the underlying truth of the the actual function. Therefore, these two things,

the predictability and the generalization error of a function, are two sides of the same coin

(see also Goerg, 2013).

The learning curves for Gaussian Process regression can be used to derive a priori predic-

tions about how different properties of functions such as smoothness, variance, and sample

size influence their perceived predictability. In particular, factors that increase the general-

ization error should also lead to lower predictability judgments.

Given a datasetD = {x, y} and an error functionL(·, ·)which measures the differ-

ence between the predicted and true function values, the data-dependent generalization er-

ror is defined as the expected error on a test input x⋆ sampled from a uniform distribution,
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marginalizing over the latent function:

E(x) =
∫

f
p(f)

∫
x⋆
L(f(x⋆), f̄(x⋆)) dx⋆ df, (4.1)

where

f̄(x) = E[f(x⋆)|x, y]. (4.2)

It is called the data-dependent error as it still depends on the position of the observed

input points. The data-independent generalization error is defined as the expectation of

E(x)with respect to a density p(x) on inputs with sample size n:

E(n) =
∫
x
p(x)E(x) dx. (4.3)

It is called the data-independent error as it does not depend on the observations directly,

but rather provides an a priori expectation of the error after n sample points have been ob-

served.

A learning curve is constructed by calculating the data-independent generalization error

as a function of the sample size. While the learning curve is not analytically tractable (ex-

cept for a few special cases), it is possible to derive a lower bound using the eigenfunction

expansion of the covariance function:
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k(x, x′) =
∑

i
λiφi(x)φi(x), (4.4)

where {λi} is the spectrum of eigenvalues (decreasing as a function of i) and {φi(x)} are

the eigenfunctions.

As shown by Opper & Vivarelli (1999), the generalization error for the squared-loss error

function,

L(y, ŷ) = |y− ŷ|2, (4.5)

can be lower-bounded by:

E(n) ≥ σ2ε
N∑
i=1

λi

σ2ε + nλi
, (4.6)

whereN is the number of non-zero eigenvalues. Loosely speaking, the eigenvalue spec-

trum summarizes how the correlation between the function values of two points changes

as a function of their input distance, a mathematical translation of the previously shown

functional gradient of generalization.

Smoother functions have eigenvalues that decay more slowly across the spectrum. Smooth

functions have long-distance correlations, which makes it easier to learn and therefore leads

to smaller generalization errors (as also shown in Figure 3.5).

The theoretical predictions of learning curves can be seen even more clearly when look-
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ing at covariance functions with power-law spectral decay* (Sollich & Halees, 2002):

λi ∝ i−r. (4.7)

Asymptotically (E(n) ≪ σ2ε ), the learning curve scales as

E(n) ∝
(
σ2ε
n

)− r−1
r

. (4.8)

This analysis shows that the most important factor influencing a Gaussian Process’ learn-

ing curve is the smoothness of the covariance function (parametrized in terms of the spec-

tral decay rate r). The generalization error depends polynomially on the variance but expo-

nentially on smoothness. The implication is that noisy but smooth functions are easier to

generalize and therefore to predict than deterministic but complex functions. This is intu-

itive, because smooth functions allow data to be more strongly aggregated across different

input points (observing the function at one point provides more information about other

points as seen in Chapter 3), whereas anything one can learn about a complex function is

very local. Thus, the approximated learning curves predict that participants should choose

simple but noisy over complex but less noisy function learning scenarios.

To create functions with different levels of smoothness, a flexible class of stationary co-

variance functions constructed from the modified Bessel function (Rasmussen & Williams,

2006) can be employed: the Matérn class introduced in the previous chapter. Let me briefly

restate the Matérn class of covariance function for τ = |x− x′| here:
*The one-dimensional Ornstein-Uhlenbeck covariance function has this property, with r = 2.
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kν(τ) = σ2f
21−ν

Γ(ν)

(√
2ντλ

)ν
Kν

(√
2ντλ

)
(4.9)

where λ > 0 is a length-scale parameter,Kν(·) is the modified Bessel function of order

ν = p − 0.5 for integral p, and Γ(·) is the gamma function. I will refer to p as the order of

the Gaussian Process.

When p = 1, Eq. 4.9 corresponds to the Ornstein-Uhlenbeck covariance function, which

generates a process that is not mean square differentiable (see Rasmussen & Williams,

2006). This means that sampled functions will produce very rough outputs. When p > 1,

the process is p − 1 times mean square differentiable, becoming smoother with increasing p.

In the limit p → ∞, it is equivalent to a radial basis function kernel. I will use Matérn ker-

nel functions of order up to 3 here as it is empirically hard to distinguish between functions

of higher order (see Cornford et al., 2002, for further discussion).

With these theoretical predictions in hand, I will now turn to an empirical exploration of

the formally derived factors influencing a function’s perceived predictability.

4.3 Experiment 1: Perceived predictability of functions

Participants will be asked to judge the predictability of provided functions (displayed as

scatter plots), while the underlying smoothness, noisiness, and sample size are manipu-

lated. This allows us to quantitatively measure the influence of these different factors on

perceived predictability. Based on the analysis of learning curves described before, I derive

the following 3 hypotheses:

1. Sample size and smoothness will correlate positively with perceived predictability,
whereas noise variance will correlate negatively.

2. The effect of smoothness will be stronger than the effects of noise and sample size.
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3. The approximate learning curve given a sample will be the most important factor
influencing participants’ predictability judgments.

4.3.1 Participants

47 participants were recruited via prolificacademic.co.uk and received £1 for their partici-

pation. 27 participants were female and the overall age had a mean of 24 with a standard

deviation of 5. The experiment took 8 minutes on average to be completed.

4.3.2 Task

Participants were told they had to assess how well they could potentially predict different

functions on a scale from 0 (not at all) to 100 (certainly). It was explained in detail to them

that prediction means to assess a new input point uniformly sampled from the input range.

After passing three comprehension check questions, participants were sequentially shown

50 different samples of functions and had to indicate how well they thought they could

predict a newly sampled point of that function. A screenshot of the experiment is shown in

Figure 4.1.

4.3.3 Design

Participants went through 50 sequential trials in total where points were sampled equidis-

tantly from different GPs with the Matérn covariance function. The parameters for the

smoothness p = [1, 2, 3], the variance σ2 = [0, 0.05, 0.1, 0.15, 0.2], and sample size n =

[10, 20, 30, 40, 50]were randomly selected on each trial. As Gaussian Process samples were

60



Figure 4.1: Screenshot of the predictability experiment. Dots were sampled uniformly from a funcধon whose order,
variance, and sample size was sampled prior and unknown to parধcipants. Parধcipants had to indicate how well they
thought they could predict this funcধon on a scale from 0 (not at all) to 100 (certainly).

created on the spot in JavaScript†, so no participant saw exactly the same function; only the

different characteristics governing the generating process were manipulated. The length-

scale of the provided covariance function was fixed to λ = 1.

4.3.4 Results

Figure 4.2 shows the relationship between different Gaussian Process parameters and partic-

ipants’ perceived predictability.

It can be seen there that increasing smoothness results in higher perceived predictabil-
†I created a JavaScript library to sample from different Gaussian Process priors at the client’s site, available

at github.com/ericschulz/gpsmooth.
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Figure 4.2: Parধcipants’ perceived predictability in dependency of different levels of smoothness, noise, and sample
size. Error bars represent the standard error of the mean.

ity, and increasing noise variance reduces perceived predictability. The overall effect of an

increasing sample size on the perceived predictability seems relatively small. This finding

has at least two potential explanations. First, it might be the case that participants overes-

timate the predictability with small sample sizes as they tend to infer smoother functions

than the ones generating the data. Secondly, the equidistantly spaced inputs I presented

to participants might permit easier prediction, since they cover more space overall. In or-

der to quantitatively assess the influence of the different factors on participants’ perceived

predictability, I performed a mixed-effects regression with judgments nested within partici-

pants. The parameter estimates of the fixed effects are summarized in Table 4.1.

In agreement with the above qualitative characterization, both smoothness and noise

variance have a significant effect on predictability. The effect of sample size, on the other
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Table 4.1: Parameter esধmates of factors influencing predictability judgments extracted from a mixed-effects regres-
sion analysis. Condiধonal pseudo-r2 = 0.30.

Estimate s.e. t-value Pr(>|t|)
Intercept 41.70 1.82 22.93 0.00

n 0.79 1.02 0.77 0.44
p 8.00 0.72 11.11 0.00
σ2 -5.21 0.66 -7.90 0.00

n× p 1.48 0.38 3.90 0.00

hand, is not significant. Nonetheless, sample size interacts significantly with smoothness:

increasing sample size reduces the effects of smoothness on predictability judgments. Thus,

sample size does appear to be a modulator of perceived predictability. Therefore, hypothe-

sis 1 can only be seen as partially confirmed.
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Figure 4.3: Perceived predictability as a funcধon of theoreধcal generalizaধon error. Derived generalizaধon error has
been distributed across 8 equally-sized bins.
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Next, I calculated the correlations between each of the different factors and the pre-

dictability judgments for each participant individually and found that the averaged corre-

lation between smoothness and perceived predictability (r = 0.36, p < 0.01) was in-

deed greater than the correlation between noise and perceived predictability (r = −0.24,

p < 0.01) and between sample size and perceived predictability (r = 0.06, p > 0.05).

Therefore, the second hypothesis was confirmed.

Finally, I examined whether the theoretical learning curve provides an accurate quantita-

tive model of perceived predictability. As shown in Figure 4.3, the theoretical generalization

error (binned for the plot, but not for the analysis) is a modest but significant predictor of

perceived predictability (r = −34, p < 0.01). On the one hand, this suggests that the model

does not capture all of the essential determinants of predictability perception. On the other

hand, however, a correlation coefficient essentially assumes a linear dependency between

the two factors, whereas –theoretically– the effect of learning curves on judgments can be

expected to be nonlinear. Therefore, the analysis above was repeated, but this time using

an importance measure derived by a random forest random permutation method (Archer

& Kimes, 2008). Although this method is not often applied in psychology, it is frequently

found in other areas such as genetics and biostatistics (Boulesteix et al., 2012). The random

forest importance measure assesses for each entered variable separately by how much the

predictive performance of a random forest regression decreases if this factor is randomly

permuted and thereby rendered uninformative. The results of this procedure are also dis-

played in Table 4.2 and show that the importance of the theoretically derived prediction

error is indeed higher than that of the other three variables. Thus, the last hypothesis can be

confirmed within limited constraints.
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Table 4.2: Average correlaধon between factors and parধcipants’ predictability judgments r and importance as as-
sessed by a random forest permutaধon algorithm.

Variable Average r Importance
n 0.06 8.04
σ2 -0.24 8.25
s 0.36 10.02
E(n) -0.34 11.58

4.4 Discussion

This investigation of predictions directly derived from Gaussian Process learning theory

shows that theoretical predictions about a function’s generalizability provide a framework

for understanding participants’ perception of a function’s predictability. This model cap-

tures qualitative effects of a function’s smoothness, noise variance, and sample size on the

generalization error, which is essentially the the inverse of predictability. The smoothness

of a function exerts a stronger influence on predictability than noise or sample size, consis-

tent with both theoretically derived learning curves and the experimental data. This means

that a smooth but noisy function is perceived as more predictable than a complex but near-

deterministic function. Thus, it is –at least according to this theory– easier to learn in a

noisy yet simple than a deterministic but complex system; generalizability is preferred over

determinism.

Furthermore, I have shown that the model can quantitatively capture participants’ pre-

dictability judgments, although it still leaves a fair amount of variance unexplained. One

reason for the relatively low correlation between generalization error and predictability

might be that the analysis assumed the covariance function is known. If participants use

a different covariance function, this will change the form of the learning curves (although

the qualitative predictions of the results reported here would remain the same; see Sollich,
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2005). In future work, it will be worthwhile to explore models that learn the covariance

function parameters directly.

The answer to the question of how people perceive the predictability of a function is

probably more nuanced than the account I have put forward here. Statistically speaking,

the ability to learn a function of a given complexity improves with increasing sample size,

and thus for a given level of complexity there is a sample size at which –intuitively– one

would judge a function to be highly predictable. This means that, for example, the effect

of smoothness on predictability might be relatively weaker than what I have found when

tested at much larger samples sizes. At different levels of complexity and sample size, the

human perception of the predictability of functions, as well as which factors drive that pre-

dictability, may vary.

Another drawback of the experiment presented here is that participants were never ac-

tually asked to generate predictions for a presented function, but only had to judge their

perceived predictability. As elicited judgments about one’s skills do not always fully corre-

spond to one’s actual abilities (Paulhus et al., 1998), the proposed measure of predictability

will have to be validated further by letting participants choose between different functions

and then asking them to generate predictions for newly observed points directly. This will

bring predictability even closer to traditional approaches of experiments on human func-

tion learning (DeLosh et al., 1997). Unlike previous work on function learning, which has

focused on interpolation and extrapolation performance, the work explored here represents

a relatively novel facet of participants’ perception of functions, the way in which they think

a given function is predictable. I believe that this assay provides another rich source of infor-

mation about function knowledge.

A different direction for future research is manipulating the way in which input points
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are sampled. One major difference between my current implementation of assessing par-

ticipants’ predictability and the theoretically-derived generalization error, is that I have

sampled points equidistantly, whereas theoretically input points are assumed to either be

sampled uniformly or normally at random. That points were displayed equidistantly could

have caused the relatively small effect of sample size on predictability judgments as partic-

ipants might have been more able to generalize functions between even a small number

of equidistantly presented points. Thus, future experiments could try to assess how judg-

ments differ if points are sampled from other distributions. Also, learning curves change

as a function of whether inputs are sampled randomly or using self-directed exploration

(Ritter, 2007).

While I have only considered a fairly simple family of covariance functions, evidence sug-

gests that people can generalize over richer representations; for example, a single function

may be partitioned into several different sub-functions (Kalish et al., 2004). It is possible to

take this one step further and ask whether a functional gradient of generalization is indeed

all there is to function learning or if perhaps it is made of simpler building blocks using a

“function grammar” (Duvenaud et al., 2013). I will address this question in the next chapter.
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“It is the task of our science to find the elements of thought and

the rules they adhere to, how they connect.”

Wilhelm Wundt, 1896

5
A compositional theory of generalization

This chapter develops a compositional theory of function learning

and tests this theory within pattern completion, predictability, nu-

merosity, change detection, and working memory tasks.
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5.1 Introduction

As machine learning algorithms get better across many tasks such as visual pattern classifica-

tion (Krizhevsky et al., 2012), game playing (Silver et al., 2016), natural language understand-

ing (Collobert et al., 2011), and image generation (Goodfellow et al., 2014), a main question

becomes if there are still psychological findings and theories from which current algorithms

could potentially benefit (Lake et al., 2016).

One frequently mentioned and almost indisputable area is people’s ability to general-

ize broadly beyond encountered examples (Schmidt, 2009). For example, when having to

judge what kind of tower blocks are stable, a neural network trained on 4 blocks can achieve

a level of performance better than most human subjects, but again performs at chance level

as soon as 5 instead of 4 blocks are used (Lerer et al., 2016). Whereas deep reinforcement

learning algorithms can learn to play many Atari games better than even professional hu-

man players, they need more than a billion training epochs, whereas the biggest chunk of

human learning in such games (for experienced players) happens within only the first few

games (Tsividis et al., 2017). Whereas generative adversarial networks can produce coherent

sentences and text (Rajeswar et al., 2017), human language production capacities go far be-

yond this, making it possible to write poems, novels, or even a PhD-thesis. What enables us

to generalize so quickly and broadly beyond the encountered data?

One promising answer to this question is compositionality (Goodman et al., 2008b), the

observation that often times more complex relations can be broken up into simpler ele-

ments and –even more importantly– that simple elements and rules about how they can

be combined generate a grammar that can potentially be infinitely large (Fodor, 2001). As

an example of a successful application of the human ability of compositional generalization
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to a machine learning problem, consider Lake et al. (2015)’s research on the generation of

different alphabets of characters. Their proposal is a Bayesian Program Induction frame-

work (Lake et al., 2013) that learns simple stochastic programs to represent concepts, build-

ing them compositionally from parts, subparts, and spatial relations. This model defines a

generative model that can sample new types of concepts by combining parts and subparts

in new ways, essentially a compositional approach to character learning. Within a simple

Turing-like task participants could not distinguish new characters generated by this model

from characters generated by other humans, thereby demonstrating the full expressiveness

of this approach. Yet, how can compositionality support human function learning and gen-

eralization? In what way, if any, is human function learning compositional?

This chapter probes compositionality as a mechanism for generalization in human func-

tion learning. Doing so, I will define a compositional grammar of Gaussian Process kernels

and rules of how they can be combined. This approach is then tested against two other

models of Gaussian Process structure learning, first within relatively simple pattern comple-

tion tasks, but later also in more elaborate scenarios such as change detection and working

memory paradigms. Results show that humans do indeed seem to possess compositional

inductive biases and can generalize, perceive, and memorize compositional patterns better

than non-compositional ones.

5.2 Compositionality as a core principle of generalization

Humans are seemingly able to adapt to a wide variety of structural forms (Kemp & Tenen-

baum, 2009; Gershman & Niv, 2010); the space of such forms is essentially unbounded,

raising the question of how an infinite variety of forms can be represented. A tractable

approach to accomplish this is to define a compositional system that can build complex
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structures through the composition of simpler elements. For example, in functional pro-

gramming languages, functional primitives can be combined to create more complex func-

tions which can then be re-combined to create even more complex functions (Peyton Jones,

1987). Via re-combinations, compositionality leads to a large increase of productivity—an

infinite number of representations can be constructed from a finite set of primitives (Fodor,

1975; Fodor & Pylyshyn, 1988).

One source of evidence for compositionality in cognition comes from studies of rule-

based concept learning. In these studies, the rules can be expressed as functions of logical

primitives (e.g. Bruner et al., 1956; Shepard et al., 1961). By studying participants’ mistakes

and the relative learning difficulty of different concepts, researchers tried to unravel the

primitives of symbolic thought and how these primitives are combined. This work has led

to a rich set of theoretical ideas and empirical constraints on compositionality in concept

learning (Piantadosi et al., 2016; Goodman et al., 2008a; Lake et al., 2015; Nosofsky et al.,

1994).

Kemp (2012) provided an exhaustive characterization of compositionality in logical do-

mains, showing how a “conceptual universe” can be formed by a rule inference scheme

based on minimal description length that explains logical reasoning data across a wide

set of domains. Recently, Piantadosi et al. (2016) showed how different sets of structural

primitives, embedded in an approximate Bayesian inference framework, can predict distinct

learning curves in rule-based concept learning experiments. Based on these and other stud-

ies, Lake et al. (2016) argued that compositionality should be a core principle of algorithms

“that learn and think like people.”

Given the widespread theoretical and empirical support for compositionality in cognitive

science, it is natural to ask whether humans make use of compositionality in their ability of
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generalization. With a few exceptions (Gershman et al., 2017, 2015b), prior work on func-

tion learning with GPs has assumed a fixed, non-compositional kernel*. Thus, the goal of

this chapter is to formalize a compositional approach to function learning and compare

it to alternative non-compositional approaches. This comparison is especially interesting

when considering different variants of generalization as on the one hand generalization

could just be driven by an exponentially decaying gradient of functional generalization or,

on the other hand, by a compositional grammar of smaller parts.

I will probe these differences by positing two candidate kernel parameterizations that

express conceptually different inductive biases. The first two learn about and generalize pat-

tern by approximating the gradient directly. The latter accomplishes generalization by com-

posing parts of a functional grammar. I will then present a series of experimental tests that

pit these kernels against each other. The aim is to see if explaining functional generalization

requires more than functional gradients, and –if so– whether and how a compositional

theory of generalization can fill this theoretical gap.

5.3 Generalization and structure learning with Gaussian processes

Broadly speaking, there are two approaches to parameterizing the kernel space: a fixed func-

tional form with continuous parameters, or a combinatorial space of functional forms.

These approaches are not mutually exclusive; indeed, the success of the combinatorial ap-

proach depends on optimizing the continuous parameters for each form. Nonetheless, this

distinction is useful because it allows to separate different forms of functional generaliza-

tion. A function might have internal structure such that when this structure is revealed,

the apparent functional complexity is significantly reduced. For example, a function com-
*This is also true for approaches utilizing a mixture of expert kernel, which is fixed a priori, but see Kalish

(2013) for further discussion.
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posed of many piece-wise linear segments might have a long description length under a typ-

ical continuous parametrization (e.g., a radial basis function kernel), because it violates the

smoothness assumptions of the prior. However, conditional on the change-points between

segments, the function can be decomposed into independent parts each of which is well-

described by a simple continuous parametrization (see Lee & Yuille, 2006, for a discussion

of how this strategy is used by the brain in early vision). If internally structured functions

are “natural kinds”, then the combinatorial approach may be a good model of human gen-

eralization.

In the rest of this section, I describe three kernel parameterizations and their implications

for human generalization. The first two are continuous, differing in their expressiveness.

The third one is combinatorial, allowing it to capture complex patterns by composing sim-

pler kernels.

5.3.1 Radial basis function kernel

As explained in Chapter 3, the radial basis function kernel is a commonly used kernel in

many machine learning applications, embodying the assumption that the covariance be-

tween function values decays exponentially with input distance:

k(x, x′) = σ2f exp
(
−|x− x′|2

2λ2

)
, (5.1)

where σ2f is a scaling parameter and λ is a length-scale parameter determining the speed of

the decay over the distance between inputs. The radial basis function kernel can be seen as

a direct operationalization of (Shepard, 1987)’s universal rule of generalization within the

function learning domain. It assumes that the same smoothness properties apply globally

for all inputs and will provide a baseline to compare with more expressive kernels.
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5.3.2 Spectral mixture kernel

The second approach is based on the fact that any stationary kernel can be expressed as an

integral using Bochner’s theorem. Letting τ = |x− x′| ∈ RP, then

k(τ) =
∫
RP
e2πis⊤τψ(ds). (5.2)

where ψ is a positive finite measure. The density S(s) of ψ is called the spectral density of k;

k and S are Fourier duals:

k(τ) =
∫

S(s)e2πis⊤τds (5.3)

S(s) =
∫

k(τ)e−2πis⊤τdτ (5.4)

Therefore, every kernel can also be represented by a distribution over the spectral density

space. Wilson & Adams (2013) showed that the spectral density can be approximated by a

mixture of Gaussians. The spectral density modeled with a single Gaussian is

φ(s, μ, σ2) = 1√
2πσ2

exp{− 1
2σ2 (s− μ)2} (5.5)

S(s) = 1
2
[φ(s)− φ(−s)] (5.6)

The resulting kernel is given by

k(τ) = exp{−2π2τ2σ2} cos(2πτμ) (5.7)
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Extending this result to a mixture of QGaussians results in:

k(τ) =
Q∑

q=1

wq

P∏
p=1

exp{−2π2τ2
pv(p)q } cos(2πτpμ(p)

q ) (5.8)

where the qth component has the mean μq = (μ(1)
q , . . . , μ(p)

q ) and covariance matrix

Mq = diag(v(1)q , . . . .v(p)q ), where the inverse mean represents the component periods and

the inverse standard deviation the length scales. The result is a non-parametric approach

to Gaussian Process regression, in which complex kernels are approximated by mixtures of

simpler ones. This approach is similar to assuming that participants learn about the gradi-

ent of functional generalization directly, by approximating the underlying correlational de-

pendencies that have generated a given function. It is appealing when simpler kernels (e.g.,

the radial basis function) fail to capture functional structure. Its main drawback is that be-

cause structure is captured implicitly via the spectral density, the building blocks are psy-

chologically less intuitive: humans appear to have preferences for linear (Kalish et al., 2007)

and periodic (Bott & Heit, 2004) functions, which are not straightforwardly encoded in

the spectral mixture (though of course a mixture can approximate these functions). Since

the spectral kernel has been successfully applied to reverse engineer human kernels (Wil-

son et al., 2015), it is a useful reference of comparison to more structured compositional

approaches.

5.3.3 Compositional kernel

As positive semi-definite kernels are closed under addition and multiplication, it is possible

to create richly structured and interpretable kernels from well-understood base compo-

nents. For example, by summing kernels, one can model the data as a sum of independent
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functions. Imagine a function that is linearly increasing over time but also shows some sea-

sonal periodicity; then a combination of a linear and a periodic kernel added together might

be a good description of that function (as described in Chapter 3).

Figure 5.1 shows an example of how different kernels (radial basis function, linear, peri-

odic) can be combined. The approach put forward here, following Duvenaud et al. (2013),

is to define a grammar over kernels that generates new kernels through summation or mul-

tiplication of simpler base kernels. Table 5.1 summarizes the kernels used in this grammar.

Given a set of input-output pairs, the task facing the learner is to identify both the function

and an underlying parse tree. As with the other kernel parameterizations, the parse tree can

be chosen to maximize the marginal likelihood.

RBF LIN PER PER+LIN RBFxPER

Figure 5.1: Examples of base and composiধonal kernels. The base kernels are radial basis funcধon (RBF), linear (LIN),
and periodic (PER); the composiধon operators are addiধon and mulধplicaধon. Adding a periodic and a linear kernel
creates funcধons with trends and seasonality. Mulধplying a periodic kernel with a radial basis funcধon results in
more localized periods than a standard periodic kernel would be able to capture.

Table 5.1: Base kernels in the composiধonal grammar.

Name Definition

Linear k(x, x′) = (x− θ1)(x′ − θ1)

Radial basis function k(x, x′) = σ2f exp
(
− (x−x′)2

λ2

)
Periodic k(x, x′) = σ2f exp

(
− 2 sin2(π|x−x′|θ)

λ2

)

While other compositional grammars are possible –e.g., including a more diverse set of

76



base kernels or other composition operators such as convolution or scaling– the proposed

grammar is a useful starting point, since the components are intuitive and likely to be psy-

chologically plausible. For tractability, the maximum number of combined kernels is fixed

to be 3 and repetition of kernels are not allowed in order to restrict the complexity of the

inference. The complete set of resulting kernels is shown in Table 5.2.

Table 5.2: Kernel combinaধons in the composiধonal grammar and their interpretaধons.

