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The authors introduce the contextual multi-armed bandit task as a framework to investigate learning and
decision making in uncertain environments. In this novel paradigm, participants repeatedly choose
between multiple options in order to maximize their rewards. The options are described by a number of
contextual features which are predictive of the rewards through initially unknown functions. From their
experience with choosing options and observing the consequences of their decisions, participants can
learn about the functional relation between contexts and rewards and improve their decision strategy over
time. In three experiments, the authors explore participants’ behavior in such learning environments.
They predict participants’ behavior by context-blind (mean-tracking, Kalman filter) and contextual
(Gaussian process and linear regression) learning approaches combined with different choice strategies.
Participants are mostly able to learn about the context-reward functions and their behavior is best
described by a Gaussian process learning strategy which generalizes previous experience to similar
instances. In a relatively simple task with binary features, they seem to combine this learning with a
probability of improvement decision strategy which focuses on alternatives that are expected to lead to
an improvement upon a current favorite option. In a task with continuous features that are linearly related
to the rewards, participants seem to more explicitly balance exploration and exploitation. Finally, in a
difficult learning environment where the relation between features and rewards is nonlinear, some
participants are again well-described by a Gaussian process learning strategy, whereas others revert to
context-blind strategies.

Keywords: function learning, decision making, Gaussian process, multi-armed bandits, reinforcement
learning

Imagine you have recently arrived in a new town and need to
decide where to dine tonight. You have visited a few restaurants in
this town before and while you have a current favorite, you are
convinced there must be a better restaurant out there. Should you
revisit your current favorite again tonight, or go to a new one that
might be better, but might also be worse? This is an example of the
exploration-exploitation dilemma (e.g., Cohen, McClure, & Yu,
2007; Laureiro-Martínez, Brusoni, & Zollo, 2010; Mehlhorn et al.,
2015): Should you exploit your current but incomplete knowledge
to pick an option you think is best, or should you explore some-
thing new and improve upon your knowledge to make better

decisions in the future? Althugh exploration is risky, in this case it
is not blind. Over the years, you have visited many restaurants and
you know for instance that better restaurants generally have more
customers, a good ambiance, and are not overly cheap. So you
walk around town, noting of each restaurant you pass how busy it
is, how nice it looks, the price of the items on the menu, and so
forth. At the end of a long walk, you finally sit down in a
restaurant; one you never visited before but predicted to be best
based on numerous features such as neighborhood, clientéle, price,
and so forth.

The exploration-exploitation dilemma tends to be studied with
so-called multi-armed bandit tasks, such as the Iowa Gambling
Task (e.g., Bechara, Damasio, Tranel, & Damasio, 2005; Steyvers,
Lee, & Wagenmakers, 2009). These are tasks in which people are
faced with a number of options, each having an associated average
reward. Initially, these average rewards are unknown and people
can only learn about the reward of an option by choosing it.
Through experience, people can learn which are the good options
and use this knowledge in the attempt to accumulate as much
reward as possible. However, as our restaurant example above
shows, many real-life situations are richer than such simple multi-
armed bandit tasks. Options tend to have numerous features (e.g.,
number of customers and menu prices in the restaurant example)
which are predictive of their associated reward. With the addition of
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informative features, the decision problem can be termed a contextual
multi-armed bandit (CMAB; Li, Chu, Langford, & Schapire, 2010).
Although these kinds of tasks are ubiquitous in daily life, they are
rarely studied within the psychological literature. This is unfortunate,
as CMAB tasks encompass two important areas of cognition:
experience-based decision making (Barron & Erev, 2003; Hertwig &
Erev, 2009; Speekenbrink & Konstantinidis, 2015) and function
learning (DeLosh, Busemeyer, & McDaniel, 1997; Kalish, Le-
wandowsky, & Kruschke, 2004; Speekenbrink & Shanks, 2010).
Both topics have been studied extensively (see, e.g., Newell, Lag-
nado, & Shanks, 2015, for an overview), but commonly in isolation.

Learning and decision making within CMAB tasks generally
requires two things: learning a function that maps the observed
features of options to their expected rewards, and a decision
strategy that uses these expectations to choose between the op-
tions. Function learning in CMAB tasks is important because it
allows one to generalize previous experiences to novel situations.
For example, it allows one to predict the quality of a new restau-
rant from experiences with other restaurants with a similar number
of customers and a similarly priced menu. The decision strategy is
important because not only should you attempt to choose options
that are currently most rewarding, but you should also take into
account how much you can learn in order to make good choices in
the future. In other words, you should take into account the
exploration-exploitation trade-off, where exploration here means
learning about the function that relates features to rewards.

In what follows, we will describe the CMAB paradigm in more
detail and propose several models to describe how people may
solve such tasks. We will then describe three experiments which
explore how people perform within three variants of a CMAB task.
We show that participants are able to learn within the CMAB,
approximating the function in a close-to-rational way (Lucas,
Griffiths, Williams, & Kalish, 2015; Srinivas, Krause, Kakade, &
Seeger, 2009) and using their knowledge to sensitively balance
exploration and exploitation. However, the extent to which partic-
ipants are able to learn the underlying function crucially depends
on the complexity of the task. In summary, we make the following
contributions:

1. We introduce the CMAB as a psychological paradigm
combining both function learning and decision making.

2. We model and predict learning in CMABs using Gauss-
ian processes (GPs) regression, a powerful framework
that generalizes important psychological models which
were previously proposed to describe human function
learning.

3. We show that participants sensibly choose between op-
tions according to their expectations (and attached uncer-
tainty) while learning about the underlying functions.

CMABs

A CMAB task is a game in which on each round, an agent is
presented with a context (a set of features) and a number of options
which each offer an unknown reward. The expected rewards
associated to each option depend on the context through an un-
known function. The context can contain general features that
apply to all options (e.g., the city the restaurants are in) or specific

features that apply to single options (e.g., the exact menu and its
price). The agent’s task is to choose those options that will accu-
mulate the highest reward over all rounds of the game. The
rewards are stochastic, such that even if the agent had complete
knowledge of the task, a choice would still involve a kind of
gamble. In this respect, choosing an option can be seen as choosing
a slot machine (a one-armed bandit) to play, or, equivalently,
choosing which arm of a multi-armed bandit to play. After choos-
ing an option in a round, the agent receives the reward of the
chosen option but is not informed of the foregone rewards that
could have been obtained from the other options. For an agent who
ignores the context, the task would appear as a restless bandit task
(e.g., Speekenbrink & Konstantinidis, 2015), as the rewards asso-
ciated with an arm will vary over time due to the changing context.
However, learning the function that maps the context to (expected)
rewards will make these changes in rewards predictable and
thereby choosing the optimal arm easier. To choose wisely, the
agent should thus learn about the underlying function. Sometimes,
this may require her to choose an option which is not expected to
give the highest reward on a particular round, but one that might
provide useful information about the function, thus choosing to
explore rather than to exploit.

CMAB tasks provide us with a scenario in which a participant
has to learn a function in order to maximize the outputs of that
function over time by making wise choices. They are a natural
extension of both the classic multi-armed bandit task, which is a
CMAB with an invariant context throughout, and the restless
bandit task, which is a CMAB with time as the only contextual
feature.

