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The Generalization Artist - Or: How Can We Characterize Human

Generalization?

A common understanding is that people are generalization artists: they require far

fewer experience to generalize their knowledge when compared to contemporary AI

systems, i.e. deep neural network models. Here, we summarize evidence in favor and

against this notion. We propose three stages, determining how people generalize. First,

people must infer what aspects of an environment are relevant for a task. Second, they

need to develop a strategy to solve it. And third, while repeatedly carrying out the task,

mental representations required to solve the task change. Mechanisms in all three stages

can decrease the correspondence between the structure of the actual task and how people

solve it. People use their lifelong experiences to constrain what features of a task are

important, and they tend to start solving the task with a simple rule. On average, these

decisions correspond well to natural circumstances. The true artistry of human

generalization is therefore not a general ability to generalize well in any scenario, but to

establish and revise efficient representations in the face of limited processing capacity.

1 The Generalization Artist

The field of artificial intelligence often looks to humans as role models, particularly

for their remarkable ability to generalize. Humans are said to glean extensive insights from

minimal data, easily applying their knowledge to new situations and objects with little

prior experience. For example, when deep neural networks for object recognition are

benchmarked against human participants, humans outperform convolutional neural

networks on a variety of tasks (Geirhos et al., 2018) (e.g., adding noise to images affects

humans much less). In line with this evidence is the observation of one-shot categorization

(Feldman, 1992): People define categories from only one observed object and generalize

accordingly, in stark contrast to learning in deep neural networks, which typically requires

many more examples (e.g., Lake et al., 2017). Observations such as these have led to the

portrayal of people as "generalization artists", gifted with the extraordinary ability to
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extrapolate from limited exposure or practice. But is this reputation deserved? How

proficient are humans at generalizing knowledge to unfamiliar stimuli? To explore this, we

examine evidence both supporting and challenging this view, focusing on areas such as

absolute identification, category learning, function learning, reinforcement learning,

language, memory, and cognitive and physical training. Ultimately, we argue that humans

are indeed generalization artists—not because they always excel, but because they possess

the ability to form effective representations, choose adaptive strategies, and revise their

representations.

2 Evidence in Favor of the Generalization Artist

In the area of absolute identification, Shepard (1987) argued that the first law of

psychology should be the law of generalization, since no stimulus in our environment is

experienced in exactly the same circumstances, but still can be recognized as one and the

same object. He showed that the probability of perceiving two stimuli as the same

increases monotonically with the psychological similarity between the two stimuli. The

same monotonic relationship may not hold without a transformation of the features

describing the object from physical space (e.g., pitch) to psychological space (i.e., mental

representation of pitch).

Moving from object generalization to category learning, a plethora of studies has

shown that people can learn to categorize individual training stimuli into their respective

category given their object properties. Importantly, stimuli not observed during training

are categorized during a transfer test with an accuracy well above chance (e.g., Johansen

& Palmeri, 2002; Nosofsky, 1986). People learn and generalize well when they are asked to

infer categories determined by the relation between stimuli (e.g., Goldwater et al., 2018).

The results look again similarly, when extending the discrete case of learning categories to

learning functions, relating values from continuous feature dimensions (e.g., dosage of a

poison) to continuous outcomes (e.g., symptom severity). Here, it has been shown that

people generalize to unobserved stimuli with high accuracy in the interpolation region (i.e.,
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values between observed values) and with performance well above chance in the

extrapolation region (i.e., values outside of the observed range, e.g., DeLosh et al., 1997).

People behave similarly proficient in reinforcement learning tasks, in which they are

instructed to collect as many rewards as possible in a limited number of choices. For

example, the participants of Wu et al. (2020) learned to make use of correlations between

continuous feature dimensions (e.g., tilt of a gabor patch) and rewards. Furthermore, they

used their knowledge to generalize to feature values unobserved during learning. Jagadish

et al. (2023) pushed this a step further; they showed that people are able to generalize to a

composition of functions (i.e., adding a periodic function to a linear function) mapping

response keys to rewards with remarkable accuracy on the first trial with practice only on

the individual functions but without practice on the composite function.