Combination Interpretation
Linear Linear function
Radial basis Locally smooth function
Periodic Repeated pattern
Linear+ Periodic Linear trend plus repeated pattern
Linear+RBF Linear trend plus local deviations
RBF+ Periodic Repeated pattern plus local deviations
Linear× Periodic Repeated pattern with increasing amplitude
Linear×RBF Local deviations with increasing amplitude
RBF× Periodic Slowly changing repeated pattern
Linear+RBF+ Periodic Linear trend plus local deviations plus repeated pattern
Linear+ Periodic×RBF Linear trend plus slowly changing repeated pattern
Periodic+ Linear×RBF Repeated pattern plus local deviations with increasing amplitude
Linear×RBF× Periodic Slowly changing repeated pattern with increasing amplitude

I will use this set of kernels as the proposed compositional function class. Given a par-

ticular task, the specific composition from the set is chosen that maximizes the marginal

likelihood.

Comparing these different kernels with each other will provide insights into the way

people extrapolate from experience in general and learn about functions in particular. If

a radial basis function kernel describes participants’ function learning well, then research

on generalization should focus on finding the exact gradient of generalization, i.e. estimat-

ing λ in different tasks. If the spectral density kernel describes function learning well, this
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could imply that participants learn about structure implicitly and that one would have to

extract the human kernel over different function learning tasks, comparing how general the

distribution of the spectral density is†. If the compositional kernel explains human func-

tion learning best, then this means that participants are able to generalize more broadly and

efficiently than what was previously thought.

5.4 Experiment 2a: Pattern completions of compositional functions

The first experiment examines whether participants prefer compositional over non-compositional

predictions of functions if the ground truth is indeed compositional. Even though this

mainly reveals whether people make predictions in accordance with the underlying struc-

ture (i.e., it is not informative about inductive biases per se), Experiment 2b will examine

the case where the ground truth is non-compositional. If people prefer compositions in

both experiments, then that means that they have indeed strong compositional inductive

biases for pattern completions.

I used a “pattern completion” paradigm, motivated by prior research on pattern per-

ception as a window into cognitive representations (e.g., Buffart et al., 1981; Kanizsa, 1979).

Participants chose among 3 different completions of a partial one-dimensional function.‡

The candidate completions were generated by the different structure learning approaches

described before. The main hypothesis was that if participants have structured, composi-

tional representations of functions, then they should prefer pattern completions generated

from the compositional kernel.
†This would also be an interesting approach towards assessing human generalization, for example by

assessing the density for self-directed vs. simple function learning tasks.
‡This is essentially a form of extrapolation judgment, but unlike typical extrapolation paradigms that test

input-output pairs one at a time, pattern completion asks participants to consider a set of input-output pairs.
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5.4.1 Methods

Participants

52 participants (29 women) with an average age of 36.15 (SD = 9.11) were recruited via Ama-

zon Mechanical Turk and received $1 for their participation. The experiment took 5 min-

utes on average to complete.

Design

20 different functions were pre-selected§ sampled from a Gaussian Process parametrized

by various compositional kernels within an input space of x = [0, 0.1, 0.2, · · · , 10]. Af-

terwards, the functional outputs for xlearn = [0, 0.1, 0.2, · · · , 7]were used as a training

set to which all three approaches were fitted and then used to generate predictions for a test

set xtest = [7.1, 7.2, · · · , 10] for generalization. The hyper-parameters of the radial basis

kernel as well as the number of components and the hyper-parameters of the spectral mix-

ture kernel were fitted by optimizing the marginal likelihood of the training set. The best

prediction of the compositional kernel was found by choosing the composition from the

grammar (see Table 5.2) that produced the best marginal likelihood (following Duvenaud

et al., 2013).

The different mean predictions were then used to generate 3 plots (one for each kernel

approach) that showed the given input as a blue curve and the new predictions (the extrap-

olation pattern) as a red curve. The procedure was repeated for 20 different compositions,

each corresponding to a separate trial.
§Most of these functions were generated from two composed kernels and contained either a linear or a

periodic component.
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Procedure

Participants were asked to select one of 3 extrapolations (pattern completions) they thought

best completed a given function (Figure 5.2). The position at which a kernel’s predictions

appeared was randomized on every trial.

Figure 5.2: Screenshot of Experiment 2a. Paħern compleধons (shown in red) were generated by a spectral mixture
(leđ), a radial basis (middle), and a composiধonal kernel (right). The actual posiধon was determined at random.

5.4.2 Results and discussion

Participants chose the compositional completions on 69% of the trials, the spectral mixture

completions on 17%, and the radial basis completions on 14% (Figure 5.3).

Overall, the compositional completions were chosen significantly more often than the

other two completions (χ2(N = 1040, df = 2) = 591.2, p < 0.01). Moreover, assessing

for each participant individually whether or not compositional completions were chosen

more frequently than the other two based on a χ2(df = 2)-test, showed that 44 out 52

participants significantly preferred the compositional pattern completions (α = 0.05 signif-

icance level). The results thus support the hypothesis that participants prefer compositional

pattern completions when the ground truth is compositional.
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Figure 5.3: Results of Experiment 2a. Proporধon of paħern compleধon choices for three kernels. Error bars represent
the standard error of the mean.

5.5 Experiment 2b: Pattern completions of non-compositional functions

While the results of Experiment 2a suggest a preference for compositionally structured func-

tions, they do not indicate whether humans have an inductive bias for such functions, since

the results are perfectly compatible with the possibility that participants adapted to the

ground truth structure without a compositional inductive bias. In Experiment 2b, I sub-

ject the compositional theory to a stronger test, measuring pattern completion preferences

when the ground truth is non-compositional (specifically, functions drawn from a GP with

the spectral mixture kernel). If participants prefer compositional completions in this ex-

periment, I can be more confident that the preference for such functions arises from an

inductive bias.

81



5.5.1 Methods

Particpants

65 participants (mean age=30, SD = 9.84, 31 male) were recruited from Amazon’s Mechani-

cal Turk web service and received $0.5 for their participation. The experiment took 4 min-

utes on average to complete.

Design

The design was identical to the one used in Experiment 2a, apart from the fact that in this

experiment the underlying functions were sampled (without any further selection) from

a GP with the spectral mixture kernel parametrized with a randomly assigned number of

components (sampled uniformly between 2 and 5). This time, only completions for the

compositional and the spectral kernel were generated. I did not generate completions for

the radial basis function kernel because in 35% of the cases on average these completions cor-

responded closely to predictions of the compositional kernel. This correspondence arose

due to the fact that there was not much compositional structure for the compositional ker-

nel to capture in samples from the spectral mixture kernel. Additionally, the RBF kernel

can be seen as a special case of both the spectral mixture and the compositional kernel.

Procedure

The procedure was as described in Experiment 2a, with the one difference that participants

made choices between two (rather than three) completions.
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5.5.2 Results and discussion

As in Experiment 2a, participants chose compositional completions more frequently than

non-compositional (spectral mixture) completions (68% vs. 32%, χ2(N = 1300, df =

2) = 172.8, p < 0.01; Figure 5.4). Moreover, 41 of 65 participants significantly preferred the

compositional over spectral pattern completions at the α = 0.05-level. This finding is con-

sistent with the claim that human inductive biases for functions are sufficiently strong and

compositional to induce preference for compositional completions even when the ground

truth is non-compositional.
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Figure 5.4: Results of Experiment 2b. Proporধons of paħern compleধon choices. Error bars represent the standard
error of the mean.

83



5.6 Markov chain Monte Carlo with people

The next set of experiments seeks to elicit samples from a compositional posterior predic-

tive distribution over functions in order to gain finer-grained insight into the subjective rep-

resentation of functions. This is accomplished by using a technique calledMarkov chain

Monte Carlo with People (MCMCP; Sanborn et al., 2010). This technique asks participants

to accept or reject proposed hypotheses, effectively simulating a Markov chain whose sta-

tionary distribution is the posterior over hypotheses given the presented data. In the fol-

lowing experiments, I condition on a training set and ask participants to choose between

completions (as in Experiments 2a and 2b); thus the stationary distribution is the posterior

predictive distribution over pattern completions.

If the proposal distribution is symmetric (the probability of proposing a new state x∗

from the current state x is the same as the probability of proposing x from x∗), then one

psychologically plausible acceptance function is Barker’s acceptance function (Barker, 1965):

A(x∗, x) = π(x∗)
π(x∗) + π(x) , (5.9)

where π(x) ∝ P(x). LettingD indicate the training set, this leads to the following expres-

sion for the acceptance function:

A(k∗, k) = p(k∗|D)

p(k∗|D) + p(k|D)
(5.10)

which corresponds to Luce’s choice rule, the most common model for discrete choice distri-

butions in psychology. Thus, under fairly standard assumptions about the choice process,

it is possible to elicit samples from the desired distribution, p(k|D), i.e. the posterior predic-
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tive distribution over kernels given the data. This means that MCMCP can be used to gain

insights into a restricted distribution (under the assumption that predictions are based on

the grammar) over compositional parts by assessing how frequently a given compositional

prediction has been preferred over another one. I will therefore use empirical data to assess

if participants’ posterior distributions over different kernels approximates sensible composi-

tions.

5.7 Experiment 3a: Compositional ground truth

In the first MCMCP experiment, the underlying functions were sampled from composi-

tional kernels in order to see if the posterior over compositional completions converges to

patterns that match the true underlying kernel. Using a MCMCP-like design provides the

opportunity to check if the found restricted posterior predictive distribution corresponds

well with the predictions generated by the compositional kernel.

5.7.1 Methods

Design

Eight different functions were sampled from various compositional kernels. The input

space was split into training and test sets, and then all kernel combinations were used to

generate completions for the test set. I generated completions from all kernels shown in

Table 5.2, optimizing each kernel’s hyper-parameters on the training set and then generat-

ing the completions for the extrapolation set. On each trial, participants chose between

their most recently accepted extrapolation and a new proposal. Proposals were sampled

uniformly from this set. I mainly focused on combinations containing linear and periodic

components, as these provide more interesting structure than the smoothness induced by
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samples from the radial basis function kernel.

Participants

51 participants (27 male) with an average age of 32.55 (SD = 8.21) were recruited via Ama-

zon’s Mechanical Turk web service and paid $1. The experiment took 8 minutes on average

to complete.

Procedure

There were 8 blocks of 30 trials, where each block corresponded to a single extrapolation set.

The order of the blocks was randomized for each participant.

5.7.2 Results and discussion

The average proportion of accepted kernels over the last 5 trials was calculated, as shown in

Figure 5.5. The first 25 trials were excluded to avoid trials on which participants might not

have reliably moved towards their subjective posterior extrapolations, a process commonly

called “burn-in”.

In all cases, participants’ subjective probability distribution over completions placed

the greatest mass on the data-generating kernel (marked in red). Furthermore, I observed a

strong rank correlation between an approximated posterior probability over completions¶

and participants’ subjective distribution (ρ = 0.91, p < 0.01). Thus, participants approx-

imately moved toward the true underlying posterior when the functions were generated

from compositional kernels.
¶As there is currently no reliable way to generate an exact posterior over compositional parts, the normal-

ized marginal likelihood of each composition was used as a rough approximation.
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Figure 5.5: Results of Experiment 3a. Proporধons of chosen compleধons over the last 5 trials. Error bars represent
the standard error of the mean. Generaধng kernel (ground truth) marked in red. l: linear kernel, p: periodic kernel, r:
radial basis funcধon kernel.

5.8 Experiment 3b: Real-world functions

The second MCMCP experiment assessed what structures people converged to when faced

with real-world data, where the ground truth is unknown. The expectation was that real-
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world data is often intrinsically compositional (see Duvenaud et al., 2013; Grosse et al.,

2012), and hence human inductive biases may be adapted to such functions.

Participants

51 participants (31 male) with an average age of 32.55 (SD = 12.14) were recruited via Amazon

Mechanical Turk and received $1 for their participation. The experiment took 7 minutes on

average to complete.

Procedure

I used four real-world time series (Figure 5.6): airline passenger data, volcano CO2 emis-

sion data‖, the number of gym memberships over 5 years, and the number of times people

googled the band “Wham!” over the last 8 years. Some of these functions have been exten-

sively analyzed in the time series modeling literature and all of them showed interesting

patterns a priori. Participants were not told any information about the data sets (including

input and output descriptions); they were simply shown the unlabeled input-output pairs

in the experiment.

The input space was split into training (75% of the data) and test sets (25% of the data),

and then all kernel combinations were fitted to the training set and used to generate com-

pletions for the test set. Proposals were sampled uniformly from this set. As periodicity in

the real world is rarely ever purely periodic, I adapted the periodic component of the gram-

mar by multiplying a periodic kernel with a radial basis function kernel, thereby locally

smoothing the periodic part of the function.** Apart from the different training sets, the

procedure was identical to Experiment 3a.
‖As shown in Chapter 3

**See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.

88

http://learning.eng.cam.ac.uk/carl/mauna


CHAPTER 5. A COMPOSITIONAL THEORY OF GENERALIZATION 89

Airline Passengers Gym Memberships Volcano Wham!

Real world data

Airline Passengers Gym Memberships Volcano Wham!

Favored completions

Figure 5.6: (Top) Real-world data sets used in Experiment 3b. Descripধons and origin of the data were unknown to
parধcipants. (Boħom) Parধcipants were shown the region in blue; most frequently selected compleধons are shown in
red. Note that the periodic composiধon has been adapted by mulধplying it with a radial basis kernel.



Results and discussion

Results (again taken from the last 5 trials) are shown in Figure 5.7, demonstrating that par-

ticipants moved to intuitively plausible patterns. In particular, for both the volcano and

the airline passenger data, participants moved to compositions resembling those found in

previous analyses Duvenaud et al. (2013). The most frequently chosen completions for each

data set are shown in Figure 5.7. The rank correlation between the subjective distributions

and the approximated posterior over completions was significantly positive (ρ = 0.83,

p < 0.01), supporting the hypothesis that the compositional pattern completions capture

human inferences about functions.

5.9 Experiment 4: Manual pattern completion

As so far participants were only asked to make choices between a discrete set of pattern com-

pletions, the next experiment will measure pattern completion in a less constrained task.

In Experiment 4, participants had to draw the pattern completions manually (see Cox

et al., 2012, for related work), instead of choosing completions out of a provided set.

5.9.1 Methods

Design

On each round of the experiment, functions were sampled from the compositional gram-

mar at random, the number of points to be presented on each trial was sampled uniformly

between 100 and 200, and the noise variance was sampled uniformly between 0 and 25. Fi-

nally, the size of an unobserved region of the function (for completion) was sampled to

be of a size between 5 and 50. Participants were asked to manually draw the function best
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Figure 5.7: Results of Experiment 3b. Proporধons of chosen predicধons over last 5 trials. l: linear kernel, p: periodic
kernel, r: radial basis funcধon kernel.

describing the observed data and to complete this function within the observed and unob-

served regions. A screenshot of the experiment is shown in Figure 5.8.

Participants

36 participants (23 males) with a mean age of 30.5 (SD = 7.15) were recruited from Amazon

Mechanical Turk and received $2 for their participation. The experiment took 12 minutes

on average.
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Figure 5.8: Screenshots of manual paħern compleধons (Experiment 4). The unobserved region (for compleধon) is
delimited by verধcal lines.

Procedure

Participants were asked to draw lines into a cloud of dots that they thought best described

the given data. To facilitate this process, participants placed black points into the cloud,

which were then automatically connected by a black line based on a cubic Bezier smoothing

curve (see Forrest, 1972). The smoothness of the Bezier curve was adapted online to fit the

points provided by the participants, thereby making it possible to draw less smooth lines

by placing points closer to each other††. Participants were asked to place the first point on

the left boundary and the final point on the right boundary of the graph. In between, par-

ticipants were allowed to place as many points as they liked (from left to right) and could

remove previously placed points. There were 50 trials in total. The dots were sampled from

a function that was in turn sampled from a kernel chosen at random out of all possible com-

binations in the compositional grammar (as shown in Table 5.2).

5.9.2 Results and discussion

The average root mean squared distance between participants’ predictions (the line they

drew) and the mean predictions of each kernel given the data was assessed, for both inter-
††Participants found this set-up to be very intuitive. The source code for this experiment can be found

online at https://github.com/ericschulz/drawfunctions
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and extrapolation areas. No parameters were optimized in order to achieve better distance

measures. As before, the parameters for the radial basis kernel and the number of compo-

nents as well as the parameters for the spectral mixture kernel were optimized via the log

marginal likelihood. I also generated predictions of the compositional kernel by choosing

the composition that produced the best marginal log-likelihood given the presented dots.

Results are shown in Figure 5.9.
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Figure 5.9: Results of Experiment 4. Average root mean squared distance for interpolaধon (leđ) and extrapolaধon
(right) drawings. Error bars show standard error of the mean.

The mean distance between the model predictions and participants’ drawings were com-

pared by performing a hierarchical t-test between the distances produced by the different

models while accounting for the nestedness of distance measures within participants and

trials; this is essentially the same as performing a mixed-effects regression. The mean dis-

tance between predictions and participants’ drawings was significantly higher for the spec-

tral mixture kernel than for the compositional kernel in both interpolation (86.96 vs. 58.33,

hierarchical t-test: t(676) = −2.28, p < 0.05, d = 0.35) and extrapolation areas (110.45 vs
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83.91, hierarchical t-test: t(434) = 2.2, p < 0.05, d = 0.33). The radial basis function kernel

produced similar distances as the compositional kernel in interpolation (55.8, hierarchical

t-test: t(649) = −0.55, p > 0.05, d = 0.03), but predicted participants’ drawings signifi-

cantly worse in extrapolation areas (97.9, t(508) = 1.8, p < .05, d = 0.17). As extrapolation

is normally seen as the best criterion to measure generalization and thus the best measure to

compare models of function learning (DeLosh et al., 1997), the difference in extrapolation

judgments provides further evidence for the compositional kernel model.

5.10 Generating comparison functions

One potential concern with the previous experiments is that compositional and non-compositional

functions may differ in terms of low-level perceptual characteristics, and these differences

(rather than the hypothesized high-level structural differences) are driving the behavioral

effects. To address this concern, a set of non-compositional functions whose low-level per-

ceptual characteristics are matched with a set of compositional functions is required.

Thus, I generated 500 functions from both compositional and non-compositional ker-

nels. The compositional functions were sampled randomly from the compositional gram-

mar by first randomly sampling a kernel composition and then sampling a function from

that kernel, whereas the non-compositional functions were sampled from the spectral mix-

ture kernel, where the number of components was varied between 2 and 6 uniformly. Fol-

lowing Goerg (2013), I then calculated the standardized spectral entropy (or “forecastabil-

ity”) for each function:

Ω(f) = 1 − H(f)
ln(2π) (5.11)

whereH(·) is the Shannon entropy (see Appendix A.1) of the function’s normalized spec-

tral density Sf.
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Forecastability can be seen as a measure of how well future output values of a function

can be predicted. It takes values between 0% and 100%, representing the proportional re-

duction in entropy a given function achieves relative to white noise. Although forecasta-

bility technically assumes stationary functions, it has also been shown to produce reliable

measures for non-stationary functions in practice (Hyndman et al., 2015). Of the 500 non-

compositional functions generated, I selected those that had a forecastability of higher than

20%, but set the maximum predictability for the compositional kernel functions to be less

than 40% and the minimum predictability for the spectral mixture kernel functions to be

higher than 40%. This means that theoretically the functions generated from the spectral

mixture kernel are more forecastable on average (i.e., contain lower entropy in their spec-

tral density) than the functions sampled from the compositional kernel. Because of this

forecastability advantage for non-compositional functions, behavior consistent with the

compositional kernel predictions would then provide especially strong evidence for the

compositional framework.

Afterwards, I verified that all of the functions were matched in terms of low level visual

properties, as measured by a similarity measure based on the discrete wavelet Haar trans-

form Montero & Vilar (2014). The basic idea of this similarity measure is to replace the

original series by its wavelet approximation coefficients at an appropriate scale, and then to

measure similarity between the wavelet coefficients (see Appendix). This measure not only

provides a state-of-the art similarity metric between two functions, but also has been used

to model human behavior in visual integration tasks (Field et al., 1993). Each function was

ranked based on its wavelet similarity to other functions and the top functions (20 compo-

sitional and 20 spectral) were selected from this set. These functions, which are used in the

experiments reported below, are shown in Figures 5.10 and 5.11. Subsequently, I will refer to
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these functions as the “matched set.”

Figure 5.10: Sampled composiধonal funcধons.

5.11 Experiment 5: Compositional predictability

If human inductive biases for functions are inherently compositional, then compositional

functions should be perceived as more predictable.‡‡ In Chapter 4, I operationalized pre-

dictability in terms of generalization error. As predictability is the expected prediction
‡‡Predictability is closely related to forecastability, insofar as both measures can be characterized in terms

of the eigenspectrum (Sollich, 2002, see also Chapter 4). Here, I focus on predictability since it has a more
intuitive interpretation.
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Figure 5.11: Sampled spectral mixture funcধons.

error for a newly-sampled input point from within a (interpolation) set of points, more

predictable functions should lead to lower generalization error for new inputs. This anal-

ysis identified several key factors determining the predictability of a function; specifically,

predictability increases with sample size and smoothness, and decreases with noise.

In this section, I will assume that compositionality is another key factor influencing pre-

dictability. If inductive biases for functions are compositional, then I expect that such func-

tions are perceived as more predictable. This will be now assessed by collecting both abso-

lute and relative measures of subjective predictability.
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5.11.1 Methods

Participants

50 participants (mean age=32, SD=7.2; 32 males) were recruited via Amazon Mechanical

Turk and received $0.5 for their participation. The experiment took 9 minutes on average.

Procedure

On each trial, one of the “matched” functions defined above was randomly sub-sampled

with a sample size nj drawn uniformly from {50, 60, . . . , 100}. Participants were asked to

judge how well they thought they could predict a newly sampled input point for the func-

tion on a scale ranging from 0 (not at all) to 100 (very well). After judging the subjective

predictability for all 40 of the matched functions in a randomized order, participants then

had to make pairwise comparisons between compositional and non-compositional func-

tions from -100 (function presented on the left is definitely easier to predict) to 100 (func-

tion presented on the right is definitely easier to predict). As with the absolute predictabil-

ity judgments, the sample size nj was varied randomly, with the constraint that both func-

tions had the same sample size and the position of the functions were counter-balanced

over trials. Screenshots of the two tasks are shown in Figure 5.12.

5.11.2 Results and discussion

As shown in Figure 5.13, compositional functions were perceived as more predictable (mean

predictability judgment=55.92) than non-compositional functions (mean predictability

judgment=37.88). This was confirmed by a hierarchical t-test with random effects for par-

ticipants and items, t(31) = 8.35, p < 0.001, d = 0.73. In, the predictability judgments for

compositional judgments were more strongly correlated with sample size (r = 0.28, p <
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Figure 5.12: Screenshots of the two predictability judgment tasks (Experiment 5). (Leđ) Absolute predictability judg-
ments. (Right) Relaধve predictability judgments.

0.001) compared to predictability judgments for non-compositional functions (r = 0.18,

p < 0.001; difference test: z = 2.36, p < 0.05).
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Figure 5.13: Mean predictability judgments. Error bars represent the standard error of the mean.

To analyze these results further, I fit a hierarchical regression model of subjective pre-

dictability (nested within participants) with two predictors: samples size and a dummy
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variable indicating whether or not a presented function was compositional. The fixed effect

results of this analysis, summarized in Table 5.3, demonstrate main effects of both composi-

tionality and sample size.

Table 5.3: Regression model of predictability judgments. Overall model fit: Condiধonal pseudo-R2 = 0.17.

Estimate Std. Error t-value Pr(>|t|)
Intercept 13.06 3.50 3.72 0.0002
Compositional 17.44 1.53 11.39 0.0000
Sample size 0.34 0.04 7.42 0.0000

The relative predictability judgments tell a similar story (Figure 5.14). As with the abso-

lute judgments, compositional functions were perceived to be more predictable relative to

non-compositional functions (t(499) = 13.502, p < 0.001, d = 0.63), and this difference

increased with sample size (r = 0.14, p < 0.001).

To understand how subjective predictability judgments match theoretical predictability,

I approximated the generalization error using the average squared error for a randomly sam-

pled new input point. This approximation is computed for every sample that a participant

saw under different kernel choices: linear, radial basis function, spectral mixture, or a com-

positional kernel. To generate predictions from each kernel, the hyper-parameters (includ-

ing the composition for the compositional kernel) that maximized the log marginal likeli-

hood were used and the mean generalization error was assessed empirically. This approach

tests if the ease of generalizations for different functions as assessed by different approaches

towards generalizations tracks participants’ predictability judgments.

Figure 5.15 shows the average correlation between each kernel’s generalization error and

participants’ predictability judgments, averaged over all trials and participants.

The spectral mixture kernel (t-test against a correlation of 0: t(49) = −2.351, p < 0.05,

d = 0.33), the compositional kernel (t(49) = −19.73, p < 0.001, d = 2.79) as well
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Figure 5.14: Relaধve predictability judgments. Posiধve values indicate that the composiধonal funcধon was judged to
be more predictable than the non-composiধonal funcধon. Error bars represent the standard error of the mean.

as the radial basis function kernel (t(49) = −4.3, p < 0.01, d = 0.61) all correlated

significantly with participants’ judgments. The linear (t(49) = 0.846, p > 0.1, d =

0.12) kernel did not correlate with participants’ judgments better than chance. Crucially,

the compositional kernel showed a significantly higher correlation than either the spectral

mixture kernel (t(49) = −7.86, p < 0.001, d = 1.57) or the radial basis function kernel

(t(49) = −9.92, p < 0.001, d = 1.49).

In summary, compositional functions were perceived as more predictable, even though

they were generated to be theoretically less “forecastable” than the non-compositional func-

tions sampled from the spectral mixture kernel. The generalization error produced by the

compositional structure learning approach matched participants’ predictability judgments

more closely than any of the alternative models.
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Figure 5.15: Average correlaধon between model predicধons and parধcipants’ predictability judgments. Predicধons
were derived from models’ average generalizaধon error. As generalizaধon error and predictability are inversely re-
lated, the inverse of the generalizaধon error was used to produce the correlaধons. Error bars represent the standard
error of the mean.