Although the CMAB is novel in the psychological literature
(though see Schulz, Konstantinidis, & Speekenbrink, 2015; Stojic,
Analytis, & Speekenbrink, 2015), where few tasks explicitly com-
bine function learning and experience-based decision making,
there are certain similarities with tasks used in previous research.
For example, recent studies in experience-based decision-making
provided participants with descriptions about the underlying dis-
tributions that generate rewards (e.g., Lejarraga & Gonzalez, 2011;
Weiss-Cohen, Konstantinidis, Speekenbrink, & Harvey, 2016).
Just as in the CMAB, this presents a naturalistic decision environ-
ment in which different sources of information (e.g., descriptions
and participants’ own experience) need to be integrated to choose
between alternatives or courses of action.

Another related paradigm is multiple cue probability learning
(MCPL; Kruschke & Johansen, 1999; Speekenbrink & Shanks,
2008) in which participants are shown an array of cues that are
probabilistically related to an outcome and have to learn the
underlying function mapping the cues’ features to expected out-
comes. Especially when the outcome is a categorical variable, such
as in the well-known weather prediction task (Gluck, Shohamy, &
Myers, 2002; Speekenbrink, Channon, & Shanks, 2008), making a
prediction is structurally similar to a decision between multiple
arms (possible predictions) that are rewarded (correct prediction)
or not (incorrect prediction). Just as in the CMAB, multiple-cue
probability learning and probabilistic category learning tasks re-
quire people to learn a function which maps multiple cues or
features to expected outcomes. An important difference however is
that in these latter tasks there is a strong dependency between the
options: there is only one correct prediction, and hence there is a
perfect (negative) correlation between the rewards for the options.
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Whether a current choice was rewarded or not thus provides
information about whether the nonchosen options would have been
rewarded. This dependency weakens the need for exploration,
especially when the outcome is binary, in which case there is no
need for exploration at all. In CMAB tasks, there is a stronger
impetus for exploration, as the rewards associated to arms are
generally conditionally independent, given the context. Knowing
that a particular option was rewarded thus does not provide im-
mediate information whether another option would have been
rewarded. Another major difference is that MCPL tasks generally
require participants to learn the whole function. In CMAB tasks,
learning the function is only necessary insofar as it helps to make
better decisions. To solve the exploration-exploitation dilemma, it
may suffice to learn the function well only in those regions that
promise to produce high rewards. Moreover, as we will see later,
each option can be governed by its own function relating context
to rewards. To our knowledge, simultaneous learning of multiple
functions has not previously been investigated.

Another area of related research comes from the associative
learning literature, where it has been shown that context can act as
an additional cue to maximize reward (cf. Bouton & King, 1983;
Gershman, Blei, & Niv, 2010). In one example of this, Gershman
and Niv (2015) showed how generalization based on context (the
average reward of options in an environment) can explain how
participants react to novel options in the same environment, such
that a high-reward context leads people to approach novel options,
while a low-reward context leads to avoidance of novel options.
The CMAB paradigm introduced here is related to such situations,
but instead of a single, constant context, varies the contexts such
that good performance requires learning the underlying contextual
function.

Models of Learning and Decision Making

Formally, we can describe a CMAB as a game in which on each
round t � 1, . . . , T, an agent observes a context st � S from the
set S of possible contexts, and has to choose an arm at � A from
the set A of all arms of the multi-armed bandit. After choosing an
arm, the agent receives a reward

yt � f(st, at) � �t, (1)

and it is her goal to choose those arms that will produce the highest
accumulated reward

R � �
t�1

T

yt. (2)

over all rounds. The function f is initially unknown and can only
be inferred from the rewards received after choosing arms in the
encountered contexts.

To perform well in a CMAB task, an agent needs to learn a
model of the function f from experience, and on each round use
this model to predict the outcomes of the available actions and
choose the arm with the highest predicted outcome. We can thus
distinguish between a learning component, formalized as a learn-
ing model which estimates the function relating rewards to con-
texts and actions, and a decision or acquisition component that
uses the learned model to determine the best subsequent decisions.
These work together as shown in Algorithm 1 (see also Brochu,
Cora, & De Freitas, 2010).

Algorithm 1: General CMAB-algorithm. A learning model M tries to
learn the underlying function f by mapping the current expectations
and their attached uncertainties to choices via an acquisition function
acq.

Require: A model M of the function f, an acquisition function acq,
previous observations D0 � {�}

for t � 1, 2, . . . , T do

Choose arm at � arg maxa�A acq �a � st, M�

Observe reward yt � f(st, at) � �t

Update: Augment the data Dt � (at, st, Dt�1) and update the
model M ¢ M(Dt)

end for

This formalization of an agent’s behavior requires us to capture
two things: (a) a representation or model M of the assumed
underlying function that maps the given context to expected out-
comes, and (b) an acquisition function acq that evaluates the utility
of choosing each arm based on those expected outcomes and their
attached uncertainties. Here, the model defines the learning pro-
cess and the acquisition function the way in which outputs of the
learned model are mapped onto choices.1 In the following, we will
describe a number of instantiations of these two components.

Models of Learning

Technically, a function is a mapping from a set of input values
to a set of output values, such that for each input value, there is a
single output value (also called a many-to-one mapping as differ-
ent inputs can provide the same output). Psychological research on
how people learn such mappings has normally followed a para-
digm in which participants are presented with input values and
asked to predict the corresponding output value. After their pre-
diction, participants are presented with the true output value,
which is often corrupted by additional noise. Through this outcome
feedback, people are thought to adjust their internal representation
of the underlying function. In psychological theories of function
learning, these internal representations are traditionally thought to
be either rule-based or similarity-based. Rule-based theories (e.g.,
Carroll, 1963; Koh & Meyer, 1991) conjecture that people learn a
function by assuming it belongs to an explicit parametric family,
for example linear, polynomial, or power-law functions. Outcome
feedback allows them to infer the parameters of the function (e.g.,
the intercept and slope of a linear function). This approach attri-
butes a rich set of representations (parametric families) to learning
agents but tends to ignore how people choose from this set (how
they determine which parametric family to use). Similarity-based
theories (e.g., Busemeyer, Byun, Delosh, & McDaniel, 1997)
conjecture that people learn a function by associating observed
input values to their corresponding output values. When faced with
a novel input value, they form a prediction by relying on the output
values associated to input values that are similar to the novel input
value. Although this approach is domain general and does not

1 Normally, the algorithm would pick the observation with the highest
value according to the acquisition function, whereas we enter these values
into a softmax function, see Equation 17.
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require people to assume a parametric family a priori, similarity-
based theories have trouble explaining how people readily gener-
alize their knowledge to novel inputs that are highly dissimilar to
those previously encountered.

Research has indicated that neither approach alone is sufficient
to explain human function learning. Both approaches fail to ac-
count for the finding that some functional forms, such as linear
ones, are much easier to learn than others, such as sinusoidal ones
(McDaniel & Busemeyer, 2005). This points toward an initial bias
toward linear functions, which can be overcome through sufficient
experience. They also fail to adequately predict how people ex-
trapolate their knowledge to novel inputs (DeLosh et al., 1997).