In the area of language it has been suggested that abstracted knowledge helps us to

understand and produce language via grammatical templates (e.g., a subject - verb - object

sequence). Supporting that claim, Marcus et al. (1999) showed that already

seven-month-old infants detected abstract sequential patterns (i.e., an ABA sequence, with

A and B representing syllable placeholders) in a transfer sequence, which was populated

with previously unobserved syllables. Abstracted sequential patterns are also helpful in the

domain of memory: Wu et al. (2023) showed that humans extract abstracted knowledge

out of patterned sequences, which improved their short-term memory performance for

sequences following the same pattern but consisting of novel items. In the field of motor

skill and expert performance, Fransen et al. (2012) showed that having practiced multiple

sports as compared to a single sport improved standardized test scores of fitness and gross

motor coordination in 6-12-year-olds.

To summarize, there is decisive evidence that humans generalize, be it knowledge

about individual objects, categories defined by individual object features or relations

between different objects, functions, or abstract patterns. Given extensive training, they

sometimes even do so near optimally (e.g., Reed, 1972). While this evidence sets the
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expectation high for human generalization abilities, we review studies about systematic

failures of generalization in the following.

3 Evidence Against the Generalization Artist

Studies in the area of category learning show that people over-simplify structure.

For example, Vermaercke et al. (2014) trained humans and rats on a rule-based and an

information-integration category structure. The latter cannot be solved with a simple one-

or two-dimensional rule. Humans and rats learned both structures equally well given

sufficient training. When required to categorize unobserved transfer stimuli, performance

stayed roughly the same for rats in both structures. Performance, however, dropped

substantially for humans in the information-integration structure, but not in the rule-based

structure. In a similar information-integration category learning task, Donkin et al. (2015)

showed that about a third of their participants relied on a rule-based categorization

strategy, even though this strategy was clearly not the best representation of the category

structure. Together, the Donkin et al. (2015) and Vermaercke et al. (2014) studies can be

taken as indication that people make systematic errors when asked to infer the category of

unobserved objects: they rely too heavily on rules.

Evidence from the area of function learning specifies this systematicity: People tend

to prefer simple rules over complicated ones (see also Chater & Vitányi, 2003). For

example, they learn linear functions faster than quadratic functions (Brehmer, 1974), and

they simplify more complicated functions, for example by approximating a quadratic

function with a linear function (DeLosh et al., 1997; Little & Shiffrin, 2009).

In the area of cognitive training, a large corpus of studies shows that despite large

performance gains on trained tasks, performance on similar untrained tasks does not

improve. For example, despite large improvements in performance in a working memory

binding paradigm, performance on very similar untrained working memory tasks is

unaffected (De Simoni & von Bastian, 2018). This absence of generalized training gains

(e.g., Melby-Lervåg et al., 2016) has come to some surprise: Working-memory capacity
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and fluid intelligence correlate with .85 (Oberauer et al., 2005). It has been assumed that

training gains in working memory tasks should therefore generalize to other tasks requiring

reasoning or fluid intelligence. These findings cast doubt on the proposition that mastery

of one task generalizes to performance on similar tasks.

Similar results come from the motor skill and expert performance domains. Several

studies have observed that skill mastery leads to the emergence of a so-called especial skill.

For example, batting accuracy of baseball players at regulation distance is substantially

higher than expected from the accuracies at near-by distances (Simons et al., 2009). The

latter study also demonstrated the absence of transfer/generalization to distances one foot

away from regulation distance. The results from training studies contrast with the

generalization artist proposition and are in line with the idea of overfitting: massive

amounts of learning in a task make us just better in the trained task with exactly the used

stimuli.

So, how do the diverging results about human generalization abilities, which we

summarized in 1, fit together? In the following, we present a taxonomy of human

generalization, which allows us to conceptualize whether we can expect generalization given

some combination of training and transfer task or not.