5.12 Experiment 6: Traditional function learning paradigm

In the experiments presented so far, I have only used single function learning paradigms

with a particular focus on pattern completions, either by letting participants choose com-

pletions in forced choice or MCMCP tasks or by asking them to draw manual pattern com-

pletions. Psychological experiments on function learning have traditionally focused on

sequential function learning (as described in Chapter 3). For example, Carroll (1963) asked

participants to predict the width of one bar given another bar’s width. After every predic-

tion, participants received feedback about the actual width of the bar. Performing this task

required participants to build up a representation of a function sequentially, rather than a

more perceptual generalization that can be used in a single function learning task.
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Thus, in order to compare the compositional and non-compositional representations

in terms of how they describe participants’ learning and generalization within a histori-

cally more accurate setting, the next experiment will use a similar (yet slightly modified)

paradigm as the one used by Carroll (1963).

5.12.1 Methods

Participants

46 participants (mean age=31, SD=11; 30 males) were recruited via Amazon Mechanical

Turk and received $0.5 for their participation. The experiment took 12 minutes on average

to complete.

Procedure

Participants were asked to predict an output indicated by the height of a red bar given the

current input indicated by the height of a blue bar (Figure 5.16). On each trial, they saw

the current input (a blue bar) and had to indicate their predictions by adjusting the height

of an orange bar using a slider. After submitting their prediction, the actual output ap-

peared marked as a red bar directly next to the orange bar. Additionally, participants saw

the numerical value of the current input, their prediction and –after they submitted their

predictions– the output, as well as the difference between their prediction and the actual

output. It was explicitly stated to participants that the input is related to the output by an

underlying function and that they had to learn that function in order to produce the small-

est possible difference between their predictions and the outputs.

Participants learned 4 different functions over 4 blocks. Out of the 4 different functions

participants had to learn, 2 were sampled from the set of matched compositional functions
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Figure 5.16: Screenshots of Experiment 6. The height of the blue bar indicates the input. The height of the orange
bar marks the predicধon and can be adjusted by using the slider. Ađer the predicধon was submiħed, the actual
output, marked by the height of the red bar, appeared and parধcipants were told the absolute difference between
their predicধon and the actual outcome.

and 2 were sampled from the set of matched non-compositional functions. Each block con-

sisted of 20 trials (input-output pairs). The input was uniformly sampled between 0 and

100, and the output was also transformed to range between 0 and 100.

5.12.2 Results and discussion

Using a similar hierarchical t-test as before, participants’ predictions were only marginally

more accurate for the compositional functions than for the non-compositional functions

(t(34) = 1.6, p < 0.1, d = 0.18, see Figure 5.17). Performing a linear regression with the ab-

solute difference between participants’ predictions and the actual outputs as the dependent

variable and a factor variable encoding whether or not the underlying function was compo-
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sitional as well as the trial number (how many predictions participants had made before)

resulted in the model summarized in Table 5.4.
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Figure 5.17: Results of Experiment 6. Mean difference between predicধons and outcomes for composiধonal and
spectral kernel. Error bars represent the standard error of the mean.

Table 5.4: Regression model of the tradiধonal funcধon learning paradigm. Overall model fit: R2 = 0.14.

Estimate Std. Error t value Pr(>|t|)
Intercept 23.01 0.72 32.02 0.0000

Compositional -1.56 0.62 -2.52 0.0118
Trial -0.30 0.0535 -5.65 0.0000

Participants improved over the course of each block, as evidenced by the main effect of

trial. While compositional functions are on average predicted better (β = −1.56), this

effect turned out to be relatively small; perhaps this is because both compositional and non-

compositional functions were non-linear, and these are notoriously hard to learn in the

traditional function learning paradigm (Byun, 1995). Alternatively, this could also be ex-
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plained by the fact that the matched set was created to contain relatively similar functions.

To further disentangle the different models, sequential (i.e., trial-by-trial) predictions

for the linear, compositional, spectral mixture and radial basis function kernels, were cre-

ated. This allows to further assess how well each model’s predictions for the n + 1 trial after

having seen n outputs matched participants’ predictions. As shown in Figure 5.18, the com-

positional kernel described participants’ predictions best (r = 0.54, p < 0.01) followed by

the linear kernel (r = 0.21, p < 0.01). The correlation for both the RBF kernel (r = 0.03)

and the spectral mixture kernel did not differ significantly from zero (mean correlation:

r = 0.04, p > 0.5). Importantly, the compositional kernel predicted participants’ predic-

tions significantly better than the linear kernel (t(45) = 9.38, p < 0.001, d = 1.14). Ad-

ditionally, more heuristic strategies such as matching the height of the input bar (r = 0.14,

p < 0.01) or entering as the next input the output of the previous trial (r = 0.15, p < 0.01)

did not predict participants’ trial-by-trial behavior better than the compositional model.

Thus, the compositional kernel appears to provide the best account of trial-by-trial learning

in this more traditional function learning paradigm.

5.13 Experiment 7: Assessing numerosity

In the next series of experiments, I will explore the broader implications of a compositional

function representation for 3 domains of cognition: numerosity perception, change detec-

tion, and short-term memory. I will begin with a standard numerosity judgment task, in

which participants estimate the number of dots appearing briefly on a screen. Zhao & Yu

(2016) showed that, in the absence of explicit grouping cues, structured configurations of

dots led to lower estimates compared to random configurations. This effect of structure on

perceived numerosity appears to arise from the fact that dots belonging to structured con-
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Figure 5.18: Model fit (Pearson correlaধon coefficient) for predicধng parধcipants’ next predicধons given the current
input over all trials in Experiment 6. Error bars represent the standard error of the mean.

figurations are more likely to be perceptually grouped together; these groups then become

the units which are enumerated. In a related study, Zhao et al. (2011) showed that the accu-

racy of numerosity judgments improves when statistical regularities are removed, indicating

a direct relationship between statistical learning and numerosity perception.

If compositional functions are perceived as more “structured” than non-compositional

functions (as suggested indirectly by the predictability experiment), then a natural hypoth-

esis is that dot configurations generated from compositional functions will be perceived as

less numerous.
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5.13.1 Methods

Participants

91 participants (mean age=37.84, SD=7.87, 48 female) were recruited via Amazon Mechan-

ical Turk and received $0.5 for their participation. The experiment took 7 minutes on aver-

age to complete.

Procedure

Each participant completed a total of 40 trials. On each trial, participants were presented

with a function drawn from the set of matched functions, represented by 100 equidistant

gray dots on the screen. This configuration was displayed for one second, after which the

dots vanished. Out of the 100 dots, n = [5, 6, 7, . . . , 15] randomly selected dots were

marked as red. Participants were asked to estimate the number of red dots (between 0 and

20) after all the dots had vanished. A screen shot of the experiment is shown in Figure 5.19.

5.13.2 Results and discussion

Figure 5.20 shows the effect of the number of dots on participants’ numerosity judgments,

demonstrating that increasing the number of red dots led to greater underestimation of the

actual number, consistent with the idea that perceived numerosity diminishes as structure

becomes more discernible. Moreover, it can be seen that there is a difference between com-

positional and non-compositional functions, even though this difference was rather small.

As I hypothesized that participants would underestimate the red dots if they were su-

perimposed on more structured functions (functions sampled from a compositional ker-

nel) as compared to relatively unstructured functions (sampled from the spectral mixture

kernel) overall, I performed an aggregated comparison next. Figure 5.21 shows the direct
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Figure 5.19: Screenshot of Experiment 7. Dots stayed on the screen for 1000ms and then vanished before the slider
could be used.

comparison of numerosity estimates for compositional and non-compositional patterns.

Overall, participants underestimated the number of dots more for compositional than for

non-compositional patterns (−0.74 vs. −0.53, hierarchical t-test: t(38) = −2.2, p < 0.05,

d = 0.43).

A regression analysis, with the difference between participants’ estimates and the actual

number of dots as the dependent variable, was performed to account for both the number

of dots and the function type. The results (presented in Table 5.5) showed that with an

increasing number of red dots, participants showed a stronger tendency to underestimate

numerosity (β = −0.39). Additionally, there was a main effect of function type (β =

−0.17).
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Figure 5.20: Mean difference between presented and esধmated number of red dots over number of shown dots.
Error bars represent the standard error of the mean. As more red dots are presented, parধcipants tend to under-
esধmate the actual number more.

Taken together, these results indicate that perceived numerosity is reduced to a greater

extent by compositional functions compared to non-compositional functions, a finding

that agrees with the results of Zhao & Yu (2016): structural regularity distorts the units

of perception, making them appear less numerous. Even though the non-compositional

functions used here were in fact structured (as measured by forecastability), they produced

a weaker effect on numerosity relative to compositional functions, arguably because their

structure is less “intuitive” (i.e., they lack the inductive bias needed to easily perceive this

structure).
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Figure 5.21: Results of Experiment 7. Comparaধve judgments. Lower values mean that parধcipants underesধmated
the number of red dots. Error bars represent the standard error of the mean.

Table 5.5: Parameter esধmates from numerosity judgments regression analysis.

Estimate Std. Error t-value Pr(>|t|)
Intercept 3.23 0.12 27.631 <2e-16

Number of dots -0.39 0.01 -35.845 <2e-16
Compositional -0.17 0.07 -2.43 0.015

5.14 Experiment 8: Change detection with functions

Next, I assessed the effect of compositional structure on change detection performance

(Pashler, 1988; Rouder et al., 2011). In a typical change detection paradigm, participants

judge whether two stimuli presented rapidly in sequence are the same or different. It has

been suggested that structured representations facilitate change detection by allowing

a summary representation of the stimulus to be stored in short-term memory (Brady &

Tenenbaum, 2013). When the stimulus consists of multiple items, those items that are not
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assimilated into the summary representation are encoded as “outliers”. However, because

memory is capacity-limited, only a small number of outliers can be encoded. Thus, the

summary representation frees up encoding resources for specific items. The more structure

in the display that can be encoded, the more resources will be available for encoding specific

items.

The critical question concerns the nature of this structure—what are the inductive bi-

ases that constrain short-term memory representations? Brady & Tenenbaum (2013) used

Markov random fields to encode information about object features; several other structural

assumptions have been explored in the literature (Orhan & Jacobs, 2013; Mathy & Feldman,

2012; Lew & Vul, 2015). Here I explore the possibility that the representation of functions

in short-term memory is compositional, leading to the prediction that change detection

will be more accurate with compositional functions compared to with non-compositional

functions. This prediction links the compressibility of functions directly to their general-

izability. In fact, recent attempts in Bayesian machine learning have shown that models

providing a good description of data can also be used for lossy compressions of the same

data (see Ghahramani, 2015).

5.14.1 Participants

66 participants (mean age=30, SD=8.2, 42 males) were recruited from Amazon Mechanical

Turk and received $0.5 for their participation. The experiment took 10 minutes on average.

5.14.2 Procedure

Participants judged whether or not two consecutively displayed patterns were the same

(by pressing “J”) or different (by pressing “L”; see Figure 5.22). As in the numerosity ex-
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periment, the presented functions came from the matched set (20 compositional, 20 non-

compositional, sampled without noise) and were displayed on the screen as 100 horizontally

equidistant gray dots. On each trial, participants saw the original structure for 1000ms, fol-

lowed by an inter-stimulus interval (500ms) and then a test probe (1000ms). Unbeknownst

to participants, the probe had a 50% chance of being the same or different. Change probes

were constructed by randomly selecting n ∈ {2, 3, · · · , 5} dots and permuting them (under

the constraint that no point ends up at the same position as before).

5.14.3 Results and discussion

Figure 5.23 shows the mean proportions of correct responses for compositional and non-

compositional trials across different levels of change: “no change”, “small change” (1-2 dots

permuted) and “large change” (3-5 dots permuted). This analysis demonstrated that perfor-

mance was superior for change of compositional structure.

Participants responded correctly on 82% of no-change trials for the compositional func-

tions and on 81% of the no-change trials for the non-compositional functions. Thus, there

was no significant difference in correct rejection rate for the two types of functions (χ2(N =

1185, df = 1) = 0.21, p > 0.05). However, 77% of the changed compositional functions

were correctly identified as having changed, whereas that proportion was only 67% for the

changed non-compositional functions. Therefore, change is more easily detected for com-

positional functions (χ2(N = 1188, df = 1) = 12.13, p < 0.001). In total, 49 of 66

participants correctly identified change of compositional functions more frequently than

change of non-compositional functions (χ2(N = 66, df = 1) = 9.67, p < 0.01).
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Compositional-Changed

Compositional-No change

Spectral Mixture-Changed

Spectral Mixture-No change

Intial (1000ms)           Test (1000ms)Interstimulus interval (500ms)

Figure 5.22: Schemaধc of change detecধon task (Experiment 8). Iniধal sধmulus was presented for 1000ms, drawn
either from the composiধonal or from the non-composiধonal (spectral mixture) set. Ađer an inter-sধmulus interval
(500ms), a test probe was presented and parধcipants had to make a same/different judgment.

In order to quantitatively capture these results, I put forward a Bayesian theory of func-

tional change detection. LetD1 andD2 denote the first and second stimuli (input-output
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Figure 5.23: Results of Experiment 8. Proporধon of correctly detected changes. Parধcipants were more likely to
detect changes in composiধonal funcধons. Error bars represent the standard error of the mean.

pairs), respectively, and let f1 and f2 denote the corresponding functions. The task facing

participants is to determine the posterior probability that the two functions are different:

P(f1 ̸= f2|D1,D2) =
P(D1,D2|f1 ̸= f2)

P(D1,D2|f1 ̸= f2) + P(D1,D2|f1 = f2)
, (5.12)

where for simplicity we have assumed that the prior probability of change is 0.5. The change

(f1 ̸= f2) likelihood is given by:

P(D1,D2|f1 ̸= f2) =
∫

f1
P(D1|f1)P(f1)df1

∫
f2
P(D2|f2)P(f2)df2, (5.13)
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and the no-change (f1 = f2) likelihood is given by:

P(D1,D2|f1 = f2) =
∫

f
P(D1|f)P(D2|f)P(f)df. (5.14)

This probabilistic model assumes that functions are encoded by a given kernel in short

term memory and can make trial-by-trial predictions of performance on the change detec-

tion task. As in the other analyses, hyper-parameters were optimized with respect to the

marginal likelihood for a given kernel. For the spectral kernel, the number of mixture com-

ponents was treated as a free hyper-parameter (ranging from 1 to 6).

To allow for noise in the decision process, the binary response was modeled using a lo-

gistic function of the model predictions, with separate predictors for compositional and

non-compositional predictions. The results of this logistic regression are summarized in

Table 5.6. The compositional model was a significant predictor of human change detec-

tion performance (β = 0.0122, p < 0.001), whereas the spectral mixture model was only

marginally predictive (p = 0.05).

Table 5.6: Result of change detecধon logisধc regression.

Estimate Std. Error z value Pr(>|z|)
Intercept 1.3018 0.0918 14.19 0.0000

Compositional prediction 0.0122 0.0006 19.61 0.0000
Spectral mixture prediction 0.0012 0.0006 1.95 0.0517

To show this result in a different way, I computed the point biserial correlation between

the model predictions and human responses (Figure 5.24). The average correlation per par-

ticipant for the compositional model was significantly higher than the average correlation

for the spectral mixture model (r = 0.68 vs. r = 0.15, t(132) = 20.5, p < 0.001, d = 3.54).

In summary, change is more easily detected in compositional functions compared to
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Figure 5.24: Mean point biserial correlaধon between model predicধons and parধcipants’ responses in the change
detecধon task. Error bars represent the standard error of the mean.

non-compositional functions, consistent with the idea that compositional functions are

more efficiently encoded into a summary representation. Moreover, a GP theory of change

detection, which equates compressing a function with storing it in short-term memory and

thereby builds up a link between compressibility and generalization, showed that a compo-

sitional kernel allows to quantitatively predict human change detection performance.

5.15 Experiment 9: Compositional chunking in short-term memory

The results of Experiment 8 suggested that change detection is facilitated by compositional

summary representations. This has introduced the idea is that structural regularities lead to

higher generalizability which in turn increases memory capacity due to making functions

more compressible (Brady et al., 2011; Mathy & Feldman, 2012). This also means that if mul-

tiple items can be chunked together, then a greater number of items can be stored in mem-
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ory (Miller, 1956). Chunking has been posited as the basis of exceptional expert memory

(Chase & Simon, 1973; Gobet, 1998) and story comprehension (Thorndyke, 1977).

The next experiment pursues this idea further, asking whether compositional functions

are more compressible (and hence more memorable) than non-compositional functions.

In order to do so, a standard short-term memory task is applied (the Sternberg paradigm;

Sternberg et al., 1966), in which participants are shown a rapid sequence of items (func-

tions) followed by an old/new judgment of a probe item. Additionally, this task allows to

measure the interplay between compositionality and set size.

5.15.1 Methods

Participants

133 participants (mean age=31.05, SD=8.19, 71 male) were recruited via Amazon Mechanical

Turk and received $0.5 for their participation. The experiment took 9 minutes on average.

Procedure

Participants were shown between 2 and 6 functions sampled randomly from the matched

set. Each function appeared on the screen for 1000ms. A 500ms inter-trial interval suc-

ceeded the final item, followed by a probe item. Participants were asked to judge as quickly

as possible whether the probe item was old (i.e., appeared in the preceding set) or new.

There were 15 trials in total (3 trials for each set size). The probe was randomly selected to

be either compositional or non-compositional, and probes were old on half of the trials. A

schematic of the experiment is shown in Figure 5.25.
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Figure 5.25: Schemaধc of Experiment 9. A sequence of sধmuli was sampled from the matched set of funcধons.
Every sধmulus was presented for 1000ms, followed by an inter-sধmulus interval (500ms), and then a probe (speeded
old/new judgment).

5.15.2 Results and discussion

23 failed to respond correctly for more than half of the trials and were therefore excluded

from further analysis. All trials that took longer than 5 seconds or less than 500ms were

removed prior to analyzing the data.

Participants responded correctly on 77.8% of the compositional probes and on 66.7% of

the non-compositional probes—a significant difference in accuracy (χ2(N = 1456, df =

1) = 14.252, p < 0.001). 71 of 110 participants responded correctly more frequently to the

compositional probes than to the non-compositional probes (χ2(N = 110, df = 1) = 9.3,
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p < 0.01).

This result can be decomposed further into a 75% hit rate for compositional probes,

compared to a 67% hit rate for the non-compositional probes (a significant difference be-

tween hit rates: χ2(N = 709, df = 1) = 5.19, p < 0.05). 78 of 110 participants

showed a higher hit rate for compositional probes as compared to non-compositional

probes (χ2(N = 110, df = 1) = 19.2, p < 0.01).

Finally, there was also a significant difference between the correct rejection rate (78% for

compositional probes vs. 65% for non-compositional probes; χ2(N = 747, df = 1) = 8.87,

p < 0.01). 76 of 110 participants showed a higher correct rejection rate for compositional

probes as compared to non-compositional probes (χ2(N = 110, df = 1) = 17.92, p < 0.01).

To disentangle compositionality and set size, a logistic regression was run to predict

the probability of a correct response from compositionality (i.e., compositional vs. non-

compositional probe) and set size factors. As shown in Table 5.7, the probability of re-

sponding correctly decreases with set size (β = −0.22), and compositional probes are more

likely to be correctly identified (β = 1.24). Moreover, there was a significant interaction ef-

fect, whereby the compositional advantage decreases with set size (β = −0.18; Figure 5.26).

This might be due to an increased guessing rate at a higher level of difficulty that potentially

obscures the compositional advantage.

Table 5.7: Results of logisধc regression analysis of the memory experiment.

Estimate Std. Error z-value Pr(>|z|)
Intercept 2.04 0.29 7 <2.57e-12

Set size -0.22 0.06 -3.33 <0.001
Compositional 1.24 0.37 3.33 <0.001

Set size× Compositional - 0.18 0.08 2.2 0.02

I next developed a Bayesian model of performance in the task, adapting the same basic
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Figure 5.26: Proporধon of correctly idenধfied probes as a funcধon of set size. Error bars represent the standard error
of the mean.

framework that was applied to the change detection task. A participant is exposed to a

study list (sequence of independent input-output datasets), denoted byD1:N, generated

by underlying functions f1:N. The task is to compute the posterior probability that a new

dataset (the test probe), denoted byD′, was generated by one of the functions in the study

list:

P(f′ ∈ f1:N|Y) =
N∑

n=1

P(f′ = fn|Dn,D′) (5.15)

∝
N∑

n=1

P(f′ = fn)P(Dn,D′|f′ = fn). (5.16)

Following the structure of the experiment, I will assume that the probability of an “old”
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trial,
∑N

n=1 P(f′ = fn), is 0.5. The marginal likelihood is given by:

P(Dn,D′|f′ = fn) =
∫

f
P(Dn|fn = f)P(D′|f′ = f)P(f)df. (5.17)

The general optimization procedure is the same as described in the change detection model.

The models’ predictions for both the compositional and spectral mixture models were

entered into a logistic regression to predict participants’ old/new responses. Results of the

logistic regression analysis are summarized in Table 5.8. Only the compositional model was

a significant predictor of responses (β = 0.054, p < 0.001), whereas the spectral mixture

model was not a significant predictor (β = 0.01, p = 0.07).

Table 5.8: Results of logisধc regression analysis of the memory experiment.

Estimate Std. Error z value Pr(>|z|)
Intercept 1.4314 0.2147 6.67 0.0000

Compositional prediction 0.0543 0.0098 5.53 0.0000
Spectral mixture prediction 0.0176 0.0096 1.83 0.0676

Finally, I calculated the correlation between each model’s predictions and participants’

responses. As shown in Figure 5.27, the compositional model produced a superior correla-

tion compared to the non-compositional model (r = 0.35 vs. r = 0.09; t(262) = 9.97,

p < 0.001, d = 0.34). Moreover, assessing two more heuristic models, neither the mean

squared distance between the probe and all functions in the set (r = 0.094), nor counting

the number of types within the set and then stating new if the probe is of the same type as

most functions within the set and old otherwise (r = 0.04) lead to higher correlations with

participants’ responses.

In conclusion, compositional functions are more easily remembered than non-compositional

functions in a version of the Sternberg task. Participants’ old/new judgments were well-
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Figure 5.27: Mean point biserial correlaধon for the composiধonal and the spectral mixture models. Error bars repre-
sent the standard error of the mean.

captured by a Bayesian model of short-term memory that used a compositional kernel.

This Bayesian model was built under the assumption that a model that allows that assumes

a particular function generalizes better than another, also manages to store this function

more efficiently in short-term memory.

5.16 Discussion

In this chapter, I pursued the hypothesis that humans have functional inductive biases that

are compositionally structured—that is, humans prefer to represent complex functions as

compositions of simpler building blocks. I formalized this idea using a compositional ker-

nel within a Gaussian Process regression framework. Human inductive biases were assessed

across a diverse range of experiments. The first set (Experiments 2, 3, 4 and 6) attempted to

directly measure inductive biases using extrapolation and interpolation judgments, finding
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that participants preferred compositional over non-compositional pattern completions.

The second set of experiments examined the broader implications of compositionality,

finding that compositional functions are perceived as more predictable (Experiment 5) and

memorable (Experiment 9) compared to non-compositional functions. Furthermore, dis-

crete displays of items are perceived as less numerous (a signature of statistical regularities;

Experiment 7), and changes in such displays are more easily detected (Experiment 8). Taken

together, these experimental findings provide strong support for the compositional hypoth-

esis.

5.16.1 Related work

The work presented here is connected to several lines of previous work. Most relevant are

the seminal work of Griffiths et al. (2009) and Lucas et al. (2015) on Gaussian processes

for function learning in general, and Wilson et al. (2015) more recent attempts to reverse-

engineer the human kernel using a non-parametric kernel in particular. The work pre-

sented in this chapter is complementary to this research. If one wants to find out how

people perceive and reason about functional structure, then one needs both a bottom-up

theory to describe how people make sense of structure as well as a top-down method to in-

dicate what the final structure might look like when represented as a kernel. Additionally,

implementing a structure search algorithm as a parse tree, as I have done here, has recently

been shown to be statistically efficient (Xu et al., 2017).

The approach described here also fits snugly with past attempts to model compositional

structure in other cognitive domains. Of course, language (e.g., Chomsky, 1957) and object

perception (e.g., Biederman, 1987) have long traditions of emphasizing compositionality.

More recently, these ideas have been extended to other domains. For example, Gershman
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et al. (2015b) showed how hierarchical motion perception could be understood as a kind

of vector analysis, using compositional Gaussian processes to model the combination of

motion flow fields. This approach has also been applied to decision making; Gershman

et al. (2017) used GPs to model utility functions over tree-structured objects (e.g., meals in

a restaurant). In both motion perception and decision making, simpler non-compositional

models failed to explain human performance.

5.16.2 Compositional generalization

The experiments described in this chapter establish the importance of compositional rep-

resentations for functional pattern recognition and generalization. As the framework was

restricted to a small number of components primarily for practical purposes, an important

direction for future work will be to systematically investigate the boundaries of function

composition. Fortunately, the GP formalism can accommodate a wide variety of compo-

sitional structures (Duvenaud et al., 2013), so I expect that this task can be accomplished

without deviating too far from the analytical framework I have laid out here.

This work has probed in what sense (if any) human function learning can be seen as com-

positional within a single and sequential function learning tasks. However, composing

structures learned across different tasks could provide even more powerful learning strate-

gies across tasks. Future work could investigate the composition of structure across tasks (as

for example shown by Hwang et al., 2016), for example in one-shot learning or trial-by-trial

function learning experiments.

There are many other potential implications of compositional inductive biases for func-

tions. For example, these inductive biases could shape active learning (i.e., tasks in which

participants can choose the next data point). We believe that active learning model com-
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parisons constitute an interesting framework to pit the structured and unstructured ap-

proaches against each other (Parpart et al., 2015).

Related issues arise in reinforcement learning tasks, where agents must balance explo-

ration and exploitation. Here, the compositional approach could be used to design non-

parametric value function approximators, which have been proposed as cognitively and

neurally plausible solutions to reinforcement learning problems (Gershman & Daw, 2017).

New experiments will be required to discern whether reinforcement learning exploits com-

positional inductive biases. However, in order to assess the plausibility of a compositional

function learning approach to reinforcement problems, I first have to assess whether the

Gaussian Process regression approach towards human function learning is amenable to self-

directed function learning problems at all. This will be the focus of the next chapter.
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“I tried to develop theories that took account of the uncertainty

and the complexity in the world.”

Herbert Simon, 1978

6
Exploration and generalization in vast

spaces

This chapter combines Gaussian Process regression with upper confi-

dence bound sampling to model how participants explore and exploit

unknown functions in spatially correlated multi-armed bandit tasks.
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6.1 Introduction

The experiments so far have investigated how participants perceive, judge about, or predict

unknown functions in single or sequential function learning tasks. However, function learn-

ing and generalization are also important for another domain, which is when the goal is to

generate rewards, i.e. in function exploration-exploitation tasks.