To overcome some of the aforementioned problems, hybrid
versions of the two approaches have been put forward (McDaniel
& Busemeyer, 2005). One such hybrid is the extrapolation-
association model (EXAM; DeLosh et al., 1997), which assumes a
similarity-based representation for interpolation, but simple linear
rules for extrapolation. Although EXAM effectively captures the
human bias toward linearity and accurately predicts human extrap-
olations over a variety of relationships, it cannot account for the
human capacity to generate nonlinear extrapolations (Bott & Heit,
2004). The population of linear experts model (POLE; Kalish et
al., 2004) is set apart by its ability to capture knowledge partition-
ing effects; based on acquired knowledge, different functions can
be learned for different parts of the input space. Beyond that, it
demonstrates a similar ordering of error rates to those of human
learners across different tasks (McDaniel, Dimperio, Griego, &
Busemeyer, 2009). Recently, Lucas et al. (2015) proposed GP
regression as a rational approach toward human function learning.
GP regression is a Bayesian nonparametric model which unifies
both rule-based and similarity-based theories of function learning.
Instead of assuming one particular functional form, GP regression
is based on a model with a potentially infinite number of param-
eters, but parsimoniously selects parameters through Bayesian
inference. As shown by Lucas et al., a GP regression model
accounts for many of the previous empirical findings on function
learning. Following this approach, we will conceptualize function
learning in a CMAB as GP regression. We contrast this with
context-blind learning which tries to directly learn the expected
reward of each option without taking the contextual features into
account.

Contextual learning through GP regression. In the follow-
ing, we will assume that the agents learn a separate function fj(s)
that maps contexts s to rewards y for each option j. GP regression
is a nonparametric Bayesian solution to function learning which
starts with a prior distribution over possible functions and, based
on observed inputs and outputs of the function, updates this to a
posterior distribution over all functions. In GP regression, p(fj), the
distribution over functions, is defined by a GP. Technically, a GP
is a stochastic process such that the marginal distribution of any
finite collection of observations generated by it is a multivariate
Gaussian distribution (see Rasmussen, 2006). A GP is parame-
trized by a mean function mj(s) and a covariance function, also
called kernel, kj(s, s=):

mj(s) � �[f j(s)] (3)

kj(s, s�) � �[(f j(s) � mj(s))(f j(s�) � mj(s�))]. (4)

In the following, we will focus on the computations for a single
option (and hence single function) and suppress the subscripts j.
Suppose we have collected rewards yt � �y1, y2, . . . , yt�� for arm
j in contexts st � {s1, . . . , st}, and we assume

yt � f(st) � �t �t ~ N(0, �2). (5)

Given a GP prior on the functions

f(s) ~ GP(m(s), k(s, s�)), (6)

the posterior over f is also a GP:

p(f(s) |Dt�1) � GP(mt(s), kt(s, s�)), (7)

where Dt�1 � �s1, y1, . . . ,st, yt� denotes the set of observations
(contexts and rewards) of the function f. The posterior mean and
kernel function are

mt(s) � kt(s)�(Kt � �2I)yt (8)

kt(s, s�) � k(s, s�) � kt(s)�(Kt � �2I)�1kt(s�), (9)

where kt(s) � [k(s1, s), . . . , k(s1, s)]T, Kt is the positive definite
kernel matrix �k�s, s���s,s��Dt

, and I the identity matrix. Note that
the posterior variance of f for context s can be computed as

vt(s) � kt(s, s). (10)

This posterior distribution can also be used to derive predictions
about each arm’s rewards given the current context, that are also
assumed to be normally distributed.

A key aspect of a GP model is the covariance or kernel function
k. The choice of a kernel function corresponds to assumptions
about the shape of the true underlying function. Among other
aspects, the kernel determines the smoothness, periodicity, and
linearity of the expected functions (cf. Schulz, Tenenbaum, Duve-
naud, Speekenbrink, & Gershman, 2016). Additionally, the choice
of the kernel also determines the speed at which a GP model can
learn over time (Schulz, Tenenbaum, Reshef, Speekenbrink, &
Gershman, 2015). The kernel defines a similarity space over all
possible contexts. As such, a GP can be seen as a similarity-based
model of function learning, akin to exemplar models traditionally
used to describe category learning (Nosofsky, 1986). However, by
first mapping the contexts s via the kernel into a “feature space”,
it is possible to rewrite the posterior mean of a GP as a linear
combination of transformed feature values. From a psychological
perspective, a GP model can in this way also be thought of as
encoding “rules” mapping inputs to outputs. A GP can thus be
simultaneously expressed as a similarity-based or rule-based
model, thereby unifying the two dominant classes of function
learning theories in cognitive science (for more details, see Lucas
et al., 2015).

Different kernels correspond to different psychological as-
sumptions about how people approach function learning. By
choosing a linear kernel, the model corresponds directly to
Bayesian linear regression. This kernel thus instantiates a rel-
atively simple rule-based way of learning the underlying func-
tion, assuming it has a particular parametric shape, namely a
linear combination of the contextual features. The radial basis
function kernel (RBF; sometimes also called square[d] expo-
nential or Gaussian kernel) postulates smooth but otherwise
relatively unconstrained functions and is probably the most
frequently used kernel in the GP literature. The RBF kernel
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contains a free parameter �, referred to as the length scale,
which determines the extent to which increasing the distance
between two points reduces their correlation. The mathematical
details of the two contextual models, corresponding to these
two choices of kernel, as well as an illustration of the way in
which they learn (i.e., update their prior distribution to a pos-
terior distribution) are provided in Table 1.

Context-blind learning. To assess the extent to which people
take the context into account, we contrast the contextual learning
models above with two context-blind learning models that ignore
the features and focus on the average reward of each option over
all contexts.

The Bayesian mean-tracking model assumes that the average
reward associated to each option is constant over time and
simply computes a posterior distribution over the mean �j of
each option j. Here, we will implement a relatively simple
version of such a model which assumes rewards are normally
distributed with a known variance but unknown mean and the
prior distribution for that mean is again a normal distribution.
This implies that the posterior distribution for each mean is also
a normal distribution:

p(�j |Dt�1) � N(mj,t, vj,t) (11)

Here, the mean mj,t represents the currently expected outcome
for a particular arm j and the variance vj,t represents the uncertainty
attached to that expectation. The posterior distribution can be
computed through a mean-stable version of the Kalman filter,
which we will describe next.

Unlike the Bayesian mean tracking model, which computes the
posterior distribution of a time-invariant mean �j after each new
observation, the Kalman filter is a suitable model for tracking a
time-varying mean �j,t which we here assume varies according to
a simple random walk

�j,t�1 � �j,t � 	t 	t ~ N�0, �	
2� (12)

Such a Kalman filter model has been used to successfully
describe participants’ choices in a restless bandit task (Speeken-
brink & Konstantinidis, 2015) and has also been proposed as a
model unifying many findings within the literature of context-free
associative learning (Kruschke, 2008; Gershman, 2015). In this
model, the posterior distribution of the mean is again a normal
distribution

p(�j,t |Dt�1) � N(mj,t, vj,t) (13)

with mean

mj,t � mj,t�1 � 
j,tGj,t(yt � mj,t�1) (14)

where yt is the received reward on trial t and �j,t � 1 if arm j was
chosen on trial t, and 0 otherwise. The “Kalman gain” term is
computed as

Gj,t �
vj,t�1 � �	

2

vj,t�1 � �	
2 � ��

2 (15)

where vk,t, is the variance of the posterior distribution of the mean
�j,t is computed as

vj,t � (1 � 
j,tGj,t)(vj,t�1 � �	
2) (16)

Prior means and variances were initialized to mj,0 � 0 and vj,0 �
1000, while the innovation variance 	


2 and error variance 	�
2 were

free parameters. The Bayesian mean-tracking model is obtained
from the Kalman filter model by setting the innovation variance to
	


2 � 0, implying the underlying mean is not assumed to change
over time.