4 A Taxonomy of Human Generalization

We propose that generalization is predominantly a function of the mental

representations acquired via confrontation with a task. Representations emerge on the

levels of the task and on the level of individual objects/feature dimensions. We suggest

that these representations are shaped in learning episodes, which can be roughly

categorized into three not mutually exclusive stages (see Figure 2). Eventually, we

integrate these stages with findings from the training literatures.

4.1 Constraining The Task Representation

When people are confronted with a task, they have to constrain the dimensionality

of the problem space. Even though experimenters try hard to constrain the possible task
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In Favor Against
Absolute Identification Psychological similarity predicts if stimuli 

are considered to be the same stimulus
-

Category Learning Above chance generalization of category 
knowledge to unobserved stimuli

Preference for rules, even if not 
favorable

Function & Reinforcement 
Learning

Above chance generalization of function 
knowledge to unobserved stimuli (inter- 
and extrapolation)

Preference for simple  rules (e.g., 
representing a quadratic function with a 
linear function)

Memory & Language Use of abstracted patterns in concrete 
space (e.g., words, chunks) and in abstract 
space (e.g., nouns vs. verbs, motifs)

-

Cognitive Training - Absence of transfer in the face of large 
performance gains in trained tasks

Skilled Performance Multi sport training favors fitness and gross 
motor coordination

Emergence of an especial skill (e.g., in 
baseball)

EvidenceDomain

Figure 1

The left column presents evidence in favor of the notion of the generalization artist, the

right column evidence against it.

representations via instructions, there are usually still various options how a task

representation can be derived. For example, Mason et al. (2022) argue that people generate

hypotheses about what aspects of a task environment are relevant. They show that slight

modifications in the instructions and in the stimulus presentation affect people’s task

representations. This idea resonates with Feldman (1992)’s proposal that people focus on

feature dimensions, which they expect to be relevant given their background knowledge,

but ignore dimensions, which they assume to be irrelevant. As a consequence, individual

differences in task representations arise because people differ in the features they think are

task relevant.
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A: A participant in a category learning experiment considers features A, B, C, and D to be

potentially relevant in the experiment. A represents sequential information about presented

stimuli, for example whether every n-th object belongs to a certain category. The person

considers B to be an irrelevant feature and C and D to be likely relevant. B: Features C

and D are indeed relevant to learn to discriminate the two categories (left panel). However,

the person represents the two categories with a two-dimensional rule, which leads to

systematic categorization errors (right panel). C: After extensive learning, representations

of feature values on dimensions C and D become more precise. That is, two stimuli that

differ from each other according to a fixed distance in objective feature space, are

psychologically less similar after learning.

4.2 Strategy Selection

Once people have decided upon a task representation, they must find a solution to

the task. People tend to start solving a task with a rule, in particular a simple rule (Little
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& Shiffrin, 2009) and they generalize according to this simple rule (Johansen & Palmeri,

2002). Simple, often verbalizable rules are cognitively little demanding and easy to learn

(Feldman, 2000) and provide an effective tool to generalize to unobserved stimuli.

Although a verbalizable rule may sometimes not represent the complexity of a problem well

(Donkin et al., 2015), in other cases, it leads to impressive generalization performance

(Nam & McClelland, 2023). From an ecological standpoint, having a simplicity preference

is efficient because most everyday problems can be solved with a linear model (Jagadish

et al., 2024) or a simple heuristic (Gigerenzer & Gaissmaier, 2011). We consider the

empirical evidence that humans generalize using simple rules to be substantial.

The more experience people have with the task, the more they tend to solve it and

generalize using information about individual stimuli (i.e. exemplars, Johansen & Palmeri,

2002). In particular, people use the perceived similarity between a representation of a novel

stimulus and representations of previously observed stimuli to respond to the novel

stimulus (Nosofsky, 1986). We consider the evidence that people generalize to unobserved

stimuli using psychological similarity to stored representations to be strong.

4.3 Representational Change

While people carry out a task, representations of objects/tasks change over time.