Consider having just arrived at a new place and having to decide where to dine tonight.

If it is a big city, then there are likely many different restaurants available and quite possibly

more than you could ever try during your stay or even –if you are in a place like London,

Berlin, or New York– during a life time. How do you decide where to dine tonight?

Fortunately, this might not be the first time you have to make this kind of decision. In-

stead, you have likely tried out different restaurants in the past and you know what you

like and are confident about what kind of experience you want. Additionally, different

restaurants also come with different features such as the cuisine on offer, their location,

their price, their rating on different travel websites, and so forth, and you can use these fea-

tures to make a prediction about a restaurant’s culinary quality and the kind of experience

you expect when dining there. This not only means that you can use this information to

make your decision, it also means that a situation in which you would otherwise have to

explore a vast number of different restaurants in order to learn about their underlying qual-

ities and cuisine suddenly becomes much more tractable as you utilize a function that maps

features onto expected rewards. Learning a mapping between features and expected out-

comes whilst making decisions that both explore and exploit the underlying function is the

topic of this chapter.

I investigate how people search for rewards in complex grid worlds. These grid worlds
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can be seen as a multi-armed bandit problem where every tile of the grid is an arm that can

be sampled in order to produce and accrue an underlying reward. It will generally be par-

ticipants’ task to find rewards over multiple trials by sampling inputs that produce high

outcomes. Within these tasks, inputs that are proximal to each other produce similar out-

puts, i.e. rewards are spatially correlated. As this results in similar rewards between nearby

tiles, spatial correlation provides a context that can be utilized via function learning. Learn-

ing this underlying function while searching for rewards simplifies the task as one does not

have to sample each option individually in order to make good decisions. Instead, learning

a function enables generalization broadly beyond the visited places. This requires to sample

from both currently less certain options in order to learn more about the underlying func-

tion and options that are promising to produce high reward. This frames the exploration-

exploitation trade-off, which is typically studied using the multi-armed bandit framework

(Auer et al., 2002). The multi-armed bandit is a metaphor for a row of slot machines in a

casino, where each slot machine has an independent payoff distribution. Solutions to the

problem propose different policies for how to learn about which arms are better to play

(exploration), while also efficiently playing known high-value arms to maximize reward (ex-

ploitation) (Steyvers et al., 2009; Bechara et al., 1997), with the common assumption that

each arm of the bandit has its own reward distribution that needs to be learned indepen-

dently.

In the real world, it is often infeasible to exhaustively explore all possibilities (Gershman

& Daw, 2017) and still humans and other animals are able to quickly learn in and adapt to

unfamiliar environments, where the exact same situation is rarely encountered twice (Lee

et al., 2014). This is in contrast to more traditional approaches to associative learning, which

assume a finite set of states and actions, and then independently learn about the distribu-
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tion of rewards for each state (Sutton & Barto, 1998). This approach falls short in more

realistic scenarios with vast state spaces or a limited search horizon, where it is impossible to

observe the outcomes of all possible states and actions (Lake et al., 2016; Wilson et al., 2014).

I propose that function learning provides a mechanism to generalize prior experience to

unobserved states (Tesauro, 1992). The function learning approach relates different state-

action contexts to each other by approximating a global value function over all contexts,

including unobserved outcomes (Gershman & Daw, 2017). This allows for generalization

to vast and potentially infinite state spaces, based on a small, finite number of observations.

Additionally, the function learning approach can also scale to problems with complex se-

quential dynamics (e.g., games such as Go), and has been used in tandem with restricted

searchmethods such as Monte Carlo tree search for navigating intractably large search trees

(Silver et al., 2016). While restricted search methods have been proposed as models of hu-

man reinforcement learning (Huys et al., 2015; Solway & Botvinick, 2015), here I focus on

situations where a rich model of the structure of the environment can simplify planning

and generalization (Guez et al., 2013).

I model this behavior using a Gaussian Process regression framework paired with differ-

ent sampling strategies that trade off between exploration and exploitation. In two experi-

ments, I show that people’s search behavior is predicted well by a Gaussian Process function

learning model paired with an optimistic sampling strategy. I conclude by arguing that par-

ticipants’ behavior in such tasks is surprisingly adaptive and that function approximation

equips them with a powerful tool for generalization guiding them through complex spaces.
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6.2 Spatially correlated multi-armed bandits

The multi-armed bandit can be easily adapted to a function learning setting by adding spa-

tial correlation to rewards and placing the arms either into a one- or a two-dimensional grid.

Each tile represents a playable arm of the bandit, which are initially blank and display the

numerical reward value after an arm has been chosen. Traditionally, the goal in an multi-

armed bandit task is to maximize cumulative payoffs by sequentially choosing one of the

N-arms of the bandit that stochastically generate rewards (Steyvers et al., 2009), with learn-

ing happening independently for each arm. In the case applied here, because proximate

arms generate similar rewards, there is an opportunity to form inductive beliefs about un-

observed rewards by learning about an underlying value function. This allows to study

how people generate beliefs about unobserved rewards and how this generalization influ-

ences their search behavior.

The spatially correlated multi-armed bandit is related to the optimal foraging context

(Krebs, 1980), whereby a forager is not only guided by the search for resources, but also by

the need to acquire information about the distribution of resources in the environment.

This creates a natural trade-off between exploration and exploitation (March, 1991), where

an effective search policy needs to adequately balance exploring areas with higher uncer-

tainty, while also exploiting existing information to obtain rewards. One key difference in

the presented task is that the decision-maker must determine where to search, and not only

whether to stay or to leave a patch.

To describe participants’ behavior in such tasks, both a model of learning and a sampling

strategy for where to search next are required. An example of how these two might work

together is shown in Figure 6.1.
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Figure 6.1: Overview of the Gaussian Process funcধon learning model, combined with an upper confidence bound
sampling strategy (specified using median parধcipant parameter esধmates from Experiment 11. A) Screenshot of
Experiment 11. Parধcipants were allowed to select any ধle unধl the search horizon was exhausted. B) Esধmated
reward as predicted by a Gaussian Process funcধon learning engine, based on the sampled points in Panel A. (Not
shown, the esধmated uncertainty). C) Upper confidence bound of predicted rewards. D: Choice probabiliধes ađer a
sođmax choice rule, P(x) = exp(UCB(x)/τ)/

∑N
j=1 exp(UCB(xj)/τ), where τ is the temperature parameter (i.e.,

lower temperature values lead to more precise predicধons).

6.3 Models of learning in complex spaces

I will assess two kinds of models to describe how people learn within spatially-correlated

bandit tasks . The function learning model uses the spatial correlation between rewards in

order to learn about an underlying value function mapping inputs to expected rewards and

their attached uncertainty. It is able to generalize from sampled to unexplored options. The

associative learning model does not learn about an underlying function, but rather learns

about each input individually by associating inputs with previously generated rewards. It is

not able to generalize to unexplored options.

6.3.1 Function learning model

The function learning model is set up as a type of Gaussian Process regression. Let f :

X → R denote a function over input spaceX that maps to real-valued scalar outputs.

As described in Chapter 3, the function can be modeled as a random draw from a Gaussian
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process:

f ∼ GP(m, k), (6.1)

wherem is a mean function specifying the expected output of the function given input

x, and k is a kernel (or covariance) function specifying the covariance between outputs. A

common choice of kernel function when exploring and exploiting unknown functions is

the radial basis function kernel.

k(x, x′) = σ2f exp
(
−|x− x′|2

2λ2

)
, (6.2)

where λ governs how quickly correlations between points x and x′ decay towards zero as

their distance increases. The length-scale λwill be treated as a free parameter to estimate

the extent to which people generalize between different points in our model comparison

procedure, with smaller values indicating generalization over shorter spatial extents.

This model learns a function that maps locations, for example in a grid or an array of

arms of a bandit, onto expected rewards and their attached uncertainties. It assumes that

rewards are generated by an underlying function

yi,t = f(xi,t) + εt (6.3)

with noise εi,t ∼ N (0, σ2ε).

The Gaussian Process function learning model manages to predict outcomes for a broad

space of both sampled and not yet observed arms and thus provides a powerful mechanism
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for generalization.

6.3.2 Associative learning model

The associative learning model is set up as a simple mean tracking approach towards learn-

ing about the distribution of rewards for each arm individually. This model assumes that

the average reward associated to an input is constant over time (i.e., no temporal dynam-

ics), which is the case in the search task. Thus, the associative learning model computes a

time-invariant posterior distribution for the mean μj of each option j including its variance

σj. The implemented version assumes that rewards are normally distributed with a known

variance but unknown mean

yi,t ∼ N (μi, σ
2
ε) (6.4)

where the prior distribution of the mean is again a normal distribution. This implies that

the posterior distribution for each mean is also a normal distribution:

p(μj|Dt−1) = N (μj,t−1, σ
2
j,t−1) (6.5)

The estimated mean μj,t and variance σ2j,t for a given option j are only updated when se-

lected at trial t:

μj,t = μj,t−1 + δj,tGj,t

[
yt − μj,t−1

]
(6.6)

σ2j,t =
[
1 − δj,tGj,t

]
σ2j,t−1 (6.7)
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where δj,t = 1 if option jwas chosen on trial t, and 0 otherwise. Intuitively, the estimated

mean of the chosen option μj,t is updated based on the difference between the observed

value yt and the expected mean μj,t−1, multiplied byGj,t. At the same time, the estimated

variance σ2j,t is reduced by a factor of 1 − Gj,t, whereGj,t is defined as:

Gj,t =
σ2j,t−1

σ2j,t−1 + θ2ε
, (6.8)

where θ2ε is the error variance, which is estimated as a free parameter.

Intuitively, the estimated mean of the chosen option μj,t is updated based on the differ-

ence between the observed value yt and the expected mean μj,t−1, multiplied byGj,t. At the

same time, the estimated variance σj,t is reduced by a factor of 1 − Gj,t, which is in the range

[0, 1]. The error variance (θ2ε) can be interpreted as an inverse sensitivity, where smaller val-

ues result in more substantial updates to the mean μj,t, and larger reductions of uncertainty

σj,t. The prior mean of the mean value of payoffs is set to μj,0 = 50 and the prior variance

to σ2j,0 = 500

6.4 Adaptive sampling strategies

I consider various computational models for describing human sampling strategies. All

of these strategies make sequential predictions about where people are likely to search for

rewards. As both learning models generate normally distributed predictions about the ex-

pectation μ(x) and the uncertainty σ(x) for each arm, which are available to the sampling

strategies for evaluating the quality, q(x), and ultimately making a prediction about where

to sample next, i.e. which arm participants are likely to sample on a given trial.
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The Variance Greedy (VG) strategy values an arm using only the estimated uncertainty

qVG(x) = σ(x) (6.9)

and is an efficient step-wise (greedy) approximation of information gain (Srinivas et al.,

2010), which seeks to learn the global value function as rapidly as possible. VG achieves at

least a constant fraction of the optimal information gain value (Krause & Guestrin, 2005);

however, it fails to adequately trade-off between exploration and exploitation, because ef-

fort is wasted exploring the function where f(x) is small and only learning about the func-

tion is not the objective of the task, but rather to both explore and exploit the function over

time.

TheMean Greedy (MG) strategy is also step-wise greedy, valuing arms using only the

estimated mean reward

qMG(x) = μ(x) (6.10)

although this strategy carries no known guarantees and is prone to getting stuck in local

optima.

Upper confidence bound sampling (UCB) as described in Chapter 3 combines the VG and

MG strategies

qUCB(x) = μ(x) + βσ(x) (6.11)

where the exploration factor β determines how the reduction of uncertainty trades off

against exploiting high expected rewards. This is sometimes referred to as optimistic “sam-
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pling with confidence” as it inflates expectations with respect to the upper confidence bounds

(Srinivas et al., 2010), creating a natural balance between exploration and exploitation. The

parameter βwill be optimized as a free parameter.

There are also various other sampling strategies that combine expectations and uncer-

tainties but in other ways than the upper confidence bound sampling strategy described in

Chapter 3.

The Expected Improvement (EXI) evaluates each option by how much (in expectation) it

promises to be better than the best outcome (x+ = argmaxxi∈x1:t f(xi)) observed so far:

qEXI(x) =


Φ(Z)(μ(x)− f(x+)) + σ(x)φ(Z), if σ(x) > 0

0, if σ(x) = 0
(6.12)

where Φ(·) is the normal CDF, φ(·) is the normal PDF, and Z = (μ(x)− f(x+))/σ(x).

The Probability of Improvement (POI) strategy evaluates an option based on how likely

it will be better than the best outcome (x+) observed so far:

qPOI(x) = P
(
f(x) ≥ f(x+)

)
= Φ

(
μ(x)− f(x+)

σ(x)

)
(6.13)

where Φ(·) is the normal CDF. This sampling strategy assesses the probability of one op-

tion to generate a higher utility than the best option observed so far. Similar strategies have

been used in experiments involving multi-attribute choices before (Gershman et al., 2017).

The Probability of Maximum Utility (PMU, Speekenbrink & Konstantinidis, 2015) sam-

ples each option according to the probability that it results in the highest reward of all op-

tions in a particular context.
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qPMU(x) = P
(
yj ≥ yi,∀i ̸= j

)
(6.14)

This sampling strategy will be implemented by Monte Carlo sampling from the poste-

rior predictive distribution of a learning model for each option, and evaluating how often

a given option turns out to be the maximum over 1,000 generated samples. It is a form of

probability matching and can be implemented by sampling from each option’s predictive

distribution once, and then choosing the option with the highest sampled pay-off. This

strategy can be seen as a form of probability matching (Neimark & Shuford, 1959) and can

be implemented by sampling from each option’s predictive distribution once, and then

choosing the option with the highest sampled pay-off. Even though this sampling strategy

seems relatively simple, it describes human choices in restless bandit tasks well (Speeken-

brink & Konstantinidis, 2015). It is also closely related to Thompson sampling (May et al.,

2012), which samples from the posterior distribution of the mean rather than the predic-

tive distribution of rewards. Thus, while Thompson sampling “probability matches” the

expected rewards of each arm, the probability of maximum utility rule matches to actual

rewards that might be obtained.

All possible combinations of the learning models and sampling strategies will be com-

pared by how well they predict participants’ behavior within different versions of the spatially-

correlated multi-armed bandit.

6.4.1 Heuristic strategies

Local search predicts that search decisions have a tendency to stay local to the previous

choice. This can be incorporated by using the inverse Manhattan distance (IMD) to quan-
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tify locality:

IMD(x, x′) =
n∑

i=1

|xi − x′i|, (6.15)

where x and x′ are vectors inRn. For the special case where x = x′, I set IMD(x, x′) = 1.

With the exception of the local search model itself, all other models can also be localized.

Localization can be introduced by weighting a model’s predicted values of each option q(x)

by the inverse Manhattan distance (IMD) to the previously revealed tile. This is equivalent

to a multiplicative combination with the Local Search model, without the introduction

of any additional free parameters. Localized models will be indicated with an asterisk (e.g.,

function learning*).

A form of a win-stay lose-sample (WSLS) heuristic (Bonawitz et al., 2014) is implemented,

where a win is defined as finding a payoff with a higher or equal value than the previous

best. When the decision-maker “wins”, it is assumed that any tile with a Manhattan dis-

tance≤ 1 is chosen (i.e., a repeat or any of the four cardinal neighbors) with equal probabil-

ity. Losing is defined as the failure to improve, and results in choosing any unrevealed tile

with equal probability.

6.5 Experiment 10: Univariate function exploration-exploitation

The first variant of the spatially-correlated multi-armed bandit presents participants with

a uni-variate multi-armed bandit problem with spatially correlated rewards. The problem

space is represented by a one-dimensional array of 1×30 possible arms, i.e. 30 different op-

tions to sample. Participants can click to reveal unexplored tiles or re-click previously un-

covered tiles to further explore or exploit known rewards. A screenshot of Experiment 10 is

139



shown in Figure 6.2.

Figure 6.2: Screenshot of Experiment 10. Univariate spaধally correlated mulধ-armed bandit.

6.5.1 Methods

Participants

81 participants were recruited from Amazon Mechanical Turk (25 Female; mean age= 33 ±

11). Each participant was paid a participation fee of $0.50 and a performance contingent

bonus up to $1.50. On average, participants earned $1.14± 0.13 and spent around 8 minutes

on the task.

Design

A 2×2 between subject design was used, where participants were randomly assigned to

one of two different pay-off conditions and one of two different classes of environments.

Each grid represented a uni-variate function, with each observation including normally dis-

tributed noise, ε ∼ N (0, 1). The task was presented over 16 blocks on different grid worlds

drawn from the same class of environments. In each block, participants had either a Short

(5 clicks) or Long (10 clicks) search horizon to interact with the grid. The search horizon

alternated between blocks (within subject), with initial horizon length counterbalanced be-

tween subjects. Per block, observations were scaled to a uniformly sampled maximum value

in the range of 65 to 85, so that the value of the global optima could not be easily guessed

(e.g., a value of 100). Figure 6.3 shows the design of Experiment 10.
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Figure 6.3: Design of Experiment 10. Environments could be either smooth or rough (between subject manipulaধon).
Sample horizons could be either short (5 clicks) or long (10 clicks, within subject manipulaধon, counter-balanced).

Materials and procedure

Before starting, participants were shown four fully revealed grids in order to familiarize

themselves with the task. Example environments were drawn from the same class of envi-

ronments assigned to the participant (Smooth or Rough) and underwent the same random

scaling of observations. Additionally, three comprehension questions were used to ensure

full understanding of the task.

At the beginning of each of the 16 blocks, one random tile was revealed and participants

could use their mouse to click any of the 30 tiles until the search horizon was exhausted,

including re-clicking previously revealed tiles. Clicking an unrevealed tile displayed the

numerical value of the reward along with a corresponding color aid, where darker colors

indicated higher point values. Previously revealed tiles could also be re-clicked, although

there were variations in the observed value due to noise. For repeat clicks, the most recent

observation was displayed numerically, while hovering over the tile would display the en-
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tire history of observations. The color of the tile corresponded to the mean of all previous

observations.

Payoff conditions

Performance will be compared under two different payoff conditions, requiring either a bal-

ance between exploration and exploitation (Accumulators) or a more exploration focused

context of having to find the overall maximum without accruing rewards on every trial

(Maximizers). Previous work has shown that people can adapt (sometimes with difficulty)

to different payoff conditions in information acquisition tasks (Meder & Nelson, 2012).

In each payoff condition, participants received a performance contingent bonus of up

to $1.50. Importantly, participants in theAccumulator group were told to “gain as many

points as possible across all 16 grids” and were given a bonus based on the sum of their over-

all points. Participants in theMaximizer condition were told to “learn where the largest

reward is” and were given a bonus using the ratio of the highest observed reward to the

global optimum, (max yt
y∗ )4, taken to the power of 4 to exaggerate differences in the upper

range of performance and for parity in expected earnings across payoff conditions. All 16

blocks were weighted equally, using noisy but unscaled observations to assign a bonus of

up to $1.50. Subjects were informed in dollars about the bonus earned at the end of each

block. Repeated participation was not allowed.

Smoothness of the environment

Two different classes of environments were used, corresponding to different levels of smooth-

ness (Fig. 6.2). All environments were sampled from a Gaussian Process prior parameter-

ized with a radial basis function kernel, where the length-scale parameter (λ) determines
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the rate at which the correlations of rewards decay over distance. I sampled 20 Smooth envi-

ronments (λ = 2) and 20 Rough environments (λ = 1). Subjects performed the task on

16 grids randomly drawn (without replacement) from their assigned class of environments,

while the four fully revealed environments used to familiarize subjects with the task were

the remaining 4 environments.

Search horizons

The length of the search horizon influences the value of information learned about the en-

vironment, with respect to the assigned payoff condition. Longer horizons provide more

opportunities for exploiting acquired information, thereby making early exploration more

valuable. I chose two horizon lengths (Short= 5 and Long= 10) that were fewer than the

total number of tiles on the grid (total number of arms was 30), and varied within subject

(alternating between blocks).

6.5.2 Results

Figure 6.4 shows task performance. In all conditions, performance improved as a function

of the trial number (i.e., with each additional click), as measured by both the overall corre-

lation between average reward and trial number (r = 0.66, p < 0.001) and between the

maximum observed reward and trial number (r = .91, p < 0.001). There were no learning

effects across blocks (i.e., over successive grids), indicated by a lack of correlation between

average reward and block number (r = −0.05, p > 0.5), or between maximum reward

and block number (r = −0.05, p > 0.1). Performance improved as more information

was revealed (i.e., over trials), but not over additional blocks of identically parameterized

environments.
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Figure 6.4: Results of Experiment 10.

Payoff conditions

Payoff conditions influenced search behavior, with participants in the Maximum Reward

condition displaying more variance in the locations sampled (t(79) = −3.26, p < 0.05,

d = 0.73). Participants in theAccumulator group achieved a higher average reward than

participants in theMaximizer group (t(79) = 2.89, p < 0.01, d = 0.65). However,

Maximizers did not reveal a higher maximum value thanAccumulators (t(79) = 0.28,
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p > 0.7, d = 0.06). Thus, a strategy balancing exploration and exploitation, at least for

human learners, may find the global maximum en passant.

Environment and horizon

Independent of the payoff condition, participants assigned to Smooth environments achieved

higher average rewards (t(79) = 3.55, p < 0.001, d = 0.79) and higher maximum re-

wards (t(79) = 3.46, p < 0.001, d = 0.77) than those assigned to the Rough environ-

ments, suggesting that stronger correlations of payoffs make the task easier. Interestingly,

longer horizons did not lead to better overall performance in the Average Reward condi-

tion (t(80) = 0.60, p > 0.5, d = 0.07), although participants given longer horizons

found larger maximum rewards for all payoffs and environment conditions (t(80) = 9.75,

p < 0.001, d = 1.08). There may be a less-is-more-effect (Medvec et al., 1995), with longer

horizons leading to over-exploration, given the goal of maximizing average rewards.

6.5.3 Cross-validation

The cross-validation procedure assesses all 27 models resulting from combining all models

of learning with all sampling strategies and also comparing the heuristic strategies as well.

I use maximum likelihood estimation (MLE) for parameter estimation and cross-validation

to measure out-of-sample predictive accuracy. A softmax choice rule transforms each model’s

prediction into a probability distribution over options:

p(x) = exp(q(x)/τ)∑N
j=1 exp(q(xj)/τ)

, (6.16)

where q(x) is the predicted value of each option x for a given model, and τ is a free temper-

ature parameter. Lower values of τ indicate more concentrated probability distributions,

145



corresponding to more precise predictions.

In general, for the Gaussian Process-based function learning models I estimate the length-

scale, λ, of the radial basis function kernel and for the associative learning models σ2ε , the er-

ror variance. The upper confidence bound sampling strategy has a free parameter β, govern-

ing the exploration bonus. Additionally, all models include τ as a free parameter modeling

the concentration of predictions within the softmax transformation.

All models were fitted—per participant—using cross-validated MLE, with either a Dif-

ferential Evolution algorithm (Mullen et al., 2009) or a grid search if the model contained

only a single parameter. Parameter estimates are constrained to positive values in the range

[exp(−5), exp(5)]. Cross-validation is performed by first separating participant data accord-

ing to horizon length, which alternated between rounds within subject. For each partici-

pant, half of the rounds corresponded to a short horizon and the other half corresponded

to a long horizon. Within all rounds of each horizon length, leave-one-out cross-validation

is used to iteratively form a training set by leaving out a single round, computing a MLE

on the training set, and then generating out of sample predictions on the remaining round.

This is repeated for all combinations of training set and test set, and for both short and long

horizon sets for each participant individually. The cross-validation procedure will yield one

set of parameter estimates per round, per participant, and out of sample predictions for 120

choices per participant. In total, cross validation required approximately 25,000 hours of

computation, or about 2 days distributed across a 716 CPU cluster.

Prediction error (computed as log loss) is summed up over all rounds, and is reported as

predictive accuracy, using a pseudo-R2 measure that compares the total log loss prediction

error for each model to that of a random model.
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R2 = 1 − logL(Mk)

logL(Mrand)
, (6.17)

where logL(Mrand) is the log loss of a random model (i.e., picking options with equal

probability) and logL(Mk) is the log loss of model k’s out-of-sample prediction error. In-

tuitively, R2 = 0 corresponds to prediction accuracy equivalent to chance, while R2 = 1 cor-

responds to theoretical perfect prediction accuracy, since logL(Mk)/ logL(Mrand) → 0

when logL(Mk) ≪ logL(Mrand). This measure is similar to McFadden’s pseudo-R2

(McFadden, 1973), although it uses a completely random modelMrand as baseline.

Model comparison results

Results of the full model comparison for Experiment 10 are shown in Figure 6.5.
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Figure 6.5: Model comparison results of Experiment 10.

The function learning models generally predicted participants’ behavior better than the

associative learning models (t(80) = 15.81, p < 0.001, d = 1.76) and better than the simple
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strategies (t(80) = 9.22, p < 0.001, d = 1.02). Within the function learning models, the

upper confidence bound sampling strategy performed better than all other sampling strate-

gies (t(80) = 15.34, p < 0.001, d = 1.71). Even though localization improved both the

function learning model’s (t(80) = 5.05, p < 0.001, d = 0.56) and the associative learning

model’s (t(80) = 17.1,p < 0.001, d = 1.9) performance, assessing only the upper confidence

bound sampling strategies, the non-localized model performed better than the localized

function learning model (t(80) = 5.0495, p < 0.001, d = 0.56). Furthermore, decom-

posing the upper confidence bound sampling strategy into pure exploitation (mean greedy)

or pure exploration (variance greedy) components revealed that both high expectations of

reward and the reduction of uncertainty are necessary components for the function learn-

ing model to predict human search behavior, with mean greedy (t(80) = −8.85, p < .001,

d = 0.98) and variance greedy (t(80) = −16.63, p < .001, d = 1.85) performing worse than

the combined UCB algorithm. In total, 48 participants were best predicted by the function

learning model combined with a upper confidence bound sampling strategy.