Decision Strategies

The aforementioned learning models each generate a predic-
tive distribution, reflecting the rewards expected from choosing
options in the current context. To model participants’ choices,
we need a decision strategy that defines the current predictive
means and variances are used to choose between options. In the
psychological literature, popular decision rules that map current
expectations onto choices are the softmax and �-greedy rule
(Sutton & Barto, 1998). These are rules which are based on a
single expectation for each option. In the softmax rule, the
probability of choosing an option is roughly proportional to the
current expectations, while the �-greedy rule chooses the
maximum-expectancy option with probability 1 � � and other-
wise chooses with equal probability between the remaining
options. Frequently, these rules ignore the uncertainty about the
formed expectations, although rationally, uncertainty should
guide exploration. Here, we follow Speekenbrink and Konstan-
tinidis (2015) and define a broader set of decision rules that
explicitly model how participants trade off between expecta-
tions and uncertainty. We will consider four different strategies
to make decisions in a CMAB task based on the predictive
distributions derived from the above learning models. The
mathematical details of these are given in Table 2.

The upper confidence bound (UCB) algorithm defines a trade-
off between an option’s expected value and the associated uncer-
tainty and chooses the option for which the UCB of the mean is

Table 1
Details of the Two Contextual Models Used to Model
Participants’ Learning

Model Prior Posterior

Linear
�1 (s � �2)(s= � �2)

Radial basis

�1 exp 	��s�s��2

2�2
2 


Note. Mathematical details of each model are provided in the model
column. For each model, prior samples of functions for a one-dimensional
input are shown in the prior column. The posterior column shows posterior
samples of the functions after the same set of 6 observations (dots).
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highest. The UCB rule has been shown to perform well in many
real world tasks (Krause & Ong, 2011). It has a free parameter �,
which determines the width of confidence interval (e.g., setting
� � 1.96 would result in a 95% credible set). The UCB-algorithm
can be described as a selection strategy with an exploration bonus,
where the bonus dynamically depends on the confidence interval
of the estimated mean reward at each time point. It is sometimes
also referred to as optimistic sampling as it can be interpreted to
inflate expectations with respect to the UCBs (Srinivas et al.,
2009).

Another decision strategy is the probability of improvement
(PoI) rule, which calculates the probability for each option to lead
to an outcome higher than the option that is currently believed to
have the highest expected value (Kushner, 1964). Intuitively, this
algorithm estimates the probability of one option to generate a
higher utility than another option and has recently been used in
experiments involving multiattribute choices (Gershman, Mal-
maud, Tenenbaum, & Gershman, 2017).

The PoI rule focusses solely on the probability that an option
provides a higher outcome than another; whether the difference in
outcomes is large or small does not matter. The expected improve-
ment rule is similar to the PoI rule but does take the magnitude of
the difference in outcomes into account and compares options to
the current favorite in terms of the expected increase of outcomes
(Mockus, Tiesis, & Zilinskas, 1978).

The fourth decision strategy we consider is the probability of
maximum utility (PMU) rule (Speekenbrink & Konstantinidis,
2015). This strategy chooses each option according to the
probability that it results in the highest reward out of all options
in a particular context. It can be seen as a form of probability
matching (Neimark & Shuford, 1959) and can be implemented
by sampling from each option’s predictive distribution once,
and then choosing the option with the highest sampled pay-off.
Even though this acquisition function seems relatively simple,
it describes human choices in restless bandit tasks well (Speek-
enbrink & Konstantinidis, 2015). It is also closely related to

Table 2
Acquisition Functions Used to Model Participants’ Choices

Acquisition function Prior (time t) acq(a � i | st, Dt�1 Prior (time t � 1)

Upper confidence bound:
mj,t�st� � ��vj,t�st�

Probability of improvement

	mj,t�s� � m*,t�s�

�vj,t�s� 


Expected improvement
�mj,t�s� � m*,t�s���z� � �vj,t�s��
�z�

z �
mj,t�s� � m*,t�s�

�vj,t�s�

Probability of maximum utility
P�f j�s� � �j,t � fi�s� � �i,t, ∀i � j�

Note. Mathematical details are provided in the acquisition function column. Here, mj,t(s) denotes the posterior mean of the function for context s and action
j, and action j denotes the action currently believed to be optimal. Examples are provided for a problem where each action corresponds to choosing a
one-dimensional input, after which the associated output can be observed. Prior samples from a radial basis kernel are shown in the prior (time t) column.
The utility of each potential action according to each acquisition function is shown in the acq() column. After choosing the action with the highest utility
and observing the corresponding output, the gaussian process is updated and used as a prior at the next time. Samples from this posterior are shown in the
final column (“prior [time t � 1]”).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

6 SCHULZ, KONSTANTINIDIS, AND SPEEKENBRINK



Thompson sampling (May, Korda, Lee, & Leslie, 2012), which
samples from the posterior distribution of the mean rather than
the predictive distribution of rewards. Thus, while Thompson
sampling “probability matches” the expected rewards of each
arm, the PMU rule matches to actual rewards that might be
obtained.2

The first three decision rules (but not the PMU rule) are deter-
ministic, although participants’ decisions are expected to be more
noisy reflections of the decision rule. We therefore used a softmax
transformation to map the value of each option according to the
decision rule into probabilities of choice:

p(at � j |st, Dt�1) �
exp���1 · acq(a � j |st, Dt�1)�

�i�1
n exp���1 · acq(a � i |st, Dt�1)�

(17)

The temperature parameter  � 0 governs how consistently
participants choose according to the values generated by the dif-
ferent kernel-acquisition function combinations. As  ¡ 0 the
highest-value option is chosen with a probability of 1 (i.e., arg
max), and when  ¡ �, all options are equally likely, with
predictions converging to random choice. We use  as a free
parameter, where lower estimates can be interpreted as more
precise predictions about choice behavior.

General CMAB Task

In our implementation of the CMAB task, participants are told
they have to mine for “Emeralds” on different planets. Moreover,
it is explained that at each time of mining the galaxy is described
by three different environmental factors, “Mercury,” “Krypton,”
and “Nobelium,” that have different effects on different planets.
Participants are then told that they have to maximize their produc-
tion of emeralds over time by learning how the different environ-
mental factors influence the planets and choosing the planet they
think will produce the highest outcome in light of the available
factors. Participants were explicitly told that different planets can
react differently to specific environmental factors. A screenshot of
the CMAB task can be seen in Figure 1.

