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Abstract
How do people learn functions on structured spaces? And how do they use this knowledge to guide their search for rewards
in situations where the number of options is large? We study human behavior on structures with graph-correlated values
and propose a Bayesian model of function learning to describe and predict their behavior. Across two experiments, one
assessing function learning and one assessing the search for rewards, we find that our model captures human predictions
and sampling behavior better than several alternatives, generates human-like learning curves, and also captures participants’
confidence judgements. Our results extend past models of human function learning and reward learning to more complex,
graph-structured domains.

Keywords Function learning · Generalization · Inference · Graphs · Exploration-exploitation

Introduction

On September 15th, 1835, Charles Darwin and the crew
of the HMS Beagle arrived in the Galapagos Islands. As
part of a 5-year journey to study plants and animals along
the coast of South America, Darwin collected specimens
of Galapagos finches, which would become an important
keystone for his theory of evolution. Back in England,
Darwin began to study the geographical distribution of the
birds, particularly the relationship between their features
and their habitat. He noticed that while finches on nearby
islands had similar beaks (e.g., the vegetarian tree finches
and the large insectivorous tree finches with their broad
and stout beaks), finches on more distant islands were
more dissimilar (e.g., the cactus ground finch with its
long and spike-like beak). From these observations, Darwin
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concluded that these finches all originally derived from the
same finch and then gradually adapted to the conditions
of the Islands. Since nearby islands had similar conditions,
finches on these islands had more similar beaks.

Darwin’s historical insight is an example of function
learning, where a function represents a mapping from some
input space to some output space. In Darwin’s case, the
hypothesis was a function mapping a bird’s habitat to the
characteristics of its beak (e.g., size). Function learning has
traditionally been studied with continuous input spaces, but
functions can also be defined over discrete input spaces such
as graphs. While the geography of habitats can sometimes
be described by a Cartesian coordinate system (latitude and
longitude), the Galapagos is structured as a chain of islands,
where the Euclidean distance within an island can be larger
than the distance between islands. Since finches from the
same island tend to be similar, the relevant metric for
function learning may be topological rather than Euclidean
distance, where the chain of islands can be described as a
graph.

Function learning on graph-structured inputs spaces is
not restricted to scientific epiphanies; it also applies ubiq-
uitously to daily life. For example, the spread of disease,
ideas, and cultural products from interpersonal contact can
be understood as functions defined over social graphs.
We can learn to predict which of our friends will like a
piece of music after observing the music preferences of
other friends in our social network. Similarly, as many
parents of toddlers know, the appearance of a sickness in
daycare is highly predictive of who will get sick next.
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Beyond social graphs, the flow of individuals in a trans-
portation network and the distribution of food resources
in patchy environments can likewise be described using
graph-structured functions.

Despite the ubiquity of graph-structured functions,
most studies of function learning (as we review below)
have examined only continuous input spaces. In addition,
reinforcement learning in discrete state spaces can also
be interpreted as a form of graph-structured function
learning, but relatively little work has examined patterns
of generalization beyond very simple graph structures
(e.g., Wimmer et al. 2012; Gershman and Niv 2015). Can
similar computational principles of inference and search
that describe human behavior in continuous spaces also
apply to discrete, graph-structured spaces?

In this paper, we investigated how people learn graph-
structured functions and use this knowledge to guide the
search for rewards. In Experiment 1, we studied how people
infer the values of nodes on complex graphs (corresponding
to the number of passengers on a virtual subway map),
where values were correlated by the connectivity structure,
such that connected nodes had similar values. This is
a discrete analogue of traditional function learning tasks
on continuous input spaces, where we hypothesized that
people would be able to make accurate predictions by
taking into account the connectivity structure of the graph.
We tested this hypothesis by analyzing performance and
comparing different computational models in their ability to
predict participants’ judgments and confidence ratings. In
Experiment 2, we studied how people search for rewards on
complex graphs, tantamount to a 64-armed bandit problem,
where each arm of the bandit corresponded to a node on
a graph and rewards were similarly correlated based on
connectivity. Here, we hypothesized people would be able
to leverage the structure of the environment to explore
efficiently and rapidly acquire better rewards, using the
same computational principles of function learning for
inferring value. We tested this hypothesis through both
behavioral analyses and computational modeling, where we
compared models that differed in how they generalized
about novel stimuli and in their exploration strategies.

Our results indicate that people learn and search for
rewards consistent with a Bayesian model of function learn-
ing, implemented using Gaussian process (GP) regression
with a diffusion kernel. Our diffusion kernel GP model
outperformed various alternatives in predicting inferences,
uncertainty judgements, and when combined with an opti-
mistic sampling strategy (upper confidence bound sam-
pling), also performed best in predicting sampling deci-
sions on a 64-armed bandit problem with graph-structured
rewards. This model builds on past studies using Gaussian
process regression to describe human function learning on
continuous spaces (Lucas et al. 2015; Schulz et al. 2017),

but using a prior over functions designed for discrete spaces
(Kondor and Lafferty 2002). Not only do we find strong
empirical evidence for our model, but it also provides new
theoretical connections to past research on human function
learning, sample-efficient exploration, and classic theories
of generalization and learning.