Extracted parameter estimates

Looking more closely at the parameter estimates of the Gaussian Process-based function

learning model with upper confidence bound sampling (Figure 6.6; median estimates per

participant) showed that people tend to underestimate the extent of spatial correlations,

with estimated λ values significantly lower than the ground truth for both Smooth (mean

estimate: λ̂ = 0.82, t(41) = −17.60, p < .001, d = 2.71; compared to ground truth

λSmooth = 2) and Rough environments (λ̂ = 0.78, t(38) = −3.89, p < .001, d = 0.62;

compared to λRough = 1), which could be interpreted as a tendency to avoid overgeneraliza-

tion (Gershman & Daw, 2017). The exploration bonus of UCB sampling (β) was robustly
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Figure 6.6: Parameter esধmates of Experiment 10.

estimated above 0 (β̂ = 0.47, t(80) = 12.78, p < .001, d = 1.42, compared to the lower es-

timation bound), indicating participants valued the exploration of uncertain options, along

with exploiting high expectations of reward. Additionally, the estimates of the softmax tem-

perature were very low (τ̂ = 0.01), corresponding to more precise model predictions.

6.6 Experiment 11: Bivariate function exploration-exploitation

The second variant of the spatially-correlated multi-armed bandit presents participants

with a bi-variate spatially correlated bandit. Therein, the problem space was represented as

a two-dimensional grid, measuring 11×11, resulting in 121 unique tiles in total. As in the uni-

variate experiment, participants could click to reveal unexplored tiles or re-click previously

uncovered tiles. A screenshot of Experiment 11 is shown in Figure 6.7.
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Figure 6.7: Screenshot of Experiment 11. Bivariate spaধally correlated mulধ-armed bandit.

6.6.1 Methods

Participants

80 participants were recruited from Amazon Mechanical Turk (25 Female; mean age± SD

32± 9). Each participant was paid a participation fee of $0.50 and a performance contin-

gent bonus up to $1.50. Subjects earned on average $1.64± 0.20 and spent on average 8

minutes on the task.

Design

As before, a 2×2 between subject design was used, where participants were randomly as-

signed to one of two different pay-off structures (Maximizers vs. Accumulators) and one of

two different classes of environments (Smooth vs. Rough). Each grid represented a bi-variate

function, with each observation including normally distributed noise, ε ∼ N (0, 1). The
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task was presented over 8 blocks on different grid worlds drawn from the same class of en-

vironments. In each block, participants had either a Short (20 clicks) or Long (40 clicks)

search horizon to interact with the grid. The search horizon alternated between blocks

(within subject), with initial horizon length counterbalanced between subjects. Observa-

tions were again scaled for every block to a uniformly sampled maximum value in the range

of 65 to 85 as before. The design of Experiment 11 is shown in Figure 6.8.

Figure 6.8: Design of Experiment 11. Environments could be either smooth or rough (between subject manipulaধon).
Sample horizons could be either short (20 clicks) or long (40 clicks, within subject manipulaধon, counter-balanced).

Materials and procedure

Materials and procedures were almost identical to the uni-variate case. Participants were

shown four fully revealed grids in order to familiarize themselves with the task before they

started. Example environments were drawn from the same class of environments assigned
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to the participant (Smooth or Rough). As before, three comprehension questions were

used to ensure full understanding of the task.

At the beginning of each of the 8 blocks, one random tile was revealed and participants

could use their mouse to click any of the 30 tiles until the search horizon was exhausted,

including re-clicking previously revealed tiles.

Payoff conditions

Performance is compared under two different payoff conditions,Accumulators) orMaxi-

mizers. In each payoff condition, participants received a performance contingent bonus of

up to $1.50. All 8 blocks were weighted equally.

Smoothness of the environment

All environments were sampled from a bivariate Gaussian Process prior parameterized with

a radial basis function kernel. I sampled 20 Smooth environments using λ = 2 and 20

Rough environments using λ = 1. Subjects performed the task on 8 grids randomly drawn

(without replacement) from their assigned class of environments, while the four fully re-

vealed environments used to familiarize subjects with the task were randomly drawn from

the remaining 12 environments without replacement.

Search horizons

The two horizon lengths were 20 for Short and 40 for Long blocks and varied within sub-

ject (alternating between blocks) as in Experiment 10.
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6.6.2 Results

Figure 6.9 shows task performance. Performance improved as a function of the trial num-

ber as measured by both the overall correlation between average reward and trial number

(r = 0.32, p < 0.001) and between the maximum observed reward and trial number

(r = 0.83, p < 0.001). There were no learning effects across blocks, indicated by a lack of

correlation between average reward and block number (r = 0.19, p > 0.5), or between

maximum reward and block number (r = −0.37, p > 0.1). Thus, as in the univariate exper-

iment, performance improved as more information was revealed, but not over additional

blocks of identically parameterized environments.

Payoff conditions

Payoff conditions influenced search behavior, with participants in the Maximizer condition

displaying more variance in the locations sampled (t(78) = −2.48, p < 0.01, d = 0.55).

Participants in theAccumulator group did not achieved a higher average reward than partic-

ipants in theMaximizer group (t(78) = 1.32, p > 0.1. d = 0.29) andMaximizers did not

reveal a higher maximum value thanAccumulators (t(78) = 1.48, p > 0.1, d = 0.33).

Environment and horizon

Independent of the payoff condition, participants assigned to Smooth environments achieved

higher average rewards (t(78) = 6.55, p < 0.001, d = 1.47) and higher maximum rewards

(t(78) = 5.45, p < 0.001, d = 1.22) than those assigned to the Rough environments, sug-

gesting that stronger correlations of payoffs make the task easier. As before, longer horizons

did not lead to better overall performance in the Accumulator condition (t(79) = 0.96,

p > 0.3, d = 0.11), although participants given longer horizons found larger maximum
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Figure 6.9: Results of Experiment 11.

rewards for all payoffs and environment conditions (t(79) = 9.98, p < 0.001, d = 1.12).

6.6.3 Cross-validation results

Cross-validation was performed as in Experiment 10 for all 27 models and each participant

individually. In total, the cross validation for the bivariate experiment took around 52,000

hours or about 3 days on distributed across a 716 CPU cluster.

Results of the full model comparison for Experiment 11 are shown in Figure 6.10.
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Figure 6.10: Model comparison results of Experiment 11.

Again, the function learning model performed better than the associative learning model

(t(79) = −5.01, p < 0.001, d = 0.56). However, this time further localization of the

models improved both the associative (t(79) = 27.46, p < 0.001, d = 3.07) and the

function learning model (t(79) = 19.12, p < 0.001 d = 2.13). Again, the upper confidence

bound sampling strategy was by far the best sampling strategy (t(79) = 12.57, p < 0.001,

d = 1.41). The localized function learning* model paired with a upper confidence bound

sampling strategy predicted 59 participant best overall and performed significantly better

than the localized associative learning* model (t(70) = −2.18, p < 0.05, d = 0.24;

UCB only). Again, both components of the UCB strategy—the expected reward (t(79) =

−6.44, p < .001, d = 0.72) and the attached uncertainty (t(79) = −14.32, p < .001,

d = 1.60)—were necessary to predict choices.

6.6.4 Parameter estimates

Further extracting the median parameter estimates per participant from the localized Gaus-

sian Process-based function learning* model (Figure 6.11) showed that participants again un-
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derestimated the strength of the underlying spatial correlation in both Smooth (λ̂ = 0.92,

t(42) = −14.62, p < .001, d = 2.22; comparison to λSmooth = 2) and Rough environments

(λ̂ = 0.78, t(36) = −5.31, p < .001, d = 0.87; comparison to λRough = 1), suggesting a

robust tendency to avoid overgeneralization. The estimated exploration bonus βwas again

greater than 0 (β̂ = 0.45, t(79) = 27.02,p < .001, d = 3.02, compared to the lower estima-

tion bound), while the estimated softmax temperature parameter τwas slightly larger than

in Experiment 10, τ̂ = 0.09.

6.7 Discussion

Generalization is a powerful tool that helps guide human decision making, supporting

faster learning rates and increased performance. In this chapter, I examined human behav-

ior in a reward acquisition task within two type of grid worlds containing spatially corre-
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lated rewards. These environments were designed such that the number of states vastly ex-

ceeded the available search horizon. However, the presence of spatial correlation provided

traction for generalization, making it possible to learn an underlying value function based

on spatial context. Participants performed better with stronger spatial correlations, reached

similar performance in short compared to long horizons, and were sometimes able to find

the optimal option just by balancing exploration and exploitation.

Using predictive cross-validation, I found that participants were best described by a

Gaussian Process-based function learning model, which relates different search options by

their spatial contexts. The advantage of function learning is that it provides a mechanism

for generalization from a small number of observations to a vast number of possibilities.

The recovered parameter estimates indicate that there was a systematic tendency to under-

generalize the strength of spatial correlations, yet comparisons with associative learning

models provide evidence that generalization is a robust and recoverable phenomenon (also

see Appendix).

Participants seem to deliberately trade off between exploration and exploitation as they

are predicted well by an upper confidence bound sampling strategy. Even though this strat-

egy is both optimistic (by assuming uncertainty is always positive) andmyopic, it is nonethe-

less the only known algorithm with performance guarantees (Srinivas et al., 2010) in this

setting. Similar approaches have previously been applied to problems in ecology (Gotovos

et al., 2013), robotics (Berkenkamp et al., 2016) and biology (Desautels, 2014). The find-

ing that human behavior is best predicted by this model shows that humans are capable of

learning and adapting their behavior in complex and uncertain environments, even if an

optimal solution is unobtainable.

The results presented in this chapter have tried to bridge a gap in the current reinforce-

157



ment learning literature by stressing the importance of generalization, specifically in situ-

ations in which humans have to learn and adapt to environments where not all outcomes

can be observed. This has been one of the first studies to predict individual decisions in

such a complex search task, including a rigorous comparison between 27 models that yielded

robust model comparisons and parameter estimates. Interestingly, recent findings have con-

nected both spatial and conceptual representations to a common neural substrate (Constan-

tinescu et al., 2016), opening up the opportunity to apply the function learning model to

assess generalization and decision making in further contextualized settings. This will be

the focus of the next chapter.

158



“In time, and as one comes to benefit from experience, one

learns that things will not turn out as well as one hoped.”

Jerome Bruner, 1966

7
Contextual Multi-Armed Bandits

In this chapter, I investigate human behavior within a paradigm in

which contextual cues are related to an option's expected reward by

an underlying function.
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7.1 Introduction

Chapter 6 focused on search behavior in various grid worlds in a spatially correlated multi-

armed bandit paradigm. As different options’ rewards were related by their spatial location,

learning a function mapping space to expected rewards provided an opportunity for gen-

eralization. Thus, the spatial location of an option acted as a context guiding participants’

decision making. However, contextual cues do not only come as spatial information but

can frequently also contain conceptual information. Coming back to the restaurant exam-

ple from before, if you are trying to find a good restaurant to dine in tonight, you might

not even know the location of different restaurants, but rather use other contextual cues

such as the price of the food on the menu or recommendations from friends and online

rating pages.

This chapter investigates human behavior in such problems within a paradigm called

the contextual multi-armed bandit task. Learning and decision making within contextual

multi-armed bandit tasks require the same two elements as before: learning a function that

maps the observed features of options to their expected rewards, and a sampling strategy

that uses these expectations to choose between the options. Function learning is important

as it allows one to generalize previous experiences to novel situations. For example, it allows

to predict the quality of a new restaurant from experiences with other restaurants with a

similar number of customers and a similarly priced menu. The decision (or sampling) strat-

egy is important because not only should one attempt to choose options that are currently

most rewarding, but also take into account how much one can learn in order to make good

choices in the future. This again means taking into account the exploration-exploitation

trade-off, where exploration means learning about the function that relates features to re-
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wards and exploitation means using that functional knowledge to generate high rewards.

In what follows, I will introduce the contextual multi-armed bandit paradigm in more

detail and propose several models to describe how people solve such tasks. I will then de-

scribe three experiments which explore how people perform within different variants of the

task. The results will show that participants are able to learn within this paradigm, approx-

imating the function in an efficient way (Srinivas et al., 2010; Lucas et al., 2015) and using

their knowledge to sensitively balance exploration and exploitation. However, the extent to

which participants are able to learn and generalize the underlying function depends on the

complexity of the task.

7.2 Contextual multi-armed bandits

A contextual multi-armed bandit task (CMAB) is a game in which on each round, an agent

is presented with a context (a set of features) and a number of options which each offer an

unknown reward. The expected rewards associated to each option depend on the context

through an unknown function. The context can contain general features that apply to all

options (e.g., the city the restaurants are in) or specific features that apply to single options

(e.g., the exact menu and its price). The agent’s task is to choose those options that will ac-

cumulate the highest reward over all rounds of the game. The rewards are stochastic, such

that even if the agent had complete knowledge of the task, a choice would still involve a

kind of gamble. In this respect, choosing an option can be seen as choosing a slot machine

(a one-armed bandit) to play, or, equivalently, choosing which arm of a multi-armed bandit

to play. After choosing an option in a round, the agent receives the reward of the chosen

option but is not informed of the foregone rewards that could have been obtained from

the other options. For an agent who ignores the context, the task would appear as a restless
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bandit task (e.g., Speekenbrink & Konstantinidis, 2015), as the rewards associated with an

arm will vary over time due to the changing context. However, learning the function that

maps the context to (expected) rewards will make these changes in rewards predictable and

thereby choosing the optimal arm easier. In order to choose wisely, the agent should thus

learn about the underlying function. Sometimes, this may require her to choose an option

which is not expected to give the highest reward on a particular round, but one that might

provide useful information about the function, thus choosing to explore rather than to

exploit.

Contextual multi-armed bandit tasks provide a scenario in which a participant has to

learn a function in order to maximize the outputs of that function over time by making

wise choices. They are a natural extension of both the classic multi-armed bandit task,

which is a CMAB with an invariant context throughout, and the restless bandit task, which

is a CMAB with time as the only contextual feature.

While the CMAB is novel in the psychological literature (though see Stojic et al., 2015,

for a related task), where few tasks explicitly combine function learning and experience-

based decision making, there are certain similarities with tasks used in previous research.

For example, recent studies in experience-based decision-making provided participants with

descriptions about the underlying distributions that generate rewards (e.g., Lejarraga &

Gonzalez, 2011; Weiss-Cohen et al., 2016). Just as in the CMAB, this presents a naturalistic

decision environment in which different sources of information (e.g., descriptions and par-

ticipants’ own experience) need to be integrated in order to choose between alternatives or

courses of action.

Another related paradigm is multiple cue probability learning (MCPL, Kruschke & Jo-

hansen, 1999; Speekenbrink & Shanks, 2008) in which participants are shown an array of

162



cues that are probabilistically related to an outcome and have to learn the underlying func-

tion mapping the cues’ features to expected outcomes. Especially when the outcome is a

categorical variable, such as in the “Weather Prediction Task” (Gluck et al., 2002; Speeken-

brink et al., 2008) as described in Chapter 2, making a prediction is structurally similar to

a decision between multiple arms (possible predictions) that are rewarded (correct predic-

tion) or not (incorrect prediction). Just as in the CMAB, multiple-cue probability learning

and probabilistic category learning tasks require people to learn a function which maps

multiple cues or features to expected outcomes. An important difference however is that in

these latter tasks there is a strong dependency between the options: there is only one correct

prediction, and hence there is a perfect (negative) correlation between the rewards for the

options. Whether a current choice was rewarded or not thus provides information about

whether the non-chosen options would have been rewarded. This dependency weakens

the need for exploration, especially when the outcome is binary, in which case there is no

need for exploration at all. In CMAB tasks, there is a stronger impetus for exploration, as

the rewards associated to arms are generally conditionally independent, given the context.

Knowing that a particular option was rewarded thus does not provide immediate informa-

tion whether another option would have been rewarded. Another major difference is that

MCPL tasks generally require participants to learn the whole function. In CMAB tasks,

learning the function is only necessary insofar as it helps to generalize from observed out-

comes and thus leads to better decisions. To solve the exploration-exploitation dilemma, it

may suffice to learn the function well only in those regions that promise to produce high

rewards. Moreover, as I will describe later, each option can be governed by its own function

relating context to rewards. To the best of my knowledge, simultaneous learning of multi-

ple functions has not previously been investigated.
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Another area of related research comes from the associative learning literature, where it

has been shown that context can act as an additional cue to maximize reward (cf Bouton &

King, 1983; Gershman et al., 2010). In one example of this, Gershman & Niv (2015) showed

how generalization based on context (the average reward of options in an environment)

can explain how participants react to novel options in the same environment, such that a

high-reward context leads people to approach novel options, while a low-reward context

leads to avoidance of novel options. The CMAB paradigm introduced here is related to

such situations, but instead of a single, constant context, varies the contexts such that good

performance requires learning the underlying contextual function.

7.3 General CMAB task

In the experimental implementation of the CMAB task, participants are told they have to

mine for “Emeralds” on different planets. Moreover, it is explained that at each time of

mining, the galaxy is described by 3 different environmental factors, “Mercury”, “Krypton”,

and “Nobelium”, that have different effects on different planets. Participants are then told

they have to maximize their production of Emeralds over time by learning how the differ-

ent environmental factors influence the planets and choosing the planet they think will pro-

duce the highest outcome in light of the available factors. Participants were explicitly told

that different planets can react differently to specific environmental factors. A screenshot of

the CMAB task can be seen in Figure 7.1.

As each planet responds differently to the contexts, they can be seen as arms of a multi-

armed bandit that are related to the context by different functions. The reward of an op-
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Figure 7.1: Screenshot of the CMAB task depicধng Experiment 12.

tion j is given as

yj,t = f(at = j, xt) = fj(xt) + εj,t (7.1)

with εj,t ∼ N (0, 5). The task consists of 150 trials in which a random context is drawn and

participants choose a planet to mine on*.

The three experiments differ in the functions fj and whether the environmental factors

defining the context were binary or continuous. This is specified in more detail when de-

scribing the experiments. Source code for the experimental set-up is available online.†

7.4 Models of learning and decision making in CMAB-tasks

7.4.1 Contextual and context-blind learning

I will specify two different classes of learning within CMAB-tasks, contextual and context-

blind learning. Whereas contextual models learn and make use of how the provided context
*The initial trial had the same context x1 for all participants. Afterwards, the values of the context xt were

sampled at random
†https://github.com/ericschulz/contextualbandits
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maps onto expected rewards over time, context-blind models only learn the reward for each

option separately without taking functional knowledge into account. This is similar to the

distinction between associative and function learning models of the previous chapter.

There will be two kinds of context-blind models, a Bayesian mean tracker and Kalman

filtering. The Bayesian mean-tracking model assumes that the average reward associated

to each option is constant over time and simply computes a posterior distribution over the

mean μj of each option j. Here, this is implemented as a relatively simple version of such

a model which assumes rewards are normally distributed with a known variance but un-

known mean and the prior distribution for that mean is again a normal distribution. This

corresponds exactly to the associative learning model from chapter 6 and implies that the

posterior distribution for each mean is also a normal distribution:

p(μj,t|Dt−1) = N (μj,t, σ
2
j,t) (7.2)

where the mean μj,t represents the currently expected outcome for a particular arm j and

the variance σ2j,t represents the uncertainty attached to that expectation. The posterior dis-

tribution can be computed through a mean-stable version of the Kalman filter, which I will

describe next.

Unlike the Bayesian mean tracking model, which computes the posterior distribution of

a time-invariant mean μj after each new observation, theKalman filter is a suitable model

for tracking a time-varying mean μj,t which I here assume varies according to a simple ran-

dom walk

μj,t+1 = μj,t + ζt ζt ∼ N (0, σ2ζ) (7.3)
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Kalman filtering models have been used to successfully describe participants’ choices in a

restless bandit task (Speekenbrink & Konstantinidis, 2015) and have also been proposed as

a model unifying many findings within the literature of context-free associative learning

(Kruschke, 2008; Gershman, 2015). In this model, the posterior distribution of the mean is

again a normal distribution

p(μj,t|Dt−1) = N (μj,t, σ
2
j,t) (7.4)

with mean

μj,t = μj,t−1 + δj,tGj,t(yt − μj,t−1) (7.5)

where yt is the received reward on trial t and δj,t = 1 if arm jwas chosen on trial t, and 0

otherwise. The “Kalman gain” term is computed as

Gj,t =
σ2j,t−1 + σ2ζ

σ2j,t−1 + σ2ζ + σ2ε
(7.6)

where σ2k,t is the variance of the posterior distribution and the mean μj,t is computed as

vj,t = (1 − δj,tGj,t)(σ2j,t−1 + σ2ζ) (7.7)

Prior means and variances were initialized to μj,0 = 0 and σ2j,0 = 1000, while the innova-

tion variance σ2ζ and error variance σ2ε were free parameters. The Bayesian mean-tracking

model is obtained from the Kalman filter model by setting the innovation variance to

σ2ζ = 0, implying the underlying mean is not assumed to change over time.

Contextual learning models will be implemented as Gaussian Process regression for

which it will be assumed that participants learn a separate function fj(x) that maps contexts
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x to rewards y for each option j. There will be two different kernels specifying how people

learn within CMAB tasks. The first is the radial basis function kernel

k(x, x′) = σ2f exp
(
−|x− x′|2

2λ2

)
(7.8)

for which λ indicates the level of generalization participants might perform and is again

estimated as a free parameter. The second kernel is a linear kernel

k(x, x′) = θ1(x− θ2)(x′ − θ2) (7.9)

which is the same as performing Bayesian linear regression and thus a simple rule-based

function learning model to compare the more universal radial basis function kernel against.

7.4.2 Sampling strategies

As in Chapter 6, the models of learning return a predictive distribution for each option

which then has to be transformed to actual choices. Thus, I will again compare different

sampling strategies which I recapitulate quickly.

The upper confidence bound (UCB) sampling strategy defines a trade-off between an op-

tion’s expected value and the associated uncertainty and chooses the option for which the

upper confidence bound of the mean is highest. It has a free parameter β, which determines

the width of confidence interval. The UCB sampling strategy can be described as a selection

strategy with an exploration bonus, where the bonus dynamically depends on the confi-

dence interval of the estimated mean reward at each time point. I have found it to be the

best sampling strategy within the spatially correlated multi-armed bandit paradigm within

the previous chapter.
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Another decision strategy is the probability of improvement (PoI) rule, which calculates

the probability for each option to lead to an outcome higher than the option that is cur-

rently believed to have the highest expected value (Kushner, 1964). Intuitively, this algo-

rithm estimates the probability of one option to generate a higher utility than another op-

tion, which is taken to be the best option observed so far.

The PoI rule focusses solely on the probability that an option provides a higher outcome

than another; whether the difference in outcomes is large or small does not matter. The

expected improvement (EXI) rule is similar to the PoI rule, but does take the magnitude of

the difference in outcomes into account and compares options to the current favorite in

terms of the expected increase of outcomes (Mockus et al., 1978).

The fourth decision strategy is the probability of maximum utility (PMU) rule (Speeken-

brink & Konstantinidis, 2015). This strategy chooses each option according to the probabil-

ity that it results in the highest reward out of all options in a particular context. It is again

implemented by Monte Carlo-sampling from the posterior predictive distribution.

As participants’ decisions are expected to be more noisy reflections of the provided deci-

sion strategies, I use a softmax transformation to map the value of each option according to

the decision rule into probabilities of choice:

p(at = j|st,Dt−1) =
exp{τ−1 · q(a = j|st,Dt−1)}∑n
i=1 exp{τ−1 · q(a = i|st,Dt−1)}

(7.10)

The temperature parameter τ > 0 governs how consistently participants choose according

to the values generated by the different model-sampling strategy combinations and will be

estimated as a free parameter.
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7.4.3 Model comparison

All models are compared in terms of their out-of-sample predictive performance, assessing

the accuracy of their one-step-ahead predictions and comparing them to that of a random

model which picks each option with the same probability. The procedure is as follows: for

each participant, a given model is fitted by maximum likelihood to the first t − 1 trials with

a differential evolution optimization algorithm (using 100 epochs, cf. Mullen et al., 2009).

Afterwards, the fitted model is used to predict the choice on trial t. As repeating this proce-

dure for every trial is computationally too expensive, models’ predictive accuracy for every

participant will be assessed on trials t = {10, 30, 50, 70, 90, 110, 130, 150}. The one-step-

ahead predictive accuracy measure compares each modelMk to a random modelMrand:

R2
p = 1 − logL(Mk)/ logL(Mrand) (7.11)

whereL(M) denotes the likelihood of modelM (i.e., the probability of a participants’

choices as predicted by fitted modelM). This measure returns values between 0 (accuracy

equal to the random model) and 1 (accuracy infinitely larger than the random model) and is

exactly the same measure of predictive validity as used in Chapter 6.

7.5 Experiment 12: Binary features

The goal of the first contextual multi-armed bandit experiment was to test whether partic-

ipants can learn to make good decisions in a CMAB task at all. For this purpose, I set up

a relatively simple contextual bandit scenario in which the context only consists of binary

features.
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7.5.1 Participants

Forty-seven participants (26 male) with an average age of 31.9 years (SD = 8.2) were re-

cruited via Amazon Mechanical Turk and received $0.3 plus a performance-dependent

bonus. The experiment took 12 minutes to complete on average and the average reward

was $0.73±0.07.

7.5.2 Task

There were four different arms that could be played (planets that could be mined). In ad-

dition, three discrete variables, xi,t, i = 1, 2, 3, were introduced as the general context. The

three variables defining the contexts could either be on (xi,t = 1) or off (xi,t = −1). The

outcomes of the four arms were dependent on the context as follows:

f1(xt) = 50 + 15 × x1,t − 15 × x2,t (7.12)

f2(xt) = 50 + 15 × x2,t − 15 × x3,t (7.13)

f3(xt) = 50 + 15 × x3,t − 15 × x1,t (7.14)

f4(xt) = 50 (7.15)

On each trial, the probability that a contextual feature was on or off was set to p(xi,t =

1) = p(xi,t = −1) = 0.5, making each of the 8 possible contexts equally likely to oc-

cur on a given trial. The functions fj were designed such that the expected reward of each

arm over all possible contexts equals E[yj,t] = 50. This means that the only way to gain

higher rewards than the average of 50 is by learning how the contextual features influence

the rewards. More formally, this implies that no arm achieves first-order stochastic dom-

inance. Moreover, including the context-independent fourth arm that returns the mean
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with added noise helps to distinguish even further between learning and not learning the

context: this arm has the same expected value as all the other arms but a lower variance

and therefore achieves second-order stochastic dominance over the other arms. As such, a

context-blind and risk-averse learner would prefer this arm over time.

