
Mapping the unknown: The spatially correlated multi-armed bandit
Charley M. Wu1, Eric Schulz2, Maarten Speekenbrink2, Jonathan D. Nelson1 & Björn Meder1

1Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
2Department of Experimental Psychology, University College London, London, WC1H0AP

Abstract

We introduce the spatially correlated multi-armed bandit as a
task coupling function learning with exploration-exploitation.
Participants interact with bi-variate reward functions on a two-
dimensional grid, with the goal of either gaining the largest
average score or finding the largest payoff. By providing an
opportunity to learn the underlying reward function through
spatial correlations, we model to what extent people form be-
liefs about unexplored payoffs and how that guides search be-
havior. Participants adapted to assigned payoff conditions, per-
formed better in smooth than in rough environments, and—
surprisingly—sometimes seemed to perform equally well in
short as in long search horizons. Our modeling results indi-
cate a tendency towards local search options, which when ac-
counted for, suggests participants were best-described as form-
ing only very local inferences about unexplored regions, com-
bined with a search strategy that directly trades off between
exploiting high expected rewards and exploring to reduce un-
certainty.
Keywords: Gaussian Process regression; Exploration-
exploitation; Multi-armed bandits; Spatial exploration

Introduction
Modern humans descend from capable foragers and hunters,
who have migrated and survived in almost every environment
on Earth. To accomplish this, our ancestors were able to adap-
tively learn the distribution of resources in new environments
and make good decisions about where to search, requiring
a balance of exploration and exploitation. What strategies
do humans use to search for resources in unknown environ-
ments? Is search behavior guided by inductive beliefs about
unexplored payoffs?

We present a new framework for studying human
exploration-exploitation behavior using a spatially correlated
multi-armed bandit task, where nearby arms have correlated
rewards. Spatial correlations provide an opportunity for peo-
ple to learn about the underlying reward function through
experience, in a task that couples function learning with
the demands of balancing exploration and exploitation. We
compare search behavior across different payoff conditions,
search horizons, and types of environments, finding that par-
ticipants are adaptive to their environment, tend to perform
very local inferences about unexplored regions and choose
arms based on a trade-off between expectations and their at-
tached uncertainties.

Spatially Correlated Multi-Armed Bandits
We adapt the multi-armed bandit (MAB) setting by adding
spatial correlation to rewards and placing the arms in a two-
dimensional grid (see Fig. 1). Each tile represents a playable
arm of the bandit, where unobserved arms are blank and pre-
vious observations are displayed numerically along with a
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Figure 1: Examples of the underlying reward functions for the two
classes of environments.

color aid. Traditionally, the goal in an MAB task is to maxi-
mize cumulative payoffs by sequentially choosing one of the
N-arms of the bandit, which stochastically generate rewards
(Steyvers, Lee, & Wagenmakers, 2009), learning about the
rewards of each arm independently (i.e., reinforcement learn-
ing). In our case, because proximate arms generate similar re-
wards, there is the opportunity to form inductive beliefs about
unobserved rewards (i.e., function learning). This allows us to
study how people generate beliefs about unobserved rewards
and how this contributes to their ability to acquire rewards.

The spatially correlated multi-armed bandit is also sim-
ilar to an optimal foraging task (Krebs, Kacelnik, & Tay-
lor, 1978), whereby a forager is not only guided by the
search for resources, but also by the need to acquire infor-
mation about the distribution of resources in the environment
(Schulz, Huys, Bach, Speekenbrink, & Krause, 2016). This
creates a natural trade-off between exploration and exploita-
tion (March, 1991), where an effective search policy needs
to adequately balance exploring areas with higher uncertainty
(i.e., further away from previous observations), while also ex-
ploiting existing information to obtain rewards.