Here, we focus on a subset of three types of change mostly relevant for generalization.

First, representations of individual stimuli become preciser with repeated exposure

(Goldstone & Steyvers, 2001; Thalmann et al., 2023). Second, repeated exposure to the

same sequences of items (e.g., F - B - I) leads to the emergence of chunks (Chase & Simon,

1973). These chunks are used in novel situations and tasks to deal more efficiently with

limited working-memory capacity (Thalmann et al., 2019). Third, people learn more

abstract representations, for example to categorize nouns as subjects and objects. They use

sequential regularities on the abstract level (e.g., subject - verb - object) to generalize

efficiently. That is, they handle previously unobserved sequences adhering to the same

regularities with relative ease (e.g., Marcus et al., 1999; Wu et al., 2023). Whether
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regularities on an abstract level, however, are beneficial for generalization to novel tasks

depends on whether the learned regularities can be found in other situations. This may not

always be the case, especially outside of rule-based formal systems.

5 Cognitive and Motor Skill Training

How does the absence of generalization of training gains in the field of cognitive

training relate to our proposed three stages? Transfer in the training literature is usually

defined and measured as generalized process gains but not as representational

generalization. For example, De Simoni and von Bastian (2018) argued that their

participants had gained stimulus expertise without a change in the efficiency of the

cognitive processes. We would assume that this representational change helped their

participants to perform well in tasks requiring similar stimuli. For example, a learned

three-digit chunk should be helpful in a different memory task with digits as stimuli.

However, participants should perform again around baseline when they are transferred to a

task requiring the same cognitive process to be carried out with completely new stimulus

material, because they cannot profit from their acquired representations. In essence, we

predict that generalization is a function of representations, which is diametrically opposed

to the definition in the training studies.

The presence of generalized benefits in fitness and gross motor coordination

contrasts with the cognitive training findings. A possible explanation is that the

standardized tasks (i.e., standing broad jump and endurance shuttle run test) measure

skills, which are already used in the individually trained disciplines. These tasks measure

therefore training success, not generalization. The absence of generalization in the extreme

case of the especial skill, can be seen as an extreme representational change. Increased

representational precision for a particular scene (e.g., distance and angle of a basket, see

panel C in Figure 2) is at the same time associated with decreased generalization given

that scene. That is, already small changes in distance to the basket appear differently to

the proficient basketball player. Perhaps surprisingly, the potential to use an object
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representation for generalization decreases with extensive practice.

6 Conclusion

Humans have been pictured as generalization artists, especially when compared to

deep neural networks. Here, we presented a more detailed view and reviewed cognitive

generalization mechanisms. We argued that successful generalization depends on whether

the task representation and the strategy to solve a task align with the way a problem is set

up. If an experimenter sets up a complicated, multidimensional, non-linear task structure,

people may end up solving the task with an incorrect simple rule, because they have a

strong preference for such simple rules; or they require thousands of training examples and

feedback to eventually approximate the complicated function and generalize accordingly. In

contrast, when the task requires the execution of a one-dimensional simple rule, people are

likely to immediately perform and generalize well, because they can use their lifelong

experiences to quickly constrain the problem space. Therefore, the true art of human

generalization does not lie in a universal ability to generalize - but in the well-formed craft

to establish and revise efficient representations in the face of limited processing capacity.

7 Recommended Reading

1. Taylor et al. (2021): Provides an extensive review of generalization phenomena with a

particular focus on neurobiology.

2. Shepard (1987): Shows that the mapping from representations/descriptions of objects

in physical space to psychological space is important when evaluating generalization

in absolute identification tasks.

3. Nosofsky (1986): Explains how the same principles of exemplar-based processing are

able to explain generalization in absolute identification and category learning.

4. Johansen and Palmeri (2002): Shows that people initially use rules to generalize to

unobserved objects, but later on change to exemplar-based processing.
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5. Cusack et al. (2024): Argues that human infants learn a generalizable foundation

model in their protracted helplessness period, similar to self-supervised learning in

natural language models.

8 Appendix
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