7.5.3 Procedure

After giving their informed consent, participants received instructions to the experiment.

Participants were told that they had to mine for “Emeralds” on different planets. Moreover,

it was explained that at each time each of the 3 different environmental factors could either

be on (+) or off (-) and had different effects on different planets. Participants were told that

they had to maximize the overall production of Emeralds over time by learning how the

different elements influence the planets and then picking the planet they thought would

produce the highest outcome, given the status (on or off) of the elements. It was explicitly

noted that different planets can react differently to different elements. After reading the

instructions, participants performed the CMAB task. There were a total number of 150

trials and participants were paid $0.3 + total score/(150 × 100).

7.5.4 Results

Behavioral results

Participants gained 66.78 points (SD=13.02) per round on average throughout the task.

Participants’ average scores were significantly above the chance level of 50 (t(46) = 8.83,

p < 0.01, d = 1.29). 34 out of 47 participants performed better than chance according to

a simple t-test with α = 0.05 and μ0 = 50. Thus, participants seemingly learned to take

the context into account, obtaining higher rewards than expected if they were ignoring the
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context.
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Figure 7.2: Results of the binary CMAB task of Experiment 12. Average overall score (a), proporধon of choosing the
fourth arm (b), and proporধon of choosing the best arm (c)

Over time, participants made increasingly better choices (see Figure 7.2a), as indicated

by a significant correlation between the average score (over participants) and trial number,

r = 0.74, p < 0.01. The proportion of participants choosing the non-contextual option

(the option that did not respond to any of the contextual features, indicated as the 4th arm)

decreased over time (r = −0.22, p < 0.05, Figure 7.2b), another indicator that participants

learned the underlying functions. The proportion of participants choosing the best option

for the current context increased during the task (r = 0.72, p < 0.01, see Figure 7.2a).

As a final assessment of whether participants took the context into account, I tested

whether the outcome and chosen arm on the previous trial were related to the choice of arm

on the current trial. If participants relied on the context, one would not expect previous

outcomes and choices to be related to current choices. If participants ignored the context

and for instance relied on (average) rewards or a win-stay-lose-shift strategy, a positive re-

lation between current choices and previous choices and outcomes would be expected. A

hierarchical multinomial regression (where trials were nested within participants) with cho-
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sen arms as dependent variable and outcomes and chosen arm on trial t − 1 as predictors

showed no significant effects of the predictors. Again, this indicates participants learned

the underlying function instead of using more simplistic (and in this case not very useful)

heuristic memorization techniques such as testing similar arms in sequences or changing to

a particular arm after a particular score.

Modeling results

To determine which combination of learning model and sampling strategy best captures

participants’ choices, the one-step-ahead predictive comparison was used. For each partic-

ipant and model, the pseudo-R2 at the eight test trials was computed. Higher R2-values

indicate better model performance. The results are shown in Figure 7.3.

Overall, the best performing model was the GP learning model with a radial basis func-

tion kernel with the PoI sampling strategy. Aggregating over sampling strategies, the con-

textual models produced significantly better one-step-ahead predictions than the context-

blind models (t(46) = 6.82, p < 0.001, d = 0.99). Additionally, the GP-model with an

RBF kernel performed better than the linear model (t(46) = 7.88, p < 0.001, d = 1.15).

Distinguishing the different sampling strategies turned out to be harder than comparing

the different learning models. Aggregating over models, the probability of maximum util-

ity strategy performed marginally better than all other sampling strategies (t(46) = 3.10,

p < 0.05, d = 0.45). The probability of improvement sampling strategy numerically pre-

dicted participants’ choices best out of all the sampling strategies when combined with the

radial basis function kernel (t(46) = 4.84, p < 0.001, d = 0.71).

The median parameter estimates of the GP-RBF model over all sampling strategies per

participant, are shown in Figure 7.4.
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Figure 7.3: Predicধve accuracy of the models for the CMAB task with discrete cues in Experiment 12. Error bars
represent the standard error of the mean.

The median noise variance (σ̂2ε = 3.08) was reasonably close to the underlying obser-

vation noise variance of σε2 = 5, albeit smaller in general (t(46) = −4.71, p < 0.01,

d = 0.69); thus, participants seemed to underestimate the overall noise in the observed

outcomes. The estimates of the length-scale parameter clustered around the mean value of

λ̂ = 6.12. An RBF kernel can emulate a linear kernel by setting a very high length-scale. As
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Figure 7.4: Median esধmates of the error variance σ, the length-scale λ, and the temperature parameter τ for the
Gaussian Process regression radial basis funcধon kernel model.

the true underlying functions were linear in the experiment, we could thus expect high val-

ues for λ̂. In that light, a value of six for the estimated length-scale seems surprisingly small,

as it indicates that the dependencies between input points are expected to decay rather

quickly, i.e. that participants generalized more locally than what was necessary. The over-

all temperature parameter was relatively low (mean estimate: τ̂−1 = 0.085), indicating that

participants quite consistently chose the options with the highest predicted rewards.

According to the best fitting model in the cognitive modeling exercise, people learn the

relation between context and outcomes by relying on a more general function approxima-

tor than linear regression. By using a Probability of Improvement decision strategy, par-

ticipants compare the option which is thought to have the highest average rewards in the

current context, to relatively lesser known options in that context, determining how proba-

ble these are to provide a higher reward. This strategy is in agreement with prior findings in
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simpler multi-attribute choice tasks (for example, Carroll & De Soete, 1991).

7.6 Experiment 13: Continuous-linear features

Experiment 12 contained only 8 unique contexts. In this case, a memorization strategy

could have been feasible, such that participants may have simply memorized the expected

rewards for each option in each context, rather than having inferred a more general model

of the underlying function (although further behavioral checks spoke against this explana-

tion). The goal of the next experiment was therefore to assess whether the findings from

Experiment 12 would generalize to a task with a larger number of unique contexts, in which

memorizing input-output pairs is less feasible. For this purpose, Experiment 12 used the

same task, but with continuous rather than binary features comprising the contexts.

7.6.1 Participants

Fifty-nine participants (30 male) with a mean age of 32.4 (SD=7.8) were recruited via Ama-

zon Mechanical Turk and received $0.3 as a basic reward and a performance-dependent

bonus of up to $0.5. Participants earned an average amount of $0.69 ± 0.08. Average time

to complete the experiment was around 13 minutes.
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7.6.2 Task and Procedure

The task was identical to that of Experiment 12, only this time the context contained contin-

uous features with an underlying linear function mapping inputs to outputs:

f1(xt) = 50 + 3 × x1,t − 3 × x2,t (7.16)

f2(xt) = 50 + 3 × x2,t − 3 × x3,t (7.17)

f3(xt) = 50 + 3 × x3,t − 3 × x1,t (7.18)

f4(xt) = 50 (7.19)

The values of the context variables xj,t were sampled randomly from a uniform distribution

xj,t ∼ U(−10, 10). The values were rounded to whole numbers and shown in their nu-

merical form to participants. Again, the expected value (over all contexts) for each option

was 50, so no option achieved first-order stochastic dominance, while the fourth option

achieved second-order stochastic dominance, as the variance of its rewards was the lowest.

7.6.3 Results

Behavioral results

The average obtained reward across participants was 59.84 (SD = 9.41), significantly higher

than chance (t(58) = 7.17, p < 0.01, d = 0.78). As in Experiment 12, participants were able

to take the context into account in order to increase their performance above chance level.

Performance increased over trials, r = 0.39, t(58) = 3.64, p < 0.01, although this

was not as pronounced as in Experiment 12 (see Figure 7.5a). While the proportion of par-

ticipants choosing the fourth option did not decrease significantly over time (r = 0.05,
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Figure 7.5: Results of the binary CMAB task of Experiment 13. Average overall score (a), proporধon of choosing the
fourth arm (b), and proporধon of choosing the best arm (c)

p > 0.05), the proportion of choosing the best option given the context significantly in-

creased over trials (r = 0.33, p < 0.01, see Figure 7.5c).

A hierarchical multinomial regression assessing whether either a given chosen arm or a

given output was predictive for choosing a particular arm next in, again revealed no signif-

icant effect (all p > 0.05), indicating that participants did not seem to use any temporal-

dependent heuristics. This means that repetitions of sequences or more simplistic choice

patterns after a given score are not the main driver of participants’ behavior.

Modeling results

Cross validation results are shown in Figure 7.6. The best performing model incorporates

again a GP learning component, but now coupled with a UCB decision strategy. Contex-

tual models again performed better than the context-blind models (t(58) = 3.11, p < 0.01,

d = 0.40). Yet, the linear model performed significantly worse than all of the other mod-

els (t(58) = −2.84,p < 0.01, d = 0.37). The Gaussian Process model with a radial

basis function kernel performed significantly better than all of the other candidate models
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Figure 7.6: Predicধve accuracy of the models for the CMAB task with conধnuous-linear cues in Experiment 13. Error
bars represent the standard error of the mean.

(t(58) = 3.95, p < 0.001, d = 0.51). Thus, as in Experiment 12, participants were best

predicted by a GP-based learning model with a universal kernel function.

Regarding the sampling strategy, the UCB strategy performed better than the other

strategies, significantly so for the linear learning model,t(58) = 3.38,p < 0.001, d =

d = 0.63, and the GP-learning model, t(58) = 2.43, p < 0.05, d = 0.32. The probability
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of maximum utility sampling strategy resulted into better predictive performance for both

the Bayesian mean tracker (t(58) = 8.05, p < 0.001, d = 1.05) and Kalman filter learning

model (t(58) = 7.22, p < 0.001, d = 0.94). This mirrors previous findings on restless

bandit tasks (Speekenbrink & Konstantinidis, 2015) and could indicate that some people

switched to a non-contextual strategy within this more difficult set-up.

The median estimates of the GP-RBF-learning model for each participant are shown in

Figure 7.7. The mean estimated temperature parameter was τ̂−1 = 0.049, which again
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Figure 7.7: Median esধmates of the error variance σ, the length-scale λ, and the temperature parameter τ for the
GP-RBF model.

indicates that participants mostly consistently chose the options with the highest predicted

utility. The estimated error variance was σ̂2ε = 5.07 on average, which was very close to the

actual variance of σ2ε = 5 (t(58) = 0.16, p > 0.05, d = 0.02). The estimated length-

scale parameter was clustered tightly around a value of λ̂ = 10.31. This indicates a tendency
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towards further extrapolation than in Experiment 12, but is still quite far removed from the

level of extrapolation a linear function would provide.

7.7 Experiment 14: Continuous-non-linear features

The previous contextual multi-armed bandit experiments showed that most participants

were able to learn how a multi-featured context differentially affects the rewards associated

to decision alternatives. The goal of the third experiment was to investigate whether this

would still be the case in an even more complicated environment with continuous valued

features which are related to the options’ rewards through non-linear functions. In order

to cover a wide range of non-linearities, the functions relating contexts to rewards were

themselves sampled from a Gaussian Process prior.

7.7.1 Participants

60 participants (28 female) with a mean age of 29 (SD=8.2) were recruited via Amazon Me-

chanical Turk and received $0.3 as a basic reward and a performance-dependent reward of

up to $0.5. Participants earned $0.67 ± 0.04 on average. The experiment took around 12

minutes to complete.

182



7.7.2 Task and Procedure

The task was identical to that of Experiment 13, apart from the functions mapping inputs to

outputs, which were drawn from a Gaussian process prior:

f1(xt) = 50 + f1(x1,t, x2,t) (7.20)

f2(xt) = 50 + f2(x2,t, x3,t) (7.21)

f3(xt) = 50 + f3(x3,t, x1,t) (7.22)

f4(xt) = 50 (7.23)

fj ∼ GP(m,K), j = 1, . . . , 3 (7.24)

where the mean function μwas set to 0 the kernel generating Σ was a radial basis kernel

with a length-scale of λ = 2.

As in Experiment 13, the features were described numerically and could take values be-

tween -10 and 10. These values were sampled from a uniform distribution xi,t ∼ U(−10, 10).

As before, the average expectation for all planets was 50 and the variance for the fourth arm

was the lowest.

The procedure was identical to the one of Experiment 13.

7.7.3 Results

Behavioral results

On average, participants obtained rewards of 55.35 (SD = 6.33), which is again significantly

above chance level, t(59) = 5.85, p < 0.01, d = 0.85.

Average scores increased over trials, r = 0.19, p < 0.01, but to a lesser extent than in
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Figure 7.8: Results of the binary CMAB task of Experiment 14. Average overall score (a), proporধon of choosing the
fourth arm (b), and proporধon of choosing the best arm (c)

Experiment 13 (see Figure 7.8b), which might be due to the increase in difficulty of the task.

The proportion of participants choosing the best option in a context did not increase much

over trials, r = 0.12, p < 0.05 (see Figure 7.8c). The proportion of choosing the non-

contextual arm did not significantly decrease over time, r = 0.04, p > 0.05. Overall,

these results seem to indicate that participants struggled more than in any of the two prior

experiments to perform well within the continuous non-linear task.

Modeling results

Modeling results are shown in Figure 7.9. Overall, the best performing model is the GP-

RBF learning model paired with a upper confidence bound sampling strategy.

The contextual models predicted participants’ choices only slightly better than the context-

blind models (t(59) = 2.7047, p < 0.01, d = 0.37), but this was due to the linear model

generating worse predictions than all of the other models (t(59) = −3.59, p < 0.001,

d = 0.50). The Gaussian Process model parameterized with a radial basis function ker-

nel generated better predictions than all of the other models (t(59) = 4.13, p < 0.001,
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Figure 7.9: Predicধve accuracy of the models for the CMAB task with conধnuous-non-linear cues in Experiment 14.
Error bars represent the standard error of the mean.

d = 0.57). The probability of maximum utility sampling strategy generated better predic-

tions within the the Kalman filter (t(59) = 1.90, p < 0.05, d = 0.26) learning models.

There was no meaningful difference between different sampling strategies for the Gaussian

Process model.

Figure 7.10 shows the median estimates of the GP-RBF learning model for all partici-
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pants. The low average estimated temperature parameter τ̂ = 0.06 again indicates that
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Figure 7.10: Median esধmates of the error variance σ, the length-scale λ, and the temperature parameter τ for the
GP-RBF model.

participants consistently chose the option with higher predicted rewards. The estimated

length-scale clustered tightly along a value of λ̂ = 6.86 and the estimated noise variance

of σ̂2ε = 5.71 was again indistinguishable from the underlying true variance of σ2ε = 5

(t(59) = 1.09, p > 0.05, d = 0.02).

As this experiment required participants to learn three different non-linear functions, it

might have been too difficult to learn the functions, so that some of them reversed back to

learning in a context-free manner. Moreover, it seems less feasible in this scenario to distin-

guish between the different sampling strategies.
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7.8 Inter-experimental model comparison

To assess how participants adapted to the different task environments, this section assesses

how model performance and parameter estimates vary between different experiments. For

this analysis, the focus will be on the model with a GP learning component and a UCB de-

cision strategy because this strategy described participants reasonably well in all of the ex-

periments and comes with the additional benefit that the parameters are very interpretable.

For example, higher β-estimates are an indicator of more exploration behavior, higher λ-

estimates indicate further generalization (i.e., the gradient of functional generalization), and

higher noise parameters model an increasing tendency to perceive the underlying function

as noisy. 7.11 shows the mean estimates of this model across all three experiments.

The overall predictive performance of the model was significantly higher within the first

experiment as compared to the other two experiments (t(152) = 4.52, p < 0.01, d = 0.79).

There was no meaningful difference between the continuous-linear and the continuous-

non-linear experiment (t(105) = −0.28, p > 0.05, d = 0.05). Comparing the exploration-

parameter β across experiments revealed that there was a negative correlation between the

tendency to explore and the complexity of the task (ranked from discrete to non-linear)

with r = −0.18, p < 0.05. This means that participants seem to explore less as the task be-

comes more difficult. The assumed noise term σwas estimated to be lower for the discrete

experiment than for the continuous-linear experiments (t(140) = 3.3, p < 0.01, d = 0.87)

which in turn was smaller than the estimated variance of the continuous-nonlinear exper-

iment (t(163) = 2.22, p < 0.05, d = 0.36). Therefore, more difficult tasks can lead to

a higher level of subjective noise within the learned functions. The length-scale parameter

λ did not differ significantly between the three experiments (all p > 0.5). This indicates
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Figure 7.11: Mean esধmates of the predicধve performance R2, the exploraধon parameter β, the error variance σ, and
the length-scale λ across all experiments. Error bars represent the standard error of the mean.

that participants seem to approach diverse function learning tasks with a similar assump-

tion about the underlying smoothness. While the assumed smoothness was less than the

objective smoothness of the environment in the first two experiments, it was slightly higher

in the last experiment.

In summary, comparing parameter estimates of the GP-RBF learning and a upper con-

fidence bound sampling strategy between experiments showed that (1) the model captures
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participants’ behavior best for the more simple discrete experiment, (2) participants seem

to explore less in more difficult experiments, (3) the length-scale parameter modeling the as-

sumed smoothness of the environment seems to be relatively stable across experiments, in-

dicating a general approach to learning about unknown functions, and (4) the continuous-

non-linear experiment was hard for participants as the model captured their behavior less

well and assumed more noise overall.

7.9 Discussion

In this chapter, I have introduced the contextual multi-armed bandit (CMAB) task as a

paradigm to investigate behavior in situations where participants have to learn functions

and simultaneously make decisions according to the predictions of those functions. The

CMAB is a natural extension of past research on function learning, experience-based de-

cision making in multi-armed bandit tasks, as well as the spatially-correlated multi-armed

bandit introduced in Chapter 6. In three experiments, I assessed people’s performance in

a CMAB task where a general context affected the rewards of options differently (i.e. each

option had a different function relating contexts to rewards). Even though learning multi-

ple functions simultaneously is likely to be more complex than learning a single function

(as is common in previous studies on function learning and multiple cue probability learn-

ing), on average, participants were able to perform better than expected if they were unable

to take generalize from the provided context. This was even the case in a rather complex

situation where the functions were sampled from a general class of non-linear functions, al-

though performance dropped considerably as compared to environments with linear func-

tions.

The presented experiments focused on a general context which differentially affected the
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outcomes of options. This is different than the CMAB task of Stojic et al. (2015), in which

the features had different values for each option, while the function relating the contexts

to rewards was the same for each option. Future studies could combine these paradigms

and incorporate both option-specific (e.g., the type of restaurant) as well as general (e.g.,

the area in which the restaurants are located) contextual features, possibly allowing these to

interact (e.g., a seafood restaurant might be preferable to a pizzeria in a fishing village, but

not a mountain village).

Modeling function learning as Gaussian Process regression allowed to incorporate both

rule-based and similarity-based learning in a single framework. In all three environments,

participants’ learning appeared to rely on a universal learning and generalization strategy

based on a Gaussian Process regression with a radial basis function kernel. This is a univer-

sal function learning engine and assumes rather smooth functions to generalize from pre-

vious observations to similar contexts. This is close to a combination of exemplar learning,

in which past observations are memorized and averaged when making new predictions, and

similarity-based extrapolation.

The results regarding the sampling strategy were somewhat less consistent. When the

features comprising the contexts were binary, people appeared to rely on a strategy in which

they focus on the probability of improvement over past outcomes. In environments with

continuous contextual features and linear and non-linear functions, they appeared to trade-

off their expectations and uncertainties more explicitly, and their decisions were best de-

scribed by an upper confidence bound sampling strategy. Participants may have adapted

their decision strategy to the task at hand. In a relatively simple scenario with binary con-

textual features, they appeared to focus on trying to improve upon past outcomes. When

there are few unique and distinct contexts, it might be possible to memorize the average
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outcomes for those contexts, such that trying to maximally improve upon the current best

option may be a feasible and efficient strategy. As the environment becomes more compli-

cated, they seemed to balance their expectations and uncertainties more explicitly. Upper

confidence bound sampling is not only the only sampling strategy with provable good re-

gret (Srinivas et al., 2012), but it has also been proposed as a dynamic shaping bonus within

the exploratory choice literature before (Daw et al., 2006).

The environment involving non-linear functions sampled from a Gaussian Process prior

was more difficult than the others, and a proportion of participants appeared unable to

learn the functions, performing more in line with a context-blind learning strategy (Kalman

filter) that treats the task as a restless bandit in which the expected rewards fluctuate over

time but where these fluctuations are not predictable from the changes in context. The

combination of a Kalman filter learning model with a “probability of maximum utility” de-

cision strategy that described these participants best has been found to describe participants

behavior well in an actual restless bandit task (Speekenbrink & Konstantinidis, 2015) and

here might have indicated the limits of participants’ learning abilities.

While previous research on function learning has found a bias towards linear functions

in such environments (e.g., Lucas et al., 2015), this was not the case in the presented experi-

ments. This could be due to the increased complexity of learning multiple functions simul-

taneously, or due to participants’ learning the functions with the purpose of making good

decisions, rather than to accurately predict the outcomes as such. While good performance

in standard function learning experiments requires accurate knowledge of a function in

its whole domain, more course-grained knowledge may suffice in a CMAB task, where it

might be enough to know which function has the maximum output for a given context.

Although the true functions relating contexts to rewards were smoother than those as-
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sumed by the estimated length-scale parameters within two of the three experiments, it is

not clear whether this constitutes as a bias (in the psychological sense) or might be a use-

ful prior to have in the real world. Approaching a task with a relatively less smooth kernel

may be wise when there is uncertainty about the level of smoothness in the environment.

Furthermore, assuming unsmooth functions and learning in a situation of smoother than

expected functions might lead to smaller errors than the other way around, that is, expect-

ing smooth functions and having to learn in unsmooth environments. Further probing the

effects of mismatched priors on generated rewards will be the focus of Chapter 8.
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“And now, at last, I come to the humanly significant and ex-

citing problem: namely, what are the conditions which favor

narrow strip-maps and what are those which tend to favor

broad comprehensive maps not only in rats but also in men?”

Edward C. Tolman, 1948

8
From behavior to theory

This chapter investigates the previously reported result that par-

ticipants underestimate smoothness using a Bayesian optimization

simulation with mismatched priors.
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8.1 Introduction

One of the main findings of the last two chapters was that the estimated λ-parameter, which

governs generalization within the radial basis function kernel, tends to be smaller than

expected given the environments in which participants had to search for rewards. I have

found this to be the case for both the spatially correlated and the contextual multi-armed

bandit and across different versions of both tasks. As λ scales the correlation between

points as their distance grows, smaller λ-estimates indicate that people generalize to a lesser

extend than what they could for the underlying smoothness of the task. This raises the fol-

lowing questions: Why is the estimated length-scale parameter frequently smaller than it

could be? Do people act irrationally when they do not tune their tendency to generalize to

the underlying environment? Or might there be another explanation for the found mis-

match between the smoothness participants seem to expect and the smoothness they ob-

serve?

This chapter investigates how much mismatched expectations about the generalizabil-

ity of the underlying function affect performance in function exploration-exploitation

tasks. More specifically, I use simulations to assess what kind of error is worse, expecting

smooth and having to optimize unsmooth functions or expecting unsmooth and having to

optimize smooth functions. Furthermore, my simulations will assess the extend to which

a Bayesian optimization algorithm performs worse if assumptions are mismatched as com-

pared to getting the expected smoothness right. The results of these simulations will have

consequences as to whether or not the previously found human behavior can be seen as bias

or as adaptive behavior.
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8.2 Mismatched Bayesian optimization

The goal of Bayesian optimization is to find the maximum of a target function f(x) on

some bounded setX , which I will take to be a subset ofRD (Brochu et al., 2010; Snoek

et al., 2012; Shahriari et al., 2016) by using a Gaussian Process (GP) as a probabilistic model

for f(x) and then exploiting this model via a sampling strategy to decide where inX to

evaluate the function next (Ghahramani, 2015). This set-up is exactly the same as in the

paradigms used in Chapters 6 and 7. Bayesian optimization algorithms are frequently also

applied for problems of black box function optimization*. Even though different sam-

pling strategies have been compared statistically before (cf. Brochu et al., 2010; Snoek et al.,

2012) and Bayesian optimization is frequently applied to optimize neural network hyper-

parameters (Bergstra et al., 2011), fitness landscapes (Romero et al., 2013), or even to re-

place more traditional numerical methods (Hennig & Hauberg, 2014), surprisingly little

is known about how choosing a particular kernel affects Bayesian optimization routines in

practice.

In fact, many practitioners seem to either use the radial basis function kernel or a Matérn

kernel in order to encode assumptions about smooth or medium smooth target functions

(to the best of my knowledge first proposed by Snoek et al., 2012). Thus, assessing how dif-

ferent kernels affect the performance of the Bayesian optimization routine is not only an

important psychological question, it also matters for practitioners of Bayesian optimization

in order to decide when to use which kernel, potentially providing a case in which cognitive

psychology can aid machine learning research.

Given two kernels k1 and k2, I will define mismatched optimization as optimizing a func-
*It is called black box as the underlying function or at least some important characteristics of it are either

unknown or expensive to evaluate.
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tion f ∼ GP(0, k1(xs, xs) sampled from a GP-prior parameterized by k1 using a GP parame-

terized by k2, iff k1 and k2 are not the same kernel. This means that a target function is sam-

pled from a Gaussian Process parameterized by one kernel and then optimized with a GP

parameterize by another kernel. As the kernel can encode assumptions about the expected

smoothness of the target function, mismatched optimization occurs if these assumptions

are misaligned. I will refer to the kernel that has generated the target function as the teacher

and to the kernel that is used to optimize the target function as the student.

8.2.1 Sampling strategies

A simulation assessing the mismatch of assumptions in Bayesian optimization might not

only vary the used kernels, but also the chosen sampling strategy. In the following simula-

tions, I will assess 6 sampling strategies in terms of their performance within mismatched

optimization scenarios. Some of these strategies have been used in the model comparisons

before, whereas others were too costly to be evaluated in a psychological setting. Let me

quickly recapitulate these sampling strategies one more time.

Upper confidence bound (UCB) sampling picks the next point that currently has the

highest upper confidence bound (Srinivas et al., 2010):

UCB(x) = μ(x) + βσ(x) (8.1)

UCB sampling is an optimistic strategy that samples based on an explicit exploration-exploitation

trade-off, and has been proven to produce sub-linear regret (Srinivas et al., 2012), where

regret is measured by the difference between the currently produced output and the best

possible output on every trial t
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rt = f(xmax)− f(xt) (8.2)

Moreover, upper confidence bound sampling has been the strategy that has predicted

participants’ behavior best in the experiments presented in Chapters 6 and 7, indicating

that a trade-off between exploration and exploitation captures human behavior well.