Modeling Adaptive Search Behavior

We consider both model-free and model-based approaches
for describing human behavior. Model-free strategies
work without an explicit representation of the environment,
whereas model-based approaches represent the task as a com-
bination of (i) a function learning model and (ii) a decision
strategy. We use a form of Gaussian Process regression as a
flexible and universal function learning model, which forms
inferential beliefs about the environment conditioned on pre-
vious observations of rewards. Decision strategies are used to
transform beliefs into predictions about where to sample next.
We use the recovered parameter estimates of our models to
describe the extent to which people make spatial inferences
and how they trade-off between exploration and exploitation.
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Model-Free Strategies
Local search. There may be a tendency to stay local to the
previous search decision, regardless of outcome. Locality
has also been observed in semantic foraging (Hills, Jones, &
Todd, 2012), causal learning (Bramley, Dayan, & Lagnado,
2015), and eye movements (Hoppe & Rothkopf, 2016). We
use inverse Manhattan distance (IMD) to quantify locality:

IMD(x,x′) =
1

|x1− x′1|+ |x2− x′2|
(1)

which compares the location of two arms x and x′, where x1
and x2 are the grid coordinates. For the special case where
x= x′, we set IMD(x,x′) = 1. At each time t, we compute the
IMD for each arm based on the choice at xt−1, and then use
a softmax function (Eq. 11) to transform locality into choice
probabilities, such that arms closer to the previous search de-
cision have a higher probability of being chosen.

Win-stay lose-shift. We also consider a form of the win-
stay lose-shift (WSLS) heuristic (Herbert, 1952), where a win
is defined as finding a payoff with a higher or equal value
than the previous best. When the decision-maker “wins”, we
assume that any tile with a Manhattan distance ≤ 1 is chosen
(i.e., a repeat or any of the four cardinal neighbors) with equal
probability. Losing is defined as the failure to improve, and
results in choosing any unrevealed tile with equal probability.

Model-Based Strategies
Our model-based strategies are a combination of (i) Gaus-
sian Process (GP ) regression as a model of how people form
beliefs about the underlying reward function, conditioned on
previous observations (Lucas, Griffiths, Williams, & Kalish,
2015), and (ii) a decision strategy that transforms beliefs
into predictions about where a participant will sample next.
This approach has recently been applied to human behav-
ior in contextual multi-armed bandits (Schulz, Konstantini-
dis, & Speekenbrink, 2016) and is one of the few computa-
tional models with proven regret bounds in a bandit setting
(Srinivas, Krause, Kakade, & Seeger, 2010).

Gaussian process learning. A GP defines a distribution
P( f ) over possible functions f (x) that map inputs x to output
y, in our case, grid location to reward. A GP is completely
defined by a mean µ(x) and a kernel function, k(x,x′):

µ(x) = E [ f (x)] (2)

k(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(3)

Here, we fix the prior mean to the median value of payoffs,
µ(x) = 50 and use a radial basis function kernel (Eq. 7).

Suppose we have collected observations yT =
[y1,y2, . . . ,yT ]

> at inputs XT = {x1, . . . ,xT}, and assume

yt = f (xt)+ εt εt ∼N (0,1) (4)

Given a GP prior on functions f (x) ∼ GP (µ(x),k(x,x′)),
the posterior distribution over f (xT ) given inputs XT is also

a GP with the following mean and covariance:

µT (x) = kT (x)>(KT +σ
2I)yT (5)

kT (x,x′) = k(x,x′)−kT (x)>(KT +σ
2I)−1kT (x′) (6)

where kT (x) = [k(x1,x), . . . ,k(xT ,x)]> and KT is the posi-
tive definite kernel matrix [k(xi,x j)]i, j=1,...,T . This posterior
distribution is used to derive normally distributed predictions
about the rewards for each arm of the bandit (Fig. 2).

The kernel function k(x,x′) encodes prior assumptions
about the underlying function. We use the radial basis func-
tion (RBF) kernel

kRBF(x,x′) = exp
(
−||x−x′||2

2λ2

)
(7)

which is a universal function learner and assumes infinitely
smooth functions (i.e., correlations between two points x and
x′ slowly decay as an exponential function of their distance).
The RBF kernel uses λ (length-scale) as a free parameter,
which determines how far correlations extend: larger values
of λ result in longer spatial correlations, whereas λ→ 0+ as-
sumes complete independence of spatial information. We use
recovered parameter estimates of λ to learn about the extent
to which humans make inferences about unobserved rewards.