As each planet responds differently to the contexts, they can be
seen as arms of a multi-armed bandit that are related to the context
by different functions. The reward of an option j is given as

yj,t � f(at � j, st) � f j(st) � �j,t (18)

with �j,t ~ N (0, 5). The task consists of 150 trials in which a random
context is drawn and participants choose a planet to mine on.3

The three experiments differ in the functions fj and whether the
environmental factors defining the context were binary or contin-
uous. This is specified in more detail when describing the exper-
iments. Source code for the experimental set-up is available on-
line.4

Model Comparison

All models were compared in terms of their out-of-sample
predictive performance, assessing the accuracy of their one-step-
ahead predictions and comparing it to that of a random model that
picks each option with the same probability. Our procedure is as
follows: for each participant, we first fitted a given model by
maximum likelihood to the first t – 1 trials with a differential
evolution optimization algorithm (using 100 epochs, cf. Mullen,
Ardia, Gil, Windover, & Cline, 2009). We then used this fitted
model to predict the choice on trial t. As repeating this procedure
for every trial is computationally expensive, we assess the models’
predictive accuracy for every participant on trials t � {10, 30, 50,
70, 90, 110, 130, 150}. The one-step-ahead predictive accuracy
measure compares each model Mk to a random model Mrand:

Rp
2 � 1 � logL(Mk) ⁄ logL(Mrand) (19)

where L(M) denotes the likelihood of model M (i.e., the proba-
bility of a participants’ choices as predicted by fitted model M).
This measure is similar to McFadden’s pseudo-R2 (McFadden,
1973), although it uses the completely random model Mrand as
comparison model, instead of the intercept-only regression model
used in McFadden’s pseudo-R2. Just like McFadden’s measure,
ours has values between 0 (accuracy equal to the random model)
and 1 (accuracy infinitely larger than the random model).

Experiment 1: CMAB With Binary Cues

The goal of the first experiment was to test whether participants
can learn to make good decisions in a CMAB task. For this
purpose, we set up a relatively simple contextual bandit scenario in
which the contexts consist of binary features.

Participants

Forty-seven participants (26 male) with an average age of 31.9
years (SD � 8.2) were recruited via Amazon Mechanical Turk and
received $0.3 plus a performance-dependent bonus. The experi-
ment took 12 min to complete on average and the average reward
was $0.73 � 0.07.

2 In earlier studies (Schulz et al., 2015) we had implemented Thompson
sampling as sampling functions from the Gaussian process and individually
maximizing the resulting functions instead of sampling from the posterior
predictive distribution. We also did not estimate hyperparameters for the
Gaussian process for each participant.

3 The initial trial had the same context s1 for all participants. Afterward,
the values of the context st were sampled at random.

4 See https://github.com/ericschulz/contextualbandits.
Figure 1. Screenshot of the contextual multi-armed bandit (CMAB) task
in Experiment 1.
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Task

There were four different arms that could be played (planets that
could be mined). In addition, three discrete variables, si,t, i � 1, 2,
3, were introduced as the general context. The three variables
defining the contexts could either be on (si,t � 1) or off (si,t � �1).
The outcomes of the four arms were dependent on the context as
follows:

f1(st) � 50 � 15 � s1,t � 15 � s2,t

f2(st) � 50 � 15 � s2,t � 15 � s3,t

f3(st) � 50 � 15 � s3,t � 15 � s1,t

f4(st) � 50

The assignment of these functions to the planets, and the order
of the planets on screen, was the same for each participant.5

On each trial, the probability that a contextual feature was on or
off was set to p�si,t � 1� � p�si,t � �1� � 0.5, making each of the
8 possible contexts equally likely to occur on a given trial. The
functions fj were designed such that the expected reward of each
arm over all possible contexts equals �[yj,t] � 50. This means that
the only way to gain higher rewards than the average of 50 is by
learning how the contextual features influence the rewards. More
formally, this implies that no arm achieves first-order stochastic
dominance. Moreover, including the context-independent fourth
arm that returns the mean with added noise helps us to distinguish
even further between learning and not learning the context: this
arm has the same expected value as all the other arms but a lower
variance and therefore achieves second-order stochastic domi-
nance over the other arms. As such, a context-blind and risk-averse
learner would prefer this arm over time.

Procedure

After giving their informed consent, participants received in-
structions to the experiment. Participants were told that they had to
mine for “Emeralds” on different planets. Moreover, it was ex-
plained that at each time each of the 3 different environmental
factors could either be on (�) or off (�) and had different effects
on different planets. Participants were told that they had to max-
imize the overall production of Emeralds over time by learning
how the different elements influence the planets and then picking
the planet they thought would produce the highest outcome, given
the status (on or off) of the elements. It was explicitly noted that
different planets can react differently to different elements. After
reading the instructions, participants performed the CMAB task.
There were a total number of 150 trials and participants were paid
$0.3 � total score/(150 � 100).

Results

For all of the following analyses we report both frequentist and
Bayesian test results. The latter are reported as Bayes factors,
where BF10 quantifies the posterior probability ratio of the alter-
native hypothesis as compared to the null hypothesis (see Morey,
& Rouder, 2014). Unless stated otherwise, we use a Bayesian t test
(Morey & Rouder, 2011; Rouder, Speckman, Sun, Morey, &
Iverson, 2009), with a Jeffreys-Zellner-Siow prior with scale
r � �2 ⁄ 2).

Behavioral results. Participants gained 66.78 points (SD �
13.02) per round on average throughout the task. Participants’

average scores were significantly above the chance level of 50,
t(46) � 8.83, p � .01. 34 out of 47 participants performed better
than chance according to a simple t test with � � .05 and �0 � 50.
Using a Bayesian metaanalytical t test6 over all participants’
scores, we found a Bayes factor of BF10 � 68.34 indicating that
the alternative hypothesis of participants performing better than
chance was around 68 times more likely than chance performance.
As such, participants seemingly learned to take the context into
account, obtaining higher rewards than expected if they were
ignoring the context.

Over time, participants made increasingly better choices (see
Figure 2a), as indicated by a significant correlation between the
average score (over participants) and trial number, r � .74, p �
.01. Using a Bayesian test for correlations (Wetzels & Wagenmak-
ers, 2012), we found a Bayes factor of BF10 � 6.01 when com-
paring the correlation to a mean of 0. 27 out 47 participants had a
significantly positive correlation between trial numbers and score
at � � .05.

The proportion of participants choosing the noncontextual option
(the option that did not respond to any of the contextual features,
indicated as the fourth arm) decreased over time (r � �0.22, p �
0.05, BF10 � 58.8, Figure 2b), another indicator that participants
learned the underlying functions. Finally, the proportion of partici-
pants choosing the best option for the current context increased during
the task (r � �0.72, p � 0.01, BF10 � 263.2, see Figure 2a).
Moreover, when assessing whether either outcomes or chosen arms
on a trial t – 1 were predictive for a chosen arm on trial t in a
hierarchical multinomial regression (where trials were nested within
participants) with chosen arms as dependent variable, we found no
significant relationship, again indicating that participants seemed to
indeed learn the underlying function instead of using more simplistic
(and in this case not very useful) heuristic memorization techniques
such as testing similar arms in sequences or changing to a particular
arm after a particular score.

Modeling results. To determine which combination of learn-
ing model and acquisition function best captures participants’
choices, we focus on one-step-ahead predictive comparisons. For
each participant and model, we computed our pseudo-R2 at the
eight test trials. Higher R2 values indicate better model perfor-
mance. The results are shown in Figure 3.

Overall, the best performing model was the GP learning model
with a RBF kernel and the PoI decision rule. Aggregating over
acquisition functions, the contextual models produced signifi-
cantly better one-step-ahead predictions than the context-blind
models (t(186) � 6.13, p � 0.01, BF10 � 1.9 � 104). In addition,
the GP-model with an RBF kernel performed better than the linear
model (t(92) � 7.23, p � 0.01, BF10 � 2.6 � 104). Distinguishing
the different acquisition functions turned out to be harder than
comparing the different learning approaches. Aggregating over
learning models, the PMU strategy performed marginally better
than all other acquisition functions (t(186) � 1.97, p � 0.05,
BF10 � 2.3). Even though the PoI acquisition function numerically

5 As previous research with the Iowa Gambling task found little effect of
options’ position on participants decisions (Chiu & Lin, 2007), we expect
similar results if we had randomized the position on screen.