The Probability of Improvement (POI) sampler picks the next point that currently

shows the highest probability of being better than an incumbent point which is normally

set to x+ = argmaxxi∈x1:t f(xi)—i.e., the best outcome observed so far (Kushner, 1964):

POI(x) = P(f(x) ≥ f(x+ + ξ)) = Φ
(
μ(x)− f(x+ − ξ)

σ(x)

)
(8.3)

where Φ(·) is the normal cumulative distribution function and ξ ≥ 0 is a trade-off pa-

rameter controlling exploration. This sampling strategy predicted participants’ choices best

within the contextual multi-armed bandit experiment with discrete binary cues in Chapter

7.

The Expected Improvement (EXI) assesses each point by how much in expectation it

promises to be better than an incumbent point x+ (Močkus, 1975):

EXI(x) =


(μ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z), if σ(x) ≥ 0

0, if σ(x) = 0
(8.4)

where φ(·) is the normal probability density function and Z = (μ(x)− f(x+)− ξ)/σ(x).

The remaining three sampling strategies are all based on relatively costly Monte Carlo
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methods. They are included in the simulations because they are frequently applied in com-

putational optimization scenarios. Yet, I have not used them as candidate sampling strate-

gies of human search in the experiments presented earlier. This was mostly due to the fact

that these acquisition functions are computationally expensive to run such that it would

not have been possible to use them for each participant individually while also optimizing

kernel hyper-parameters. For example, the probability of maximum utility sampling strat-

egy, which can be seen as a more simplistic case of the following strategies, already takes

three times as long as all the other sampling strategies when parameters were optimized at

the same time, running for about 4 hours per participant.

Predictive entropy search (PES) is an information-based acquisition function that sam-

ples points that promise to maximally reduce the differential entropy of an unknown op-

timizer x∗ = argmaxx∈X f(x) (Hennig & Schuler, 2012; Hernández-Lobato et al., 2014).

After having observed dataDn, the posterior distribution of x∗ is p∗(x|D). The predictive

entropy search sampler then is

PES(x) = H(y|Dn, x)− Ex∗|Dn [H(y|Dn, x, x∗)] (8.5)

whereH(x∗|Dn) denotes the differential entropy of p∗(x|D). The differential entropy can

be approximated by Monte Carlo sampling from the posterior GP (Hernández-Lobato

et al., 2014).

Minimum regret point (MRP) sampling samples the point producing the lowest sim-

ple regret (Metzen, 2016). The expected simple regret (ER) of selecting x under p(f) can be

expressed as
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Ep(f)[Rf(x)] = Ep(f)[f(xmax)− f(x)]. (8.6)

MRP picks the point which with minimal regret under pn(f), x̃ = argminx ER(pn)(x).

MRP(x) =min ER(pn)(x̃)− Ey|pn(f), x[min
x̃

ER(p[x,y]n )(x̃)] (8.7)

where p[x,y]n = p(f|D ∪ {xq, y}) is the updated probability distribution of f after having

queried xq and observing y = f(xq) + ε. MRP sampling can also be modified to account for

the inherent uncertainty about x̃ via marginalization leading to Minimum Regret Search

(MRS) as described in detail by Metzen (2016).

MRS(x) = Ex̃∼p∗n [ER(pn)(x̃)]− Ey|pn(f),xq [Ep∗Dn∪{(xq,y)}
[ER(p[x,y]n )(x̃)]] (8.8)

8.2.2 Encoding Smoothness

I will again use the Matérn class of kernel functions to encode the expected smoothness of

the target function explicitly as in Chapters 3-4. To recaptitulate this kernel class one more

time, the Matérn covariance between two points separated by τ = |x− x′| distance units is

kν(τ) = σ2f
21−ν

Γ(ν)

(√
2ντλ

)ν
Kν

(√
2ν τλ

)
(8.9)

where Γ is the gamma function,Kv is the modified Bessel function of the second kind, and

λ and ν are non-negative covariance parameters. A GP with a Matérn covariance has sam-
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ple paths that are ν − 1 times differentiable. When ν = p + 0.5, the Matérn kernel can be

written as a product of an exponential and a polynomial of order p. When ν = p + 0.5, the

Matérn kernel can be written as a product of an exponential and a polynomial of order p.

kp+0.5(τ) = σ2f exp
(
−
√

2ντ
λ

)
Γ(p+ 1)
(2p+ 1)

×
p∑

i=0

(p+ i)!
i!(p− i)!

(√
8ντ
λ

)p−i

(8.10)

I will compare two extreme cases in the following simulations, the Ornstein-Uhlenbeck

process (a Matérn 1/2 kernel),

k(τ) = σ2f exp(−τ/λ) (8.11)

that results when setting p = 0 and the radial basis function kernel that results when

p → ∞,

k(τ) = σ2f exp(−τ2/2λ2). (8.12)

Figure 3.5 of Chapter 3 showed how differently smooth priors result into different levels

of posterior generalization, i.e. how much information one point provides about proximal

points.

8.2.3 Past research on mismatched assumptions

How mismatch affects the performance of Gaussian Process regression methods has been

investigated before. In fact, the derivations of learning curves discussed in Chapter 3 have
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also been applied to mismatched scenarios.

Sollich (2002) pioneered this work by deriving approximations to the learning curves

for the case of mismatched models and found that, for large input space dimensionality,

there are universal plateaux in the learning curves, with transitions in between that can ex-

hibit arbitrarily many over-fitting maxima. In lower dimensions, plateaux also appear, and

the learning curve remains dependent on the mismatch between student and teacher even

in the asymptotic limit of a large number of training examples. In particular, these results

showed that learning with excessively strong smoothness assumptions is unwise: a student

with a radial basis function kernel will learn a rougher teacher function from a Matérn fam-

ily only “logarithmically slowly”.

Later, Sollich (2005) investigated whether GPs can be made robust against mismatch

effects by optimizing the student’s model hyper-parameters to maximize the data likeli-

hood. He derived an approximation for the average evidence and used it to predict the

optimal hyper-parameter values and the resulting generalization error. This showed that,

in lower-dimensional learning scenarios, evidence maximization eliminates logarithmically

slow learning and recovers the optimal scaling of the decrease of generalization error with

training set size.

Furthermore, van der Vaart & van Zanten (2008) derived rates of contraction of poste-

rior distributions on nonparametric or semiparametric models based on Gaussian Processes

and showed that smoother functions show faster contraction rates than rough ones and

that having the right expectation about the underlying smoothness improves the rate of

convergence.

Srinivas et al. (2012) showed that GP-UCB has sublinear regret for cases when the true

underlying function lies in a low Reproducible Kernel Hilbert Space norm, even in the
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agnostic setting of not precisely defining the kernel function.

To the best of my knowledge, no further theoretical proof for Bayesian optimization in

the mismatched setting exists.

Therefore, I will utilize extensive simulations of mismatched optimizations in order to

assess the effect of a misspecification of the target function’s smoothness empirically. Hope-

fully, this will then shed some light onto human generalization behavior found within the

spatially correlated and the contextual multi-armed bandit described before while also be-

ing informative for applied settings of Bayesian optimization.

8.3 Simulation 1: Simple mismatch

In the first simulation, the target function

yt = f(xt) + ε (8.13)

was created by sampling

f ∼ GP(0, k(x, x′)) (8.14)

and ε ∼ N (0, 10−3) from a teacher kernel and a student kernel was used to optimize it.

This procedure is repeated 100 times for every student-teacher-sampling strategy combina-

tion resulting in 4 different comparisons for every sampling strategy, i.e. all combinations

of the Ornstein-Uhlenbeck (Matérn 1/2) and the radial basis function kernel as either the

teacher or the student kernel.
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8.3.1 Simple regret

In the first simulation, I fix the length-scale parameter to λ = 0.1 for both student and

teacher kernels. Figure 8.1 shows the median regret calculated over 100 simulations for all of

the sampling strategies over 100 trials.
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Figure 8.1: Median regret over ধme for different sampling strategies in matched and mismatched condiধons.

Maximizing an unsmooth function is harder than maximizing a smooth function. The

lowest regret achieved after 100 trials is within the region of 10−5 produced by the mini-

mum regret search sampling strategy for the scenario in which a radial basis function stu-

dent maximizes a radial basis function teacher. The upper confidence bound sampling algo-
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rithm reaches a regret within the region of 10−3 within the same scenario. A Matérn 1/2 (i.e.

Ornstein-Uhlenbeck) student trying to optimize a radial basis function teacher can also per-

form reasonably well. The lowest median regret reached in such a scenario is in the region

of 10−4, again by the minimum regret search acquisition function. The upper confidence

bound sampling algorithm achieved a regret in the margin of 10−2 in this scenario. Opti-

mizing an unsmooth function turned out to be harder overall. In the matched case, with

a Matérn 1/2 teacher and a Matern 1/2 student, the best regret achieved was in the region

of 10−1.5, again achieved by the minimum regret sampling strategy. The upper confidence

bound sampling strategy achieved a regret in the region of 10−1 in this scenario. Using a ra-

dial basis function kernel student to optimize a Matern 1/2 kernel lead to the worst regret

overall. In this scenario, the minimum regret search only achieved a median regret of 0.16

and the upper confidence bound sampling algorithm of 0.35 after 100 trials.

These results show that mismatched optimization leads to worse performance as com-

pared to expecting the right level of smoothness. The worst possible regret results from

expecting a smooth function and in reality optimizing a very rough function. Overall, the

information-based sampling strategies performed best. Notably, mismatch mattered more

than specifying the right sampling strategy. This is surprising as debates in the machine

learning literature frequently concern the choice of an adequate sampling strategy and not

specifying the right kernel.

8.4 Simulation 2: Regret in higher dimensions

Simulation 1 focused on the most simplistic case of having to optimize a univariate func-

tion. However, the previous experiments also showed an effect of undergeneralization

when participants had to optimize a function on a bivariate grid or using a context incor-
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porating three variables. Therefore, the next simulation focused on mismatch in higher

dimensions. The same simulation as before was repeated but this time over 50 trials and for

d = {2, 3, 4} dimensions of the input space over which the function had to be optimized.

Figure 8.2 shows the median root mean squared difference between each sampling strategy’s
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Figure 8.2: Median counter-factual regret over 50 trials for different input-dimensions.

performance in the mismatched setting compared to the same strategy’s performance in the

matched setting for each dimension. This provides a relative measure of counter-factual

regret, i.e. by how much could each of the strategies have done better on each trial if it had

been specified with the right prior about the target function’s smoothness. It can be seen

that, whereas most sampling strategies seem to recover from misspecified assumptions in

the bi-variate case, the effect of misspecifications exacerbates over time in higher dimen-
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sions.

Interestingly, when just looking at the performance of the upper confidence bound sam-

pling strategy, the counter-factual regret of a Matérn 1/2-student for d = {2, 3} dimensions

decreases again and is indistinguishable from 0 after 50 trials, even though this is not com-

pletely the case for d = 4. However, the counter-factual regret of a radial basis function

kernel trying to optimize Matérn 1/2 never goes back to 0 again. In some cases, expecting

a rough function and having to optimize a smoother functions is better than the other

way around. However, this is not necessarily often the case. For example, looking at the

information-based sampling strategies in the cases when an RBF kernel is used to optimize

functions sampled from a Matérn 1/2-kernel, the regret does not seem to go up in higher

dimensions. Thus, there are also cases when expecting smoother functions does not hurt

performance.

8.5 Simulation 3: Optimizing hyper-parameters

Sollich (2005) has shown that some of the effects caused by mismatched assumptions can

be overcome by optimizing hyper-parameters in the pure learning case. Therefore, I next

assessed if this also holds true for the optimization case, when the student kernel’s hyper-

parameters θ are optimized via the log marginal likelihood

log p(y|X, θ) = − 1
2
y⊤K−1

y y− 1
2
log |Ky| −

n
2
log 2π. (8.15)

As before, I set the length-scale of the teacher kernel to λ = 0.1. However, this time the

student’s length-scale is optimized on every step of the optimization routine. The simula-

tion is again run over 100 trials and repeated 100 times for each sampling strategy. Figure 8.3
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shows the resulting median regret per trial for all sampling strategies and every student-

teacher combination.
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Figure 8.3: Median regret over ধme for different sampling strategies in matched and mismatched condiধons.

The resulting regret shows that mismatch still affects the performance of the Bayesian

optimization routine. In cases where the teacher and student both come from a Matérn

1/2 kernel, the lowest overall reached regret is in the region of 10−2, whereas the best regret

when trying to optimize the Matérn 1/2 kernel by using a RBF kernel is 10−1.5. The effect of

mismatch is even stronger in the case of an RBF-teacher, where the best overall regret in the

matched case is 10−10 but only 10−4.5 for the mismatched case. This means that optimizing
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hyper-parameters leads to better performance in all cases, no matter if mismatch occured or

not. However, having the right assumptions about the target function’s smoothness mat-

ters even more in cases when the hyper-parameters are optimized. Given that participants’

estimates of λ seemed to be relatively stable across experiments in Chapters 6-7, they likely

did not adapt much to the underlying smoothness, but rather approached different settings

with similar expectations.

8.6 Simulation 4: The effect of λ on regret

Throughout all of the experiments in Chapters 6-7 I have used a radial basis function kernel

to describe participants’ generalization. As the estimated λ, which I interpreted as a gradi-

ent of functional generalization, turned out to be lower than what the underlying function

allowed for, I next assess the effect of mismatched λs directly.

Two kernels, a student and a teacher, were used. Both kernels were set up to be radial

basis function kernels, where the teacher kernel was parameterized with a length-scale λ0

and the student kernel with a length-scale λ1. For situations in which λ0 ̸= λ1, the opti-

mization routine can be seen as mismatched before. If λ1 > λ0, then the student kernel

tends to overgeneralize from the observed points, whereas if λ1 < λ0 the student kernel

tends to undergeneralize. Every possible combination between λ0 = {0.1, 0.2, · · · , 1} and

λ1 = {0.1, 0.2, · · · , 1}was created leading to 100 different combinations of student-teacher

optimization scenarios. For every run of the simulation, I sampled a target function from a

univariate Gaussian Process parameterized by λ0 and then used a Gaussian Process param-

eterized by λ1 and one of the 6 sampling strategies to optimize the target function over 50

trials. This was repeated for 100 runs for every student-teacher-sampling strategy combina-

tion leading to 60,000 runs of the simulation in total (i.e., 10 different λ0-values times 10
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different λ1-values times 6 sampling strategies).

Figure 8.4 show the median regret for 100 runs for all sampling strategies and every λ0-λ1-

combination at trial numberN = {1, 5, 10, 15, 50}.
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Figure 8.4: Median regret for different student-teacher combinaধons and sampling strategies at trial numberN =
{1, 5, 10, 15, 50}.

The results of this simulation revealed several interesting factors influencing regret. First

of all, regret decreases fastest when smooth teachers are optimized by equally smooth stu-

dents as can be seen in the right upper corner of the heat-maps in Figure 8.4. Furthermore,
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there are cases in which a student can recover from mismatched assumptions over time,

producing similar regret as if a completely matched student had been used. Importantly,

this happens much more frequently for students that were parameterized to be less smooth

than the teacher than the other way around, as can be seen on the right lower part of the

heat-maps throughout all optimizations. The value of λ1 producing the lowest average re-

gret over all trials was λ̂1 = 0.2 over all sampling strategies and λ̂1 = 0.2 for the upper con-

fidence bound sampling strategy. Estimating the best possible alignment between λ0 and λ1

to produce the lowest regret revealed that under estimating λ0 by an average of about 0.19

over all sampling strategies and by 0.21 for the upper confidence bound sampling strategy

can potentially produce the best regret. Thus, these results provide strong evidence that

lower values of λ do not necessarily constitute a bias but can sometimes lead to competitive

overall regret. This is most likely due to the additional flexibility gained by assuming less

smooth functions. If the true value of λ0 is unknown, and optimizing λ1 unfeasible, erring

on the side of assuming a rougher environment thus seems wise.

8.7 Discussion

Bayesian optimization is not only a popular method to optimize black box functions, I

have also found it to predict participants’ search behavior in both spatially correlated and

contextual multi-armed bandit tasks. However, in both of these paradigms the estimated

length-scale parameters showed that participants seem to underestimate the underlying

smoothness of the environment, i.e. they did not generalize as much as they could have. In

this chapter, I have tried to assess the effect of this underestimation using various simula-

tions manipulating the difference of smoothness between a teaching kernel from which a

target function is generated and a student kernel that is used to optimize the target func-
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tion.

First of all, from a machine learning perspective, the results suggest that the wrong prior

assumptions about a target function’s smoothness can lead to a large increase in regret, that

this effect gets worse in higher dimensions, and remains even if hyper-parameters are opti-

mized. Moreover, often-times choosing the right prior matters far more than choosing the

sampling strategy. Thus, taking the term “black box optimization” too literally can lead to

noticeable under-performance. My results thus tell a cautionary tale about how thinking

hard about prior assumptions can sometimes be more important than choosing a particular

sampling strategy.

Secondly, from a psychological perspective, the results suggest that underestimating the

underlying smoothness is not always maladaptive. For example, in the simple regret sim-

ulation, assuming extremely rough functions still leads to comparably competitive perfor-

mance when optimizing an extremely smooth function. Moreover, in higher dimensions,

the counter-factual regret of the upper confidence bound sampling strategy was relatively

robust to misspecification and (at least for lower dimensions) was able to fully recover from

misspecified priors. In the scenario where the length-scale is optimized on every step, un-

derestimating the underlying smoothness can lead to under-performance. However, it is

likely not the case that participants adapt their length-scale according to the evidence seen

on every trial, especially given very stable estimates across the different settings in the multi-

armed bandit experiments. In the final simulation I generated different levels of mismatch

by parameterizing radial basis function kernel teachers and students with different values

of the length-scale λ. The results showed that undergeneralization can be beneficial for

all Bayesian optimization routines, with the best possible λ1 to be used for optimizing a

teacher with λ0 to be –on average– smaller by 0.19 (at trial 100).
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The simulations presented here have tried to shed more light onto the finding of partici-

pants’ consistently lower than necessary length-scale parameter estimates in all of the bandit

experiments presented previously. The motivation was to assess if the apparent undergen-

eralization found in such tasks is practically damaging participants’ performance and by

how much. I have found that it is not always bad for a Bayesian optimization routine to be

pessimistic, that is to expect rough functions and in fact being confronted with smoother

functions. Sometimes being pessimistic about the world one needs to learn in can pay off

in the end. Thus, under-generalization might not be a bug but rather a feature of human

behavior.

Nonetheless, the question of why people seem to undergeneralize as much as they do

needs to be addressed further. One mechanism proposed in the literature is that people

might try to avoid overgeneralization from encountered exemplars (Gershman & Daw,

2017). Such a mechanism could be especially important if a learning algorithm is paired

with a naive and optimistic sampling approach such as upper confidence bound sampling

or within scenarios requiring to avoid very bad outcomes. Other explanations such as mem-

ory restrictions or sparse updates could also be investigated. Further disentangling these

mechanisms should be the goal of future experiments on human behavior in contextualized

bandit settings.
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“And then will follow the period of slow and steady progress,

varied by a certain amount of wholesome interruption.”

Edward Titchener, 1914

9
Conclusion

This chapter concludes the thesis by summarizing the main findings,

discussing possible shortcomings, and proposing future directions.
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9.1 Lessons learned

I began this thesis by posing the fundamental computational problem of generalization:

how do people know what to do in novel situations? I then proposed that Gaussian Pro-

cess regression offers a unifying theory to explain human generalization across a wide range

of cognitive domains. I will now briefly summarize the main findings of this thesis, examine

potential shortcomings, and propose further experiments and steps towards theory unifica-

tion.

9.1.1 Gaussian process learning curves match perceived predictability

The first experiment assessed if the characteristics theoretically influencing the generaliz-

ability of functions also influence participants’ predictability judgments and found this

to be the case: participants perceive the smoothness of functions as more important than

the attached noise when making predictability judgments. Thus, predictions derived from

learning curves match participants’ behavior.

A shortcoming of this study is that it only asked participants’ to judge about different

functions’ predictability without letting them generate actual predictions later on. Future

studies could let participants make predictability judgments first and afterwards reward

them based on how well they can actually predict the presented functions, taking into ac-

count their prior judgments.

Moreover, as the derived learning curves assumed a match between the student and

the teacher kernel, future experiments could also assess the effect of mismatched learn-

ing on both predictability judgments and function learning performance. In particular,

it would be interesting to assess what happens when participants learn in either rougher,

smoother, or dynamically changing environments, before assessing them on the same level
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of smoothness. This could be used to develop and test different hierarchies of function

learning models, such as warm starting (i.e., adjusting hyper-parameters over environments

Poloczek et al., 2016), mismatched learning (i.e., assuming a fixed length-scale that is either

too small or too large for the test set), or even “learning-to-learn”-algorithms (Chen et al.,

2017) within environments of the same class over time.

Currently, the design of the predictability experiments also has been fully passive, whereas

I could also ask participants to sample points actively. As learning curves for uncertainty-

guided sampling with Gaussian Process regression exist (Seo et al., 2000), it would be straight

forward to again compare theoretical predictions with human behavior in such paradigms.

Putting these concerns aside, I believe that studies on predictability, and associated there-

with theoretically derived learning curves, will continue to produce elegant insights into

human generalization.

9.1.2 Function learning and generalization is compositional

In the fifth chapter of this thesis, I defined and tested a compositional theory of human

function learning and generalization. Within 8 experimental paradigms, from simple pat-

tern completion to a working memory task, I have probed how a pre-defined compositional

grammar of functional inductive biases explains human behavior. The results and analyses

of all experiments converged clearly on the same interpretation, namely that participants do

indeed have compositional inductive biases.

Other approaches of structure learning and generalization such as approximating the gra-

dient of functional generalization explicitly or just assuming a smooth radial basis function

kernel were unable to explain the richness of behavioral findings across all experiments. A

compositional theory of human generalization provides a plausible and unique description
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of human generalization.

As is often the case, these results answer some but also generate many new questions.

Most important is probably the question whether a compositional theory of human gen-

eralization offers a universal theory of generalization. Shepard’s original proposal was to

assess the gradient of generalization and later on researchers such as Carroll and Brehmer

proposed rule-based accounts of function learning. One could argue that a compositional

theory of generalization runs the risk of falling into the same complexity trap as more tradi-

tional rule-based accounts: as many possible base kernels exist (many more than the three

proposed in Chapter 5), the main question becomes how participants choose and combine

kernels in order to make sense and generalize from encountered data. Thus, my proposal

of compositional inductive biases might move the quest for a universal rule of human cog-

nition from an area that is a bit like physics (i.e. finding a particular rule or framework that

predicts behavior across many set-ups) to one that is more akin to chemistry (i.e. trying to

find the elements of generalization and the rules they adhere to). To this I say that propos-

ing compositionality as a core principle of generalization is not opposed to assessing the

gradient of functional generalization. Indeed, in order to truly understand human behavior

across a wide range of domains, we will need both a top-down theory that tells us what the

“human kernel” might look like, as well as a bottom-up model describing how participants

arrive at a particular form of generalization over repeated experience. My results about com-

positionally in function learning imply that human generalization is compositional, even if

my model is not exactly perfect.

The empirical finding of compositional inductive biases paves the way for multiple

follow-up studies. An obvious one is defining and assessing a compositional theory of func-

tion exploration-exploitation which I will describe in more detail below. Another one con-
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cerns the distribution of compositional priors and how idiosyncratic and task-specific these

are.

Lastly, I have only assessed compositionality by combining different kernels in order to

make the search tree “wider”. However, compositionality could also be assessed by making

the tree deeper. This could be done by parsing the results computed from one function

into another function, resulting in a Deep Gaussian Process (Damianou & Lawrence, 2013).

Deep GPs can overcome some problems such as mismatch under stationarity assumptions,

but also leads to further inferential complexities at run time.

Taken together, I believe that the results presented in Chapter 5 make a strong case that a

successful quest for a theory of human generalization must adhere to the principle of com-

positionality.

9.1.3 Function learning guides search through complex tasks

Within both a spatially correlated and a multi-armed bandit task, I have found that partic-

ipants’ search behavior is generally best predicted by a combination of a Gaussian Process

function learning model and the optimistic upper confidence bound sampling strategy.

This not only means that participants’ search in complex spaces is guided by a function

mapping contexts to expected rewards and their attached uncertainties, but also that they

solve the exploration-exploitation dilemma by balancing between sampling highly valued

options while also valuing exploration in order to reduce uncertainty. As a Gaussian Pro-

cess function learning model paired with the upper confidence bound sampling strategy is

also the only computational algorithm in such scenarios with known performance guaran-

tees, participants’ behavior is surprisingly adaptive.

The experiments presented in Chapters 6-7 open the way for further cross-experimental
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comparisons. As recent neuroscientific evidence has connected both spatial and concep-

tual representations to a common neural substrate (Constantinescu et al., 2016), a model of

generalization could also further unite contextual and spatial search problems. For exam-

ple, the bivariate spatially correlated multi-armed bandit can be seen as a contextual multi-

armed bandit problem with 121 arms and 2 continuous features. This makes the task com-

parable to the one used by Stojic et al. (2015). The results of such a comparison could test if

the same model that predicts behavior in spatially correlated grids also describes behavior

in contextual bandits, if the extracted parameters, in particular the estimated extent of gen-

eralization, are similar, and whether or not the neural representation of such tasks is analo-

gous. The Gaussian Process function learning model could also be adjusted by extending

the model’s search horizon as has been proposed in the Bayesian optimization community

before (González et al., 2016).

The results presented in Chapters 6-7 show that marrying powerful yet interpretable

function learning techniques with methods commonly applied in the reinforcement learn-

ing literature can further advance our understanding of adaptive behavior and generaliza-

tion in complex environments.

9.1.4 Under-generalization is sometimes beneficial

Chapter 8 has addressed the question if the empirically found phenomenon of participants’

low λ-parameter estimates and the resulting under-generalization is always disadvantageous

or if –indeed– there are situations in which being pessimistic about the underlying smooth-

ness can be beneficial. The results of mismatched optimization simulations revealed that

–even though expecting the right level of smoothness is usually best– there are situations in

which it is easier to recover from mismatched priors if those have been defined pessimisti-
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cally rather than optimistically. A quote commonly attributed to Albert Einstein says :“I’d

rather be an optimist and a fool than a pessimist and right”. As it turns out –at least in func-

tion exploration-exploitation scenarios– even Einstein can be wrong sometimes.