Decision strategies. The GP learning model generates nor-
mally distributed beliefs about the expectation µ(x) and the
uncertainty σ(x) for each arm, which are available to the de-
cision strategies1 for evaluating the quality, q(x), and ulti-
mately making a prediction about where to sample next.

The Variance Greedy (VG) strategy values an arm using
only the estimated uncertainty

qV G(x) = σ(x) (8)

and is an efficient step-wise greedy approximation of infor-
mation gain (Srinivas et al., 2010), which seeks to learn the
global reward function as rapidly as possible. VG achieves at
least a constant fraction of the optimal information gain value
(Krause & Guestrin, 2005); however, it fails to adequately
trade-off between exploration and exploitation, because ef-
fort is wasted exploring the function where f (x) is small.

The Mean Greedy (MG) strategy is also step-wise greedy,
valuing arms using only the estimated mean reward

qMG(x) = µ(x) (9)

although this strategy carries no known guarantees and is
prone to getting stuck in local optima.

Upper confidence bound sampling (UCB) has both VG and
MG nested within

qUCB(x) = µ(x)+βσ(x) (10)

1We also considered Probability of Improvement and Probabil-
ity of Maximum Utility (Speekenbrink & Konstantinidis, 2015) as
alternate decision strategies, but have omitted them because they
failed to reach performance comparable to UCB.
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where the exploration factor β determines how the reduction
of uncertainty trades off against exploiting high expected re-
wards. This is sometimes referred to as optimistic “sampling
with confidence” as it inflates expectations with respect to
the upper confidence bounds (Srinivas et al., 2010), creating
a natural balance between exploration and exploitation.
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Figure 2: Modeling human performance. Column left represents the
initial state of the task and column right is after 10 clicks. Top row:
screenshots from the experiment. 2nd row: posterior predictions of
expected reward µ(x), from a GP with an RBF kernel (not shown:
the estimated variance). 3rd row: the values of each tile q(x) using
the UCB acquisition function. Bottom row: the softmax prediction
surface transforming the UCB values into choice probabilities.

Choice Probabilities
For all models, we use a softmax function (Fig. 2 bottom row)
to convert the value of an option q(x) into a choice probability

P(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

(11)

where τ is the temperature parameter. As τ→ 0 the highest
value arm is chosen with a probability of 1 (i.e., argmax), and
when τ→ ∞, all options are equally likely, with predictions
converging to random choice. We use τ as a free parame-
ter, where lower estimates can be interpreted as more precise
predictions about choice behavior.

Experiment
We present a bi-variate MAB problem with spatially corre-
lated rewards. The problem space was represented by a two-
dimensional grid, measuring 11×11, and resulting in 121
unique tiles in total. Participants could click to reveal un-
explored tiles or re-click previously uncovered tiles to exploit
known rewards (see Fig. 2 top row for screenshots).

Methods
Participants. We recruited 80 participants from Amazon
Mechanical Turk (25 Female; mean ± SD age 32 ± 9). Each
participant was paid a participation fee of $0.50 and a per-
formance contingent bonus up to $1.50. Subjects earned on
average $1.64 ± 0.20 and spent 8 ± 4 minutes on the task.

Design. We used a 2×2 between subject design, where par-
ticipants were randomly assigned to one of two different
pay-off structures (Average Reward vs. Maximum Reward)
and one of two different classes of environments (Smooth
vs. Rough). Each grid represented a bi-variate function,
with each observation including normally distributed noise,
ε∼N (0,1). The task was presented over 8 blocks on differ-
ent grid worlds drawn from the same class of environments.
In each block, participants had a search horizon of either 20
or 40 clicks to interact with the grid. The search horizon al-
ternated between blocks (within subject), with initial horizon
length counterbalanced between subjects. Per block, obser-
vations were scaled to a randomly drawn maximum value in
the range of 65 to 85, so that the value of the global optima
could not be easily guessed (e.g., a value of 100).