6 Implemented as a Bayesian meta t test that first compares each partic-
ipant’s scores against 50 and then aggregates the overall results in a
Bayesian meta t test (see Morey, & Rouder, 2014).
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predicted participants’ choices best out of all the acquisition func-
tions when combined with the RBF kernel GP, this difference was
not high (t(186) � 1.15, p � 0.05, BF10 � 0.24).

The median parameter estimates of the GP model over all
acquisition functions per participant were extracted and are shown
in Figure 4.

The median noise variance (	̂ � 3.08) was reasonably close to
the underlying observation noise variance of 	 � 5, albeit smaller
in general (t(46) � �4.7, p � 0.01, BF10 � 913.05); thus,
participants seemed to underestimate the overall noise in the
observed outcomes. The estimates of the length-scale parameter
clustered around the mean value of �̂ � 6.12. An RBF kernel can
emulate a linear kernel by setting a very high length-scale. As the
true underlying functions were linear in the experiment, we could
thus expect high values for �̂. In that light, a value of six for the
estimated length-scale seems surprisingly small, as it indicates that
the dependencies between input points are expected to decay rather
quickly, that is, that participants generalized more locally than
what was necessary. The overall temperature parameter was rela-
tively low (mean estimate: ̂�1 � 0.085), indicating that partici-
pants quite consistently chose the options with the highest pre-
dicted rewards.

According to the best fitting model in our cognitive modeling
exercise, people learn the relation between context and outcomes
by relying on a more general function approximator than just a
linear regression (implemented as a linear kernel). By using a PoI
decision strategy, participants compare the option which is thought
to have the highest average rewards in the current context, to
relatively lesser known options in that context, determining how
probable these are to provide a higher reward. This strategy is in
agreement with prior findings in simpler multiattribute choice
tasks (e.g., Carroll & De Soete, 1991).

Experiment 2: Continuous-Linear CMAB

Experiment 1 contained only eight unique contexts. This makes
a memorization strategy feasible: participants may have simply

memorized the expected rewards for each option in each context,
rather than inferring a more general model of the underlying
function. The goal of the second experiment was to assess whether
the findings from Experiment 1 generalize to a task with a larger
number of unique contexts, in which memorization of input-output
pairs is less plausible. For this purpose, Experiment 2 used the
same task as Experiment 1, but with continuous rather than binary
features comprising the contexts.

Participants

Fifty-nine participants (30 male) with a mean age of 32.4 (SD �
7.8) were recruited via Amazon Mechanical Turk and received
$0.3 as a basic reward and a performance-dependent bonus of up
to $0.5. The experiment took 13 min on average to complete and
the average reward was $0.69 � 0.08.

Task and Procedure

The task was identical to that of Experiment 1, only this time the
context contained continuous features with an underlying linear
function mapping inputs to outputs:

f1(st) � 50 � 3 � s1,t � 3 � s2,t

f2(st) � 50 � 3 � s2,t � 3 � s3,t

f3(st) � 50 � 3 � s3,t � 3 � s1,t

f4(st) � 50.

The values of the context variables sj,t were sampled randomly
from a uniform distribution sj,t � U (�10, 10). The values were
rounded to whole numbers and shown in their numerical form to
participants. As in the task of Experiment 1, the expected value
(over all contexts) for each option was 50, so no option achieved
first-order stochastic dominance, while the fourth option achieved
second-order stochastic dominance as the variance of its rewards
was the lowest.

a b c

Figure 2. Results of the the continuous-linear contextual multi-armed bandit (CMAB) task of Experiment
1. (a) average mean score per round, (b) proportion of choices of the 4th arm, and (c) proportion of choices
of the best arm. Red error bars indicate standard error aggregated over 5 trials. Regression line is based on
a least square regression including a 95% confidence level interval of the prediction line. See the online
article for the color version of this figure.
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Results

Behavioral results. On average, participants earned 59.84
(SD � 9.41) points during the entire game, which is significantly
higher than chance, t(58) � 7.17, p � .01. A hierarchical Bayesian
t test revealed that the alternative hypothesis of performing better
than chance was BF10 � 53.88 more likely than the null hypothesis
of chance performance. 29 participants performed better than
chance overall as measure by individual t tests with � � .05. Thus,
as in Experiment 1, participants were able to take the context into
account in order to increase their performance above chance level.

Performance increased over trials, r � .39, t(58) � 3.64, p �
.01, although this was not as pronounced as in Experiment 1 (see
Figure 5a). A hierarchical Bayesian t test showed that participants’
correlations between score and trial number were BF10 � 15.44
more likely to be greater than 0 than lesser than or equal to 0, thus
showing strong evidence for improvement over time. The corre-
lation between trial number and score was significantly positive
for 20 out of 59 participants.

Although the proportion of participants choosing the fourth
option did not decrease significantly over time (r � .05, p � .05,
BF10 � 0.01), the proportion of choosing the best option in the

context did increase significantly over trials (r � .33, p � .01,
BF10 � 18.87 see Figure 5c).

A hierarchical multinomial regression showed that neither the
previously chosen arm nor the previously received reward was
predictive of current choice (all p � .05). Thus, participants did not
seem to rely on simply repeating choices or other more simple
heuristics to determine their decisions.

Modeling results. Cross-validation results are shown in Fig-
ure 6. The best performing model incorporates again a GP-RBF
learning component, but now coupled with a UCB decision strat-
egy. In this experiment, the contextual models did not significantly
outperform the context-blind models (t(234) � �2.59, p � 0.01,
BF10 � 0.12). However, this was mostly due to the linear model
performing significantly worse than all the other learning models
(t(234) � 2.37, p � 0.05, BF10 � 8.79). The GP-RBF model
significantly outperformed all the other candidate learning models
(t(234) � 5.63, p � 0.01, BF10 � 6.73). Thus, as in Experiment 1,
participants were best predicted by a GP learning model with a
RBF.

The best performing decision strategy differs between the contex-
tual and context-free models. The UCB strategy performed better than

R
2

Figure 3. Predictive accuracy of the models for the contextual multi-armed bandit (CMAB) task with discrete
cues in Experiment 1. Error bars represent the standard error of the mean.
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the other decision strategies for the contextual models, significantly so
for the linear learning model, t(609) � 3.94, p � 0.01, BF10 � 7.45,
but not significantly for the RBF-learning model, t(609) � 0.4, p �
0.05, BF10 � 3.62. For the context-free learning models, the PMU
acquisition function provided the best predictive performance for both
the Bayesian mean tracker (t(614) � 5.77, p � 0.01, BF10 � 7.98)
and Kalman filter learning model (t(614) � 5.13, p � 0.01, BF10 �
7.63). In previous research with a restless bandit task (Speekenbrink

& Konstantinidis, 2015), the PMU decision strategy combined with a
Kalman filter learning model also provided a superior fit to partici-
pants’ behavior. Hence, the present findings could indicate that some
people switched to a noncontextual strategy within this more difficult
set-up.