There are several remedies that could be applied to further overcome mismatch in Bayesian

optimization. One is to integrate out the estimated hyper-parameters of the kernel by ap-

plying slice sampling (Snoek et al., 2012). Whether or not integrating out hyper-parameters

can indeed overcome mismatch is an open empirical question.

Another way to overcome mismatch could be to utilize a compositional approach in

which differently smooth kernels are combined additively and the weights are optimized

using the log-evidence. When I tried this in a simulation for functions sampled from an

Ornstein-Uhlenbeck kernel, a simple mixture of a radial basis function and an Ornstein-

Uhlenbeck kernel was not able to produce lower regret than just using the Ornstein-Uhlenbeck

kernel alone (see Appendix A8). This is most likely due to the fact that in optimization sce-

narios, algorithms only sample from very restricted points of the input space, i.e. points

that promise to produce high outputs. Therefore, such sampling strategies do not provide

enough information to optimize mixture weights.

By further assessing the effects of mismatched priors, both within computational simula-

tions and psychological experiments, we may create new insights bridging psychology and

machine learning research.

9.2 Open questions

There also remain open theoretical questions, the most important of which I want to ad-

dress here.
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9.2.1 Is this a process level model?

As Gaussian Process regression is a Bayesian algorithm that scales cubically with the number

of training points, the question about whether or not my proposal equips us with a process

level model seems adequate. Let me respond to this concern in two ways.

First, I do not see Gaussian Process regression as a process model per se, but rather as a

computational level theory*. However, the borders between different levels of analysis be-

come blurred relatively quickly. Consider Shepard’s paradigmatic example of a universal

law for which he defers to Newton’s law of gravity. Even though Newton’s law predicts

the behavior of atoms, planets, and even galaxies, it is nonetheless not a process level model

per se. It does not explicitly state how (i.e., by which underlying mechanism) different ob-

jects attract or repel each other. In fact, in his lectures on “The Character of Physical Law”,

Richard Feynman elaborates on three different ways by which Newton’s law could be in-

terpreted. Gravity could either refer to forces generated at a distance, to a potential at an

object’s center, or be defined by the shortest path between two objects. All of these inter-

pretations are mathematically equivalent to Newton’s law, but “psychologically feel very

different” (Feynman & Wilczek, 1964). Regardless, Newton’s law describes and predicts

a wide range of physical phenomena. While I do not claim that the theory of Gaussian

Process-based generalization forward is comparable to Newton’s universal law, I think the

mechanism of action is similar. By providing a computational framework to assess differ-

ent forms of generalization, I hope to find empirical commonalities, be it compositionality

or under-generalization, that build up a theory of generalization which predicts behavior

across a wide range of paradigms.
*Based on Marr & Hildreth (1980)’s levels of analysis, the computational level (What does it do and why?),

the algorithmic level (What is the representation and algorithm?), and the implementation level (What is the
physical realization?).
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There also exist several methods to be applied to transform Gaussian Process regression

into a more plausible form of what is commonly referred to as a psychological process

model. One such way is to speed up inference by approximation, for example via sparse

sampling (Herbrich et al., 2003)†. This is similar to sampling-based process models that

are currently gaining popularity as computationally rational solutions of resource-limited

agents to complex problems (Gershman et al., 2015a; Dasgupta et al., 2017a; Bramley et al.,

2017). Another approach could be to computationally embrace the linearity bias that is fre-

quently observed in traditional function learning settings. As inference for linear regression

is computationally cheap (it scales linearly with the number of data points), the linearity

bias could be re-defined as a computationally less taxing “linearity heuristic”. Participants’

behavior might correspond well to models that try to jump to the limiting parametric form

in order to save computations (Gramacy & Lee, 2008). Thus, there are multiple ways by

which Gaussian Process regression could be made more “human-like”.

9.2.2 Why not one model to rule them all?

Can the compositional model of generalization assessed in Chapter 5 be applied to the func-

tion exploration-exploitation scenarios assessed in Chapters 6-7?‡

One easy way to assess if compositions play a role when optimizing functions is to let

participants explore and exploit the univariate functions created as the “matched set” in

Chapter 5. If participants perform better when optimizing the compositional as compared

to the non-compositional set, then this will provide first evidence that compositions also
†Similar savings can also be achieved by re-using previous computations (Dasgupta et al., 2017b).
‡Indeed, the chapters of this thesis are not sorted chronologically but rather topically. The function

exploration-exploitation experiments were in fact conceptualized prior to defining and assessing the compo-
sitional theory of function learning. Thus, developing and assessing a theory of how compositional building
blocks are combined when having to optimize unknown functions is a logical next step.
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matter in exploration-exploitation situations. The task will then be to build a computa-

tional model of compositional optimization. One possible problem for this could be that

the restricted set of observations that the sampling strategies produce might not be infor-

mative enough to discover sufficient structure. Thus, a compositional approach to opti-

mization will likely need an explicit exploration bonus towards uncovering compositions or

strong compositional priors. This could be accomplished by adding a strategic exploration

mechanism that chooses between maximization, simple exploration, or exploration to dis-

cover compositional structure.

In the long run, I believe that combining compositional search with adequate sampling

strategies will create both psychologically plausible and computationally powerful rein-

forcement learning models that can generalize to new tasks.

9.3 Generalizing generalization?

There are also a few more general directions in which the present research can be taken.

9.3.1 Further theory unification

A Gaussian Process-based theory of generalization offers many opportunities for further

theory unification. For example, the associative learning models as specified in Chapters 6-7

can be reformulated as a GP regression model (Reece & Roberts, 2010) and hence imple-

mented as a function learning model. In addition, when the length-scale of the radial basis

function kernel approaches 0 (λ → 0), the function learning model effectively assumes

state-independence, as in traditional reinforcement learning models. Thus, there may be a

continuum of reinforcement learning models, ranging from the traditional assumption of

state independence to the opposite extreme of complete state interdependence.
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Moreover, a Gaussian Process is also equivalent to a Bayesian Neural Network with in-

finite nodes (Neal, 1996), suggesting a further link to distributed function learning models

(LeCun et al., 2015). Indeed, one explanation for the impressive performance of Deep Re-

inforcement Learning (Mnih et al., 2015) is that neural networks are specifically a powerful

type of function approximator (Schölkopf, 2015).

As Bayesian reinforcement can also be seen as approximate dual control (Dayan & Se-

jnowski, 1996), approximating and propagating an underlying value function can also be

modeled by Gaussian Process regression (Klenske & Hennig, 2015; Schulz et al., 2017a).

Given that the successor representation of reinforcement learning (Dayan, 1993) has re-

cently been shown to play a role in learning, memory and control (Gershman et al., 2012;

Momennejad et al., 2017) and that it is possible to define a kernel using the inverse graph

Laplacian (the successor representation under a random walk Kondor & Lafferty, 2002),

assessing diffusion kernels with an exponential decay over graphs in reinforcement learning

situations seems timely.

Sampling models of choice and decision making (Smith, 2000) could also be re-cast as a

special case of Gaussian Process regression. For example, it is possible to think about Gaus-

sian Processes applied to decision making as accumulating evidence at different time scales,

i.e. not only over trials but within a trial. The generative model underlying the drift dif-

fusion model is in fact a Gaussian Process, but defined in terms of intra-trial evidence dy-

namics. Thus, it is possible to define a single covariance function that incorporates both

inter-trial and intra-trial dynamics. One implication of this is that any neural circuitry pro-

grammed to do Gaussian evidence accumulation can also be programmed to do learning

across trials when configured with the appropriate recurrent connections.
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9.3.2 Scaling up

Carroll already said that participants in Shepard’s task do not only learn functions, but also

“programs”. I think making the compositional approach wider and deeper is only a first

stepping stone towards thoroughly exploring the human ability to generalize. In order

to really understand human generalization, I think what we need is a compositional ap-

proach that is closer to functional programming than to kernel compositions. This could

be achieved by recasting human problem solving as a form of program induction (Dechter

et al., 2013; Ellis et al., 2016), for example in paradigms that assess creative problem solving

and hypothesis testing. In another line of research, I have shown how heuristic decision

making strategies can emerge from compositional approximately Bayesian inference (Schulz

et al., 2016c), which –I believe– could also be adapted to compositional functional program-

ming more generally.

9.4 Conclusion

Situations in which generalization is required are ubiquitous. No matter if we perform

inferences about patterns in the environment or decide where to dine tonight, there can be

little doubt that generalization is a powerful ability aiding us to generate expectations in

novel situations, a core ingredient of human intelligence. The controversial question is how

we achieve this and what a unifying theory of human generalization might look like.

In this thesis, I have proposed to use Gaussian Process regression as method to investi-

gate human generalization. The results of my experiments showed that generalization is

compositional, that it guides decision making through complex tasks, and that the human

tendency to under-generalize can sometimes be beneficial rather than harmful. Thus, the

gradient of generalization is not the result of inferences someone makes, but a core ingredi-
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ent of those inferences.

Of course, these have only been investigations into a few domains that were immedi-

ately accessible to the chosen function learning approach. The next steps are now to test

how much these results themselves generalize both theoretically and empirically to other

domains. I am confident that doing so systematically and rigorously will bring us closer to

uncover universal rules of cognition— “possibly, behind the diverse behaviors of humans

and animals, as behind the various motions of planets and stars, we may discern the opera-

tion of universal laws” (Shepard, 1987).
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A
Appendix

A.1 Forecastibility

The Shannon entropy of a function f can be measured by the uncertainty of its spectrum

Sf:

H(f) = −
∫ π

−π
Sf(λ) ln Sf(λ)dλ (A.1)
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For any stationary function,

H(f) ≤ H(white noise)

= −
∫ π

−π

1
2π ln

1
2πdλ

= ln 2π, (A.2)

with equality if and only if f is white noise, the least forecastable signal with a uniform spec-

trum. The forecastibility measure Ω(f) is then defined as

Ω(f) = 1 − H(f)
ln(2π) . (A.3)

I follow the approach put forwad by Goerg (2013) and estimate Ω(f) by first estimating the

spectrum Sf, normalizing it so that it integrates to 1, and then plugging it back into Eq. A.1.

I use the periodogram as an unbiased estimator of Sf (see Goerg, 2013, for details).

A.2 Wavelet transform similarity measure

A discrete wavelet Haar Transform performs a scale-wise decomposition of the time series

in such a way that most of the energy of the time series can be represented by a few coeffi-

cients. The main idea is to replace the original series by its wavelet approximation coeffi-

cients a in an appropriate scale, and then to measure the dissimilarity between the wavelet

approximations. A detailed description of wavelet methods for time series analysis can be

found in Percival & Walden (2006). I use the R-package TSclust (Montero & Vilar, 2014)

to find the appropriate scale of the transform. I then measure the dissimilarity between two

series x1 and x2 by the Euclidean distance at the selected scale:
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d(x1, x2) = ||a1 − a2||. (A.4)

A.3 Model details for spatially correlated mulit-armed bandit experiments

Table A.1 shows every model’s parameter estimates and predictive accuracy for both Experi-

ment 10 and 11 presented in Chapter 6.

Table A.1: Modeling results of Experiments 10 and 11.

Model

Experiment 10 Experiment 11
Model Comparison Parameter Estimates Model Comparison Parameter Estimates

Predictive
Accuracy

Participants
Best

Described

Length
Scale
(λ)

Exploration
Bonus
(β)

Error
Variance
(
√
θ2ε)

Softmax
Temperature

(τ)

Predictive
Accuracy

Participants
Best

Described

Length
Scale
(λ)

Exploration
Bonus
(β)

Error
Variance
(
√
θ2ε)

Softmax
Temperature

(τ)

associative learning
Upper Confidence Bound 0.09 1 – 2.54 1.01 0.03 0.1 0 – 0.97 1.96 0.02
Pure Exploitation 0.07 1 – – 54.6 54.6 0.1 0 – – 148.41 148.41
Pure Exploration 0.02 0 – – 0.6 0.05 0.01 0 – – 15.9 0.03
Expected Improvement 0.02 0 – – 0.59 0.01 0.01 0 – – 1.56 0.02
Probability of Improvement 0.02 0 – – 0.42 0.01 0.1 0 – – 0.01 0.11
Probability of Maximum Utility 0.00 0 – – 0.62 7.63 0 0 – – 0.54 0.01

associative learning*
Upper Confidence Bound 0.21 1 – 20.12 0.01 28.12 0.36 12 – 44.08 0.07 15.79
Pure Exploitation 0.07 0 – – 54.6 0.01 0.1 0 – – 148.41 148.41
Pure Exploration 0.18 0 – – 0.01 1.6 0.33 3 – – 0.58 0.43
Expected Improvement 0.17 0 – – 0.01 0.62 0.32 0 – – 0.63 0.14
Probability of Improvement 0.15 0 – – 0.06 0.18 0.32 0 – – 0.01 0.09
Probability of Maximum Utility .012 0 – – 0.67 0.46 0.13 0 – – 0.36 0.01

function learning
Upper Confidence Bound 0.29 48 0.5 0.51 – 0.01 0.24 4 0.54 0.47 – 0.02
Pure Exploitation 0.16 6 1.94 – – 0.15 0.16 0 1.55 – – 0.11
Pure Exploration 0.02 0 0.11 – – 0.03 0.01 0 0.17 – – 0.55
Expected Improvement 0.15 9 0.56 – – 0.01 0.23 0 0.67 – – 0.05
Probability of Improvement 0.05 0 3.43 – – 0.18 0.02 0 0.87 – – 0.09
Probability of Maximum Utility 0.00 0 0.69 – – 7.17 0.02 0 0.49 – – 0.01

function learning*
Upper Confidence Bound 0.23 10 0.96 0.54 – 0.16 0.38 60 0.76 0.49 – 0.09
Pure Exploitation 0.16 1 7.13 – – 0.12 0.23 0 14.4 – – 0.06
Pure Exploration 0.14 3 0.08 – – 0.32 0.27 0 0.17 – – .19
Expected Improvement 0.09 1 0.71 – – 0.11 0.23 1 0.67 – – 0.05
Probability of Improvement 0.12 0 7.14 – – 0.2 0.24 0 0.84 – – 0.09
Probability of Maximum Utility 0.12 0 0.67 – – 0.46 0.12 0 0.46 – – 0.01

Win-Stay Lose-Sample 0.00 0 – – – 3.72 0.05 0 – – – 0.32
Win-Stay Lose-Sample* 0.05 0 – – – 0.73 0.26 0 – – – 0.22
Local Search 0.12 0 – – – 0.46 0.28 0 – – – 0.22

Note: Parameter estimates are the mean over all participants. There were 81 participants in Experiment 10 and 80 participants in Experiment 11.
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A.4 Model recovery

Figure A.1: Model recovery results, where data was generated by the specified generaধng model using individual
parধcipant parameter esধmates. The recovery process used the same cross-validaধon method used in the model
comparison. I report the predicধve accuracy of each candidate recovery model (bars including standard error) and
the number of simulated parধcipants best described (icon array). For both generaধng and recovery models, I used
UCB sampling. Table A.1 reports the median values of the cross-validated parameter esধmates used to specify each
generaধng model.

I present model recovery results that assess whether or not the predictive model compar-

ison procedure of experiments 10-11 (but also, conceptually, of Experiments 12-14) allows

to correctly identify the true underlying model. To assess this, I generated data based on

each individual participant’s parameter estimates. More specifically, for each participant

and round, I use the cross-validated parameter estimates to specify a given model, and then

generate new data resembling participants’ data. I generate data using the associative learn-

ing and the function learning model for Experiment 10 and the associative learning* model

and the function learning* model for Experiment 11. In all cases, I use the UCB sampling

strategy in conjunction with the specified learning model. I then utilize the same cross-
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validation method as before in order to determine if it is possible to successfully identify

which model has generated the underlying data. Figure A.1 shows the cross-validated predic-

tive performance (bars) for the simulated data, along with the number of simulated partici-

pants best described (icon array).

In the simulation for Experiment 10, the predictive model comparison procedure shows

that the associative learning model is a better predictor for data generated from the same un-

derlying model, whereas the function learning model is only marginally better at predicting

data generated from the same underlying model. This suggests that the main model com-

parison results are robust to Type I errors, and provides evidence that the better predictive

accuracy of the function learning model on participant data is unlikely due to overfitting.

When the associative learning model generates data using participant parameter esti-

mates, the same associative learning model achieves an average predictive accuracy of R2 =

.1 and describes 70 out 81 simulated participants best. On the same generated data, the func-

tion learning model achieves an average predictive accuracy of R2 = .09 and only describes

11 out of 81 simulated participants best.

When the function learning model has generated the underlying data, the same function

learning model achieves a predictive accuracy of R2 = .4 and describes 41 out of 81 simu-

lated participants best, whereas the associative learning model achieves a predictive accuracy

of R2 = .39 and describes 40 participants best. This makes the finding of the function

learning as the best predictive model even stronger as –technically– the associative learning

model could mimic parts of the function learning behavior.

In the simulations for Experiment 11, I use the localized version of each type of learning

model for both generation and recovery, since in both cases, localization improved predic-

tive accuracy of human participants (Table A.1). Here, I find very clear recoverability in all
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cases, with the recovering model best predicting the vast majority of simulated participants

when it is also the generating model (Fig. A.1).

When the associative learning* model generated the data, the associative learning* model

achieves a predictive accuracy of R2 = .31 and predicts 79 out of 80 simulated participants

best, whereas the function learning* model predicts only a lone simulated participant bet-

ter, with an average predictive accuracy of R2 = .26.

If the function learning* model generated the underlying data, the same function learn-

ing* model achieves a predictive accuracy of R2 = .34 and describes 77 out of 80 simulated

participants best, whereas the associative learning* model only describes 3 out of 80 simu-

lated participants better, with a average predictive accuracy of R2 = .32.

In all of the these simulations, the model that has generated the underlying data is also

the best performing model, as assessed by its predictive accuracy and the number of simu-

lated participants predicted best. Thus, I can confidently say that the cross-validation pro-

cedure distinguishes between the two assessed model classes. Moreover, in the cases where

the function learning or function learning* model has generated the underlying data, the

predictive accuracy of the same model is not perfect (i.e., R2 = 1), but rather closer to the

predictive accuracy I have found on the actual participant data (Table A.1).

A.5 Parameter Recovery

Another important question is whether or not the reported parameter estimates of the

models are reliable and recoverable. I address this question by assessing the recoverability

of the three parameters of the function learning model, the length-scale λ, the exploration

factor β, and the temperature parameter τ of the softmax choice rule. I use the results from

the model recovery simulation described above, and correlate the empirically estimated
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Figure A.2: Parameter recovery results. The generaধng parameter esধmate is on the x-axis and the recovered param-
eter esধmate is on the y-axis. The generaধng parameter esধmates are from the cross-validated parধcipant parameter
esধmates, which were used to simulate data (see Model Recovery). Recovered parameter esধmates are the result
of the cross-validated model comparison (see Model Comparison) on the simulated data. While the cross-validaধon
procedure yielded k-esধmates per parধcipant, one for each round (kexp1 = 16; kexp2 = 8), I show the median esধ-
mate per (simulated) parধcipant. The dashed line shows a linear regression on the data, while the Pearson correlaধon
and p-value is shown above the plot. For readability, colors represent the bivariate kernel density esধmate, with red
indicaধng higher density.

parameters used to generate data (i.e., the estimates based on participants’ data), with the

parameter estimates of the recovering model (i.e., the MLE from the cross-validation proce-

dure on the simulated data). I assess whether the recovered parameter estimates are similar

to the parameters that were used to generated the underlying data. I present parameter re-

covery results for the function learning model for Experiment 10 and the function learning*

model for Experiment 11, both using the UCB sampling strategy. I report the results in Fig-
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ure A.2, with the generating parameter estimate on the x-axis and the recovered parameter

estimate on the y-axis.

For Experiment 10, the correlation between the generating and the recovered length-scale

λ is r = .62, p < .001, the correlation between the generating and the recovered explo-

ration factor β is r = 0.62, p < .001, and the correlation between the generating and the

recovered softmax temperature parameter τ is r = 0.91, p < .001. For Experiment 11, the

correlation between the generating and the recovered λ is r = 0.91, p < .001, for β the

correlation is r = 0.77, p < .001, and for τ the correlation is r = 0.76, p < .001.

These results show that the correlation between the generating and the recovered pa-

rameters is incredibly high for both experiments and for all parameters. Thus, I have found

strong evidence to support the claim that the reported parameter estimates of the Gaussian

Process-based function learning model (Table A.1) are recoverable, reliable, and therefore

interpretable. Importantly, I find that estimates for β (exploration bonus) and τ (softmax

temperature) are indeed recoverable, providing evidence for the existence of a directed ex-

ploration bonus, as a separate phenomena from random, undirected exploration (Daw

et al., 2006).
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A.6 Model details for contextual mulit-armed bandit experiments

Table A.2 shows the full parameter estimates and predictive performance for all models

applied in the CMAB with binary features assessed in Experiment 12.

Table A.2: Model results of CMAB with binary features

Model Predictive R2 #best λ β σ τ
GP-RBF
Upper Confidence Bound 0.38 3 7.82 2.13 2.89 1.33
Expected Improvement 0.45 11 7.46 - 4.32 3.98
Probability of Improvement 0.46 15 7.39 - 3.37 8.43
Probability of Maximum Utility 0.40 3 8.40 - 3.62 4.21
GP-Linear
Upper Confidence Bound 0.13 5 - 1.31 - 4.17
Expected Improvement 0.14 3 - - - 1.39
Probability of Improvement 0.12 1 - - - 1.67
Probability of Maximum Utility 0.12 2 - - - 1.38
Kalman Filter
Upper Confidence Bound 0.07 0 - 2.06 3.21 0.13
Expected Improvement 0.10 0 - - 3.60 3.98
Probability of Improvement 0.09 0 - - 9.43 0.72
Probability of Maximum Utility 0.16 1 - - 1.17 2.69
Mean Tracker
Upper Confidence Bound 0.08 0 - 2.12 4.44 0.34
Expected Improvement 0.09 0 - - 6.37 8.32
Probability of Improvement 0.09 0 - - 3.45 0.75
Probability of Maximum Utility 0.16 3 - - 6.45 2.67
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Table A.3 shows the full parameter estimates and predictive performance for all models

applied in the CMAB with continuous-linear features assessed in Experiment 13.

Table A.3: Model results of linear CMAB with conধnous features

Model Predictive R2 #best λ β σ τ
GP-RBF
Upper Confidence Bound 0.22 16 8.44 1.84 5.34 2.39
Expected Improvement 0.19 4 8.43 - 5.99 1.11
Probability of Improvement 0.19 4 7.39 - 5.38 6.07
Probability of Maximum Utility 0.19 1 7.90 - 4.77 0.54
GP-Linear
Upper Confidence Bound 0.18 9 - 0.95 - 3.22
Expected Improvement 0.08 3 - - - 0.64
Probability of Improvement 0.07 1 - - - 0.43
Probability of Maximum Utility 0.06 2 - - - 0.74
Kalman Filter
Upper Confidence Bound 0.09 2 - 2.72 0.13 0.28
Expected Improvement 0.08 3 - - 3.60 0.61
Probability of Improvement 0.07 1 - - 9.43 3.47
Probability of Maximum Utility 0.15 8 - - 1.17 6.04
Mean Tracker
Upper Confidence Bound 0.09 0 - 2.94 5.69 0.25
Expected Improvement 0.08 3 - - 6.37 9.19
Probability of Improvement 0.08 0 - - 6.45 0.66
Probability of Maximum Utility 0.15 6 - - 6.69 3.51
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Table A.4 shows the full parameter estimates and predictive performance for all models

applied in the CMAB with continuous non-linear features assessed in Experiment 14.

Table A.4: Model results of non-linear CMAB with conধnous features

Model Predictive R2 #best λ β σ τ
GP-RBF
Upper Confidence Bound 0.23 9 8.94 1.59 6.09 8.86
Expected Improvement 0.23 6 7.49 - 7.17 15.7
Probability of Improvement 0.24 2 7.73 - 6.23 5.19
Probability of Maximum Utility 0.23 8 7.09 - 6.33 5.44
GP-Linear
Upper Confidence Bound 0.14 4 - 1.08 - 3.88
Expected Improvement 0.08 3 - - - 0.93
Probability of Improvement 0.10 2 - - - 0.81
Probability of Maximum Utility 0.09 3 - - - 0.93
Kalman Filter
Upper Confidence Bound 0.14 2 - 2.19 0.14 0.41
Expected Improvement 0.12 0 - - 3.79 5.97
Probability of Improvement 0.10 1 - - 9.11 1.75
Probability of Maximum Utility 0.17 5 - - 0.99 2.89
Mean Tracker
Upper Confidence Bound 0.14 1 - 2.36 6.41 0.41
Expected Improvement 0.12 3 - - 8.43 10.39
Probability of Improvement 0.10 0 - - 6.45 1.97
Probability of Maximum Utility 0.18 4 - - 6.38 2.97

A.7 Sublinear regret of GP-UCB

The regret bounds (up to polylog factors) for the upper confidence bound sampling strat-

egy were derived by (Srinivas et al., 2012). Let T be the time horizon, d the dimension of the

data, and ν the Matérn parameter, then the regret bound for the linear kernel is

RT = d
√
T, (A.5)
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the regret bound for the radial basis function kernel is

RT =
√
T(logT)d+1, (A.6)

and the regret bound for the Matérn kernel is

RT = T ν+ d(d+ 1)
2ν+ d(d+ 1)

(A.7)

A.8 Regret of a mixture kernel
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Figure A.3: Median regret over ধme for different sampling strategies using a mixture kernel student.

Figure A.3 shows the median regret over 100 runs for a mixture kernel, with a Matérn
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1/2 and radial basis function kernel component, optimizing either a RBF or a Matérn 1/2

target function. Whereas the mixture kernel reaches a regret in the region of 10−1 when op-

timizing a Matérn 1/2 kernel, the best regret in the matched setting was 10−1.5. Whereas the

mixture kernel reaches a regret in the region of 10−2.5, the best regret in the matched setting

was in the region of 10−4. Thus, the mixture regret does not recover the performance of its

matching component.
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