Materials and procedure. Before starting, Participants
were shown four fully revealed grids in order to familiarize
themselves with the task. Example environments were drawn
from the same class of environments assigned to the partic-
ipant (Smooth or Rough) and underwent the same random
scaling of observations. Additionally, three comprehension
questions were used to ensure full understanding of the task.

At the beginning of each of the 8 blocks, one random
tile was revealed and participants could use their mouse to
click any of the 121 tiles in the grid until the search hori-
zon was exhausted, including re-clicking previously revealed
tiles. Clicking an unrevealed tile displayed the numerical
value of the reward along with a corresponding color aid,
where darker colors indicated higher point values (Fig. 1).
Previously revealed tiles could also be re-clicked, although
there were variations in the observed value due to noise. For
repeat clicks, the most recent observation was displayed nu-
merically, while hovering over the tile would display the en-
tire history of observation. The color of the tile corresponded
to the mean of all previous observations.

Payoff conditions. We compared performance under two
different payoff conditions, requiring either a balance be-
tween exploration and exploitation (Average Reward condi-
tion) or corresponding to consistently making exploration de-
cisions (Maximum Reward). Previous work has shown that
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people can adapt (sometimes with great difficulty) to differ-
ent payoff conditions in information acquisition tasks (Meder
& Nelson, 2012).

In each payoff condition, participants received a perfor-
mance contingent bonus of up to $1.50. Participants assigned
to the Average Reward condition were given a bonus based
on the average value of all clicks as a fraction of the global
optima, 1

T ∑( yt
y∗ ), where y∗ is the global optimum. Partici-

pants in the Maximum Reward condition were rewarded us-
ing the ratio of the highest observed reward to the global op-
timum, (maxyt

y∗ )4, taken to the power of 4 to exaggerate dif-
ferences in the upper range of performance and for parity in
expected earnings across payoff conditions. Both conditions
were equally weighted across the 8 blocks and used noisy but
unscaled observations to assign a bonus of up to $1.50. Sub-
jects were informed in dollars about the bonus earned at the
end of each block.

Smoothness of the environment. We used two different
classes of environments, corresponding to different levels of
smoothness, where smoothness can be understood as the ex-
tent of spatial correlations (Fig. 1). All environments were
sampled from a GP prior with a RBF kernel, where the
length-scale parameter (λ) determines the rate at which the
correlations of rewards decay over distance. We sampled 20
Smooth environments using λ = 2 and 20 Rough environ-
ments using λ = 1. Subjects performed the task on 8 grids
randomly drawn (without replacement) from their assigned
class of environments, while the four fully revealed environ-
ments used to familiarize subjects with the task were drawn
(without replacement) from the remaining 12 environments.

Search horizons. The length of the search horizon influ-
ences the value of information learned about the environment,
with respect to the assigned payoff condition. For exam-
ple, longer horizons provide more opportunities for exploit-
ing acquired information, thereby making early exploration
more valuable. We chose two horizon lengths (Short=20 and
Long=40) that were fewer than the total number of tiles on the
grid (121), varied within subject (alternating between blocks
and counterbalanced).

Results

Figure 3 shows task performance. In all conditions, perfor-
mance improved as a function of the trial number (i.e., with
each additional click), as measured by both the overall cor-
relation between average reward and trial number (r = .32,
p = .04) and between the maximum observed reward and
trial number (r = .83, p < .001). There were no learning
effects across blocks (i.e., over successive grids), indicated
by a lack of correlation between average reward and block
number (r = .19, p = .65), or between maximum reward and
block number (r = −.37, p = .36). Participants performed
better as more information was revealed (i.e., over trials), but
not over additional blocks of identically parameterized task
environments.