The median parameter estimates of the GP-RBF-learning model
over all acquisition functions were extracted for each participant
individually and are shown in Figure 7.

The estimated temperature parameter was ̂�1 � 0.049 on
average, which indicates that participants mostly consistently
chose the options with the highest predicted utility. The estimated
error variance was 	̂ � 5.07 on average, which was very close to
the actual variance of 	 � 5 (t(58) � 0.16, p � 0.05, BF01 �
0.14). The estimated length-scale parameter was clustered tightly
around a value of �̂ � 10.31. This indicates a tendency toward
further extrapolation than in Experiment 1, but is still quite far
removed from the level of extrapolation a linear function would
provide.

Experiment 3: Continuous-Nonlinear CMAB

The previous experiments showed that most participants were
able to learn how a contexts defined by multiple features differ-
entially affect the rewards associated to decision alternatives. The
goal of the third experiment was to investigate assess whether this
would still be the case in an even more complicated environment
in which rewards are associated to the contexts by general non-
linear functions sampled from a GP prior.

Participants

Sixty participants (28 female) with a mean age of 29 (SD � 8.2)
were recruited via Amazon Mechanical Turk and received $0.30 as
a basic reward and a performance-dependent reward of up to
$0.50. The experiment took on average 12 min to complete on
participants earned $0.67 � 0.04 on average.

Figure 4. Parameter estimates of the error variance 	, the length-scale �,
and the temperature parameter  for the Gaussian process radial basis
function kernel (GP-RBF) model in Experiment 1. Dots show median
parameter estimates per participant and boxplots show the median and
interquartile range. See the online article for the color version of this figure.

a b c

Figure 5. Results of the the continuous-linear contextual multi-armed bandit (CMAB) task of Experiment 2.
(a) average mean score per round, (b) proportion of choices of the 4th arm, and (c) proportion of choices of the
best arm. Red error bars indicate standard error aggregated over 5 trials. Regression line is based on a least square
regression including a 95% confidence level interval of the prediction line. See the online article for the color
version of this figure.
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Task and Procedure

The task was identical to that of Experiment 2, apart from the
functions mapping inputs to outputs, which were drawn from a GP
prior:

f1(st) � 50 � f1(s1,t, s2,t)
f2(st) � 50 � f2(s2,t, s3,t)
f3(st) � 50 � f3(s3,t, s1,t)
f4(st) � 50
f j � GP(�, �), j � 1, . . . , 3,

with mean function � set to 0 and � a RBF with a length-scale of
�2 � 2. As in Experiment 2, the features were described numeri-
cally and could take values between �10 and 10. These values
were sampled from a uniform distribution si,t � U(�10, 10). As
before, the average expectation for all planets was 50 and the
variance for the fourth arm was the lowest.

The procedure was identical to the one of Experiment 2.

Results

Behavioral results. Participants earned 55.35 (SD � 6.33)
points on average during the whole task, which is significantly

above chance level, t(59) � 5.85, p � .01. This was confirmed in
a hierarchical Bayesian t test over participants’ scores, BF10 �
54.1. 26 participants performed better than chance as assessed by
a simple t test with � � .05.

Average scores increased over trials, r � 0.19, p � 0.01,
BF10 � 1.2, but to a lesser extent than in Experiment 2 (see Figure
8b), which might be due to the increase in difficulty of the task.
Only 10 participants showed a significantly positive correlation
between trial number and score. Although significant, the increase
in choosing the best option over trials was not substantial, r �
0.12, p � 0.05, BF10 � 0.3 (see Figure 8c). The proportion of
choosing the noncontextual arm did not significantly decrease over
time, r � 0.04, p � 0.05, BF10 � 0.1. Overall, these results seem
to indicate that participants struggled more to perform well in the
continuous nonlinear task than in the two prior experiments.

Modeling results. Modeling results are shown in Figure 9.
Overall, the best performing model had a GP-RBF learning com-
ponent and a UCB decision strategy. Considering the results for
the learning models (aggregating over the decision strategies), as
in Experiment 2, the contextual models did not predict partici-
pants’ choices significantly better than the context-blind models
(t(197) � 1.71, p � 0.05, BF10 � 0.13), but this was due to the

R
2

Figure 6. accuracy of the models for the contextual multi-armed bandit (CMAB) task with continuous-linear
cues in Experiment 2. Error bars represent the standard error of the mean.
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linear model generating worse predictions than all the other mod-
els (t(197) � 3.26, p � 0.01, BF10 � 6.9). The GP-RBF learning
model generated better predictions than the other models (t(197) �
3.26, p � 0.01, BF10 � 7.59). Regarding the decision strategy, the
PMU acquisition function generated the best predictions for both
context-free models (Bayesian mean tracker: t(191) � 2.33, p �
0.05, BF10 � 6.87; Kalman filter: t(192) � 2.10, p � 0.05, BF10 �
7.19). The UCB sampler was the best acquisition function for the

linear learning model (t(193) � 1.97, p � 0.05, BF10 � 7.53).
There was no meaningful difference between different acquisition
functions for the GP-RBF model.

Figure 10 shows the median parameter estimates of the GP-RBF
learning model for each participant.

The low average estimated temperature parameter ̂ � 0.06
again indicates that participants mostly consistently chose the
options with the highest predicted rewards. The estimated length-
scale clustered tightly along a value of �̂ � 6.86, which this time
turned out to be higher than the true underlying length-scale. The
estimated noise variance of 	̂ � 5.71 was again indistinguishable
from the underlying true variance of 	 � 5 (t(49) � 1.29, p �
0.05, BF10 � 0.34).

As this last experiment required participants to learn three
different nonlinear functions, it may have been too taxing for some
participants to learn the functions, so that they reverted to learning
in a context-free manner. Thus, whereas some participants are
well-predicted by the contextual models, others seem to be cap-
tured better by the context-blind models.

Interexperimental Model Comparison

In all three experiments, the GP-RBF learning model described
participants learning the best. In the first experiment, best perform-
ing model coupled this with a PoI decision strategy; whereas in
other experiment, this learning model was coupled with an UCB
decision strategy. To further investigate how participants adapted
to the different task environments, we here assess how model
performance and parameter estimates vary between different ex-
periments. For this analysis, we focus on the model with a GP-
RBF learning component and a UCB decision strategy because this
strategy described participants reasonably well in all of the exper-
iments and come with the additional benefit that the parameters are
very interpretable. For example, higher �-estimates are an indica-
tor of more exploration behavior, higher �-estimates indicate fur-
ther generalization, and higher noise parameters model an increas-

Figure 7. Parameter estimates of the error variance 	, the length-scale �,
and the temperature parameter  for the Gaussian process radial basis
function kernel (GP-RBF) model in Experiment 2. Dots show median
parameter estimates per participant and boxplots show the median and
interquartile range. See the online article for the color version of this figure.

a b c

Figure 8. Results of the the continuous-nonlinear contextual multi-armed bandit (CMAB) task of Experiment
3. (a) average score per round, (b) proportion of choices of the 4th arm, and (c) proportion of choices of the best
arm. Red error bars indicate standard error aggregated over 5 trials. Regression line is based on a least square
regression including a 95% confidence level interval of the prediction line. See the online article for the color
version of this figure.
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ing tendency to perceive the underlying function as noisy. Figure
11 shows the mean estimates of this model across all three exper-
iments.