Payoff conditions. Payoff conditions influenced search be-
havior, with participants in the Maximum Reward condition
displaying more variance in the locations sampled (t(78) =
−2.48, p = .02). There were some differences in the number
of unique tiles revealed (Fig. 3C) and the number of repeat
clicks across the payoff conditions (Fig. 3D), although the ef-
fect size is largest for smooth environments given long search
horizons. However, these behavioral differences did not man-
ifest in terms of performance, with no systematic differences
across payoff conditions in terms of the average reward ob-
tained t(78) = 1.32, p = .2) or in the maximum revealed re-
ward (t(78) = .001, p = .99).
Environment and horizon. Independent of the payoff
condition, participants assigned to Smooth environments
achieved higher average rewards (t(78) = 6.55, p < .001)
and higher maximum rewards (t(78) = 5.45, p < .001), than
those assigned to the Rough environments (Fig. 3E), suggest-
ing that stronger correlations of payoffs make the task easier.
Interestingly, longer horizons did not lead to better overall
performance in the Average Reward condition (t(80) = .34,
p = .73), although participants given longer horizons found
larger maximum rewards for all payoffs and environment
conditions (t(158) = 7.62, p < .001). There may be a less-is-
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Figure 3: Overview of task performance. (A) Average reward earned
and (B) maximum reward revealed, where colors correspond to dif-
ferent payoff conditions and line-types to different horizon lengths.
Black lines show baseline performance of a random model based on
10,000 simulated experiments. (C) The average number of unique
tiles clicked in each block and (D) the average number of repeat
clicks in each block, with the strongest differences between payoff
condition in smooth environments with long search horizons. (E)
The distribution of rewards earned during each block, grouped first
by environment type and then by horizon length.
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more-effect, with longer horizons leading to over-exploration,
given the goal of maximizing average rewards.

Model Comparison
We describe each model’s ability to predict participant behav-
ior using leave-one-block-out cross validation. For each par-
ticipant, we analyzed the four short and the four long horizon
blocks separately. Cross-validation was performed by hold-
ing out a single block as a test set, and fitting the model pa-
rameters using a maximum likelihood estimate (MLE) on the
remaining three blocks. Iterating through each of the four
hold-out blocks, for both short and long horizons, we calcu-
lated a model’s out-of-sample log loss (i.e., test set prediction
accuracy) and then summed up the results over all blocks. We
use McFadden’s R2 values (McFadden, 1973) to compare the
out-of-sample log loss for each model to that of a random
model (Fig. 4), where R2 = 0 indicates chance performance
and R2 = 1 is a perfect model.
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Figure 4: Model Comparison. The height of the bars show the
group mean and error bars indicate standard error. McFadden’s R2

is a goodness of fit measure comparing each model Mk to a ran-
dom model Mrand. Using the out-of-sample log loss for each model,
R2

McF = 1− logL(Mk)/ logL(Mrand).

Our model comparison indicates that local search explains
a large amount of the variance in participant behavior (R2 =
.28; all conditions); however, locality alone fails to achieve
similar task performance as humans, with performance al-
most identical to random in terms of average reward and
worse than random in maximum reward (Fig. 5). WSLS
by comparison, was a poor approximation of search behavior
(R2 = .05), and was excluded from the comparison of model
performance.

Among the GP models, UCB performed best (R2 = .23),
with MG showing comparable results (R2 = .17) and VG per-
forming poorly (R2 = .01). Interestingly, the performance of
the GP-UCB model was remarkably similar to human sub-
jects in terms of both average and maximum reward (Fig. 5).
Both humans and the GP-UCB model explore beyond what
is adaptive in the average reward context as evidenced by the
peak around t = 15, continuing to explore after most high-
value rewards have been revealed and thus failing to consis-
tently improve average rewards2.

2Note that the peak in average reward for the GP-UCB is due to
the use of human parameter estimates, whereas a GP-UCB model
with optimized hyper-parameters and a dynamic β is known to

To harmonize the different aspects of human behavior cap-
tured by local search and by the GP-UCB model, we added a
local variant of each GP model (Local GP), which weighs the
q(x) for each arm by the inverse Manhattan distance to the
previous choice, qLocal(xt) = q(xt) · IMD(xt ,xt−1). Adding
locality to the GP models only improved prediction accuracy
(Fig. 4 right), with the Local GP-UCB model having the high-
est overall out-of-sample prediction accuracy (R2 = .38).