The overall predictive performance of the model was signifi-
cantly higher in the first experiment compared to the other two
experiments (t(152) � 4.52, p � 0.01, BF10 � 3.16). There was no
meaningful difference between the continuous-linear (Experiment 2) and
the continuous-non-linear tasks (Experiment 3; t(105) � �0.28,
p � 0.05, BF10 � 0.24). Comparing the exploration-parameter �
across experiments revealed that there was a negative correlation
between the tendency to explore and the complexity of the task
(ranked from discrete to nonlinear) with r � �0.18, p � .05 and
BF10 � 5.6. This means that participants appear to explore less as
the task becomes more difficult. The assumed noise term 	 was
estimated to be lower for the discrete task than for the continuous-
linear task (t(140) � 3.3, p � 0.01, BF10 � 4.35), which in turn
was smaller than the estimated variance of the continuous-
nonlinear task (t(163) � 2.22, p � 0.05, BF10 � 4.7). Thus, the
more difficult a task, the higher the subjective level of noise seems
to be. The length-scale parameter � did not differ significantly
between the three experiments (all p � .5, BF10 � 1.1). This

indicates that participants seem to approach diverse function learn-
ing tasks with a similar assumption about the underlying smooth-
ness of the function. Although this assumed smoothness was less
than the objective smoothness of of the functions in the first two
experiments, it was slightly higher in the last experiment.

In summary, comparing parameter estimates of the GP-RBF
model combined with UCB sampling between experiments
showed that (a) the model captures participants’ behavior best for
the more simple task with discrete-feature contexts, (b) partici-
pants seem to explore less in more difficult tasks, (c) the length-
scale parameter which reflects the assumed smoothness of the
functions seems to be relatively stable across tasks, indicating a
general approach to learning about unknown functions, and (d) the
continuous-nonlinear experiment was hard for participants as the
model captured their behavior less well and assumed more noise
overall.

Discussion and Conclusion

We have introduced the CMAB task as a paradigm to investi-
gate behavior in situations where participants have to learn func-

R
2

Figure 9. Predictive accuracy of the models for the contextual multi-armed bandit (CMAB) task with
continuous-non-linear cues in Experiment 3. Error bars represent the standard error of the mean.
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tions and simultaneously make decisions according to the predic-
tions of those functions. The CMAB is a natural extension of both
function learning and experience-based decision making in multi-
armed bandit tasks. In three experiments, we assessed people’s
performance in a CMAB task where a general context affected the
rewards of options differently (i.e., each option had a different
function relating contexts to rewards). Even though learning mul-
tiple functions simultaneously is likely to be more complex than
learning a single function (as is common in previous studies on
function learning and MCPL), on average, participants were able
to perform better than expected if they were unable to take the
context into account. This was even the case in a rather complex
situation where the functions were sampled from a general distri-
bution of nonlinear functions, although performance dropped con-
siderably compared to simpler environments with linear functions.

Modeling function learning as GP regression allowed us to
incorporate both rule-based and similarity-based learning in a
single framework. In all three environments, participants appeared
to learn according to GP regression with a RBF kernel. This is a
universal function learning engine that can approximate any func-
tional form and assumes the function is relatively smooth. As it
involves similarity-based generalization from previous observa-
tions to current contexts, it is similar to exemplar models which
generalize by retrieving previously memorized instances and
weighting these according to the similarity to the current context.
We did not find the strong bias toward linear functions that has
been found previously (e.g., Lucas et al., 2015). This could be due
to the increased complexity of learning multiple functions simul-
taneously, or due to participants learning the functions with the
purpose of making good decisions, rather than to accurately predict
the outcomes as such. Although good performance in standard

function learning experiments requires accurate knowledge of a
function over its whole domain, more course-grained knowledge
usually suffices in CMAB tasks where it is enough to know which
function has the maximum output for the given context. Partici-
pants appeared to assume the functions were less smooth than they
actually were in the two first experiments. Although they would be
expected to perform better if their assumed smoothness matched
the objective smoothness, participants would have had to learn the
smoothness from their observations, which is not a trivial learning
problem. If the objective smoothness is unknown, approaching the
task with a relatively less smooth kernel may be wise, as it will
lead to smaller learning errors than overshooting and expecting
relatively too smooth functions (see Schulz, Speekenbrink,
Hernández-Lobato, Ghahramani, & Gershman, 2016; Sollich,
2001).

The results regarding the decision strategy were somewhat less
consistent. When the features comprising the contexts were binary,
people appeared to rely on a strategy in which they focus on the
probability of improving upon past outcomes. In environments
with continuous contextual features, they appeared to balance
expectations and uncertainty more explicitly, relying on an UCB
acquisition function. Participants may have adapted their decision
strategy to the task at hand. In a relatively simple scenario with
binary features and small number of unique and distinct contexts,
it is feasible to memorize the average rewards and best alternative
for each context, and trying to maximally improve upon the current
best option may therefore be an efficient strategy. As the environ-
ment becomes more complicated, memorization seems less plau-
sible, making exploration in order to learn the functions more
important. The UCB strategy explicitly balances the expected
rewards and its associated uncertainty and has been interpreted as
a dynamic shaping bonus within the exploratory choice literature

Figure 10. Parameter estimates of the error variance 	, the length-scale
�, and the temperature parameter  for the Gaussian process radial basis
function kernel (GP-RBF) model in Experiment 3. Dots show median
parameter estimates per participant and boxplots show the median and
interquartile range. See the online article for the color version of this figure.

Figure 11. Mean estimates of the predictive performance R2, the explo-
ration parameter �, the error variance 	, and the length-scale � across all
experiments. Error bars represent the standard error of the mean.
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(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006). It is cur-
rently the only acquisition function with provable good regret
(Srinivas, Krause, Kakade, & Seeger, 2012).

The environment involving nonlinear functions sampled from a
GP was more difficult than the others, and a proportion of partic-
ipants appeared unable to learn the functions. Their behavior was
more in line with a context-blind learning strategy (Kalman filter)
that treats the task as a restless bandit in which the expected
rewards fluctuate over time but where these fluctuations are not
predictable from changes in context. The combination of a Kalman
filter learning model with a PMU decision strategy that described
these participants best has been found to describe participants
behavior well in an actual restless bandit task Speekenbrink and
Konstantinidis (2015) and here might have indicated the limits of
participants’ learning ability in our task.

The present experiments focused on a general context which
differentially affected the outcomes of options. This is different
than the CMAB task of Stojic et al. (2015), in which the features
had different values for each option, whereas the function relating
the contexts to rewards was the same for each options. Future
studies could combine these paradigms and incorporate both
option-specific (e.g., the type of restaurant) as well as general (e.g.,
the area in which the restaurants are located) contextual features,
possibly allowing these to interact (e.g., a seafood restaurant might
be preferable to a pizzeria in a fishing village, but not a mountain
village).

To bring our task closer to real-life decision situations, future
research could adapt the reward functions to incorporate costs of
taking actions or obtaining poor outcomes (see Schulz, Huys,
Bach, Speekenbrink, & Krause, 2016). Research using the CMAB
paradigm also has the potential to be applied to more practical
settings, for example military decision making, clinical decision
making, or financial investment scenarios, to name just a few
examples of decision making that normally involve both learning
a function and making decisions based on expected outcomes.
Incorporating context into models of reinforcement learning and
decision making generally provides a fruitful avenue for future
research.
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