Overall, the modeling results show that humans display
a preference for local search, but that locality alone fails to
achieve comparable performance levels. The best model (Lo-
cal GP-UCB) incorporated this tendency for local search into
a model-based approach, combining function learning with a
decision strategy that explicitly trades off between both high
expected rewards and high uncertainty.
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Figure 5: Comparison of model performance over 10,000 simu-
lated replications, where parameters were sampled from the cross-
validated MLEs of the subject population. Human results are aver-
aged across payoff conditions and horizon length.

Parameter Estimation
Figure 6 shows the cross-validated parameter estimates of the
best predicting Local GP-UCB model. The estimates indi-
cate subjects systematically under-estimated the smoothness
of the underlying environments, with λ values lower than the
true underlying function (λSmooth = 2, λRough = 1), for both
Rough environments (t(36) =−4.80, p < .001) and Smooth
environments (t(42) = −18.33, p < .001), using the median
parameter estimate for each subject. Participants not only had
a tendency towards selecting local search options, but also
made local inferences about the correlation of rewards.

All participants valued exploring to reduce uncertainty
(β > 0), with long horizons often yielding larger β estimates
than short horizons (51 out of 80 subjects; t(79) = −2.02,
p = .047)3. There were no differences between payoff con-
ditions (t(78) =−1.65, p = .1) or environments (t(78) = .5,
p > .1).

Subjects in the average reward condition yielded smaller
estimates for τ (temperature) than those in the maximum re-
ward condition (t(78) =−2.66, p = .009). This is consistent
with almost all models making better predictions for aver-
age reward than for maximum reward subjects (Fig. 4), since

achieve sublinear regret bounds (i.e., monotonically increasing av-
erage reward; Srinivas et al., 2010)

3Because horizon length varied within subjects, we compare the
aggregate mean of the cross-validated parameter estimates for β.
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smaller values of τ indicate more precise predictions. The
larger number of unique tiles searched in the maximum re-
ward condition (Fig. 3C) may indicate a harder prediction
problem.
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Figure 6: Cross-validated parameter estimates for the Local GP-
UCB model, showing the median estimate for each participant.

General Discussion
The results presented here can be seen as a first step towards
uncovering how people search to acquire rewards in the pres-
ence of spatial correlations. We have re-cast the multi-armed
bandit problem as a framework for studying both function-
learning and the exploration-exploitation trade-off by adding
spatial correlations to rewards. Within a simple experiment
about searching for rewards on a two-dimensional grid, we
found that participants adapt to the underlying payoff condi-
tion, perform better in smooth than in rough environments,
and—surprisingly—sometimes seem to perform as well in
short as in long horizon settings.

Our modeling results show a tendency to prioritize local
search options, which may indicate the presence of innate
search costs (e.g., mouse movements or some additional cog-
nitive processing). Even accounting for this local search be-
havior, our best predicting model (Local GP-UCB) still in-
dicates that people systematically underestimate the extent of
spatial correlation of rewards, preferring instead to make very
local inferences about unexplored rewards. Additionally, we
also found that search behavior was best predicted by a com-
bination of both high expected reward and high uncertainty,
embodied in the UCB decision strategy, which implicitly ne-
gotiates the exploration-exploitation trade-off.

Future studies could expand on this work by assessing a
more diverse and perhaps combinatorial set of kernel func-
tions (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Ger-
shman, 2016) or by speeding up GP-inference using approxi-
mation methods such as sparse inference (Lawrence, Seeger,
& Herbrich, 2003) or more parsimonious neural network rep-
resentations (Neal, 2012). Indeed, the result that participants
formed only very local beliefs about spatial correlations could
be used to find heuristic approximations to GP models in the
future, which could effectively trade-off a small loss in accu-
racy for reduced computational complexity.

Conclusion
We compared both model-free and model-based strategies in
their ability to make out-of-sample predictions about partic-
ipant sampling behavior. Our modeling results indicate that

there may be innate search costs, creating a tendency to prior-
itize local search options. Furthermore, even accounting for
this local search behavior, our best performing model (Local
GP-UCB) indicates that people also have a systematic ten-
dency to underestimate the extent of spatial correlation of re-
wards, preferring instead to make very local inferences about
unexplored rewards.
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