Function Learning in Continuous Spaces

Research on human function learning was originally
pioneered by Carroll (1963), who studied how participants
learned to predict the length of a line (output) based on
the horizontal position of a “V” shaped marking (input).
Unknown to participants, the relationship between the
inputs and outputs were governed by either a positive linear,
a quadratic, or a random function. Carroll’s (1963) study
was motivated by the goal of showing that people could
extrapolate functions to generate novel predictions about
outcomes that had never before been observed. In contrast
to classical theories of generalization (Shepard et al. 1961),
Carroll’s work provided evidence for a mechanism of
generalization that went beyond merely predicting the same
outcome as that of the most similar previous experiences.
Aside from showing that function learning was an important
feature of human inference, Carroll (1963) also discovered
that some functions, such as linear ones, were easier to learn
than others, such as nonlinear ones. Subsequent studies of
human function learning built on Carroll’s initial insight
and further investigated which types of functions were
more difficult to learn (Brehmer 1974; Koh and Meyer
1991; Busemeyer et al. 1997), finding that linear functions
with positive slopes are the most learnable, and that both
nonlinear functions and linear functions with negative
slopes are more difficult to learn.

A problem with many of these early studies was the
inflexibility of their models. Likely inspired by timely
advances in statistical methods of least-square estimation,
they assumed that participants used a specific parametric
model, for example, linear regression, and then learned
by optimizing the parameters to explain the data. Yet
the parametric classes of function used in these studies
were insufficiently flexible to account for human function
learning. Instead of only adapting a specific class of
functions to a particular set of observations, people seem
to adapt the model itself when encountering novel data.
Brehmer (1976) tried to explain some of these effects
with a sequential hypothesis testing model of functional
rule learning, according to which participants adapt the
complexity of their model by performing sequential
hypothesis tests and pivoting between parametric forms
if necessary. However, this model still required a pre-
determined set of parametric rules that could be compared,
such that it is not able to explain the ability to learn almost
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any function given enough data. Thus, these earlier, rule-
based models of human function learning could not easily
explain the full range of human function learning abilities;
more flexible models were needed.

To overcome the weaknesses of rule-based models of
human function learning, several researchers proposed a
novel class of similarity-based models of function learning.
These models operated under the assumptions that similar
input points will produce similar outputs and used neural
networks to model behavior (McClelland et al. 1986).
These models could not only theoretically learn nearly any
function, they were also able to capture the effect that linear
functions are easier to learn than nonlinear functions.

An important distinction in the literature on function
learning (and machine learning more generally) is between
interpolation (i.e., predictions for points nested between
training examples) and extrapolation (i.e., predictions
outside the convex hull of training inputs). Whereas
similarity-based models can explain order-of-difficulty
effects in interpolation tasks, they have trouble explaining
how people extrapolate. Specifically, people tend to make
linear predictions with a positive slope and an intercept
of zero when extrapolating functions (Kwantes and Neal
2006). This linearity bias holds true even when the
underlying function is nonlinear; for example, when trained
on a quadratic function, average predictions fall between
the true function and straight lines fit to the closest training
points (Kalish et al. 2004).

Since traditional similarity-based models of function learn-
ing could not easily explain these extrapolation patterns,
the class of function learning models had to be extended
even further. This led to the development of so-called hybrid
models of function learning, which contain an associative
learning process that acts on explicitly represented rules.
One such hybrid model is the Extrapolation-Association
Model (DeLosh et al. 1997), which uses similarity-based
interpolation, but extrapolates using a simple linear rule.
The model effectively captured the human bias towards
linearity, and could predict human extrapolations for a vari-
ety of functions, but without accounting for non-linear
extrapolation (Bott and Heit 2004).

More recently, another class of models was developed
using Gaussian process (GP; Rasmussen and Williams
2006) regression to model function learning based on
the principles of Bayesian inference. The GP framework
describes a prior over functions, which given a set of
observed data points, can be used to infer a posterior
distribution over functions. Importantly, GP regression is
a non-parametric model (Schulz et al. 2018; Gershman
and Blei 1), meaning that it adapts its complexity to the
encountered data rather than assuming a fixed level of
complexity. Griffiths et al. (2009) and Lucas et al. (2015)
were the first to show that GP regression provides a rational

model of human function learning, and that it replicates
most of the observed empirical phenomena of human
function learning. Importantly, GP regression performs
posterior inference in a way that can be understood as both
similarity-based (because the kernel provides a similarity
metric between data points) and rule-based (because the
kernel can be expressed as a linear weighted sum), providing
a further unification of rule-based and similarity-based
theories (Lucas et al. 2015).

Using Function Learning to Guide Search

Learning a function is not only useful for making explicit
generalizations about novel situations, but can also be
used to guide adaptive behavior by leveraging functional
structure to predict unobserved rewards in the environment.
For example, in reinforcement learning tasks where options
had inversely correlated rewards (Wimmer et al. 2012) or
with rewards structured as a linear function (i.e., linearly
increasing rewards from option 1 to option N ; Schulz et al.
2019), participants were able to rapidly learn this structure
and leverage it to facilitate better performance, even without
having been explicitly told about the underlying structure.

In taskswith a large number of options, it becomes important
to be able to learn efficiently, for instance by using features
of the task to predict rewards (Farashahi et al. 2017; Rad-
ulescu et al. 2019). One approach is to learn an implicit value
function mapping features onto rewards (Schulz et al. 2017),
which can be used to guide efficient exploration even in
infinitely large problem spaces. Previous work has suc-
cessfully used a GP model of function learning to predict
human search behavior in a variety of both spatially and
conceptually correlated reward environments (Wu et al.
2018; Wu et al. 2020; Schulz et al. 2018), where the number
of options vastly outnumbered the sampling horizon.

In transitioning from a pure function learning paradigm
to a reward learning paradigm, the demands of the
task change from pure information maximization to a
balance between exploration and exploitation (Cohen
et al. 2007; Mehlhorn et al. 2015; Schulz and Gershman
2019). Typically studied in multi-armed bandit tasks,
the exploration-exploitation dilemma requires an agent
to trade-off between sampling novel options to acquire
potentially useful information about the structure of rewards
(exploration) with sampling options known to have high-
value payoffs (exploitation). Not enough exploration, and
the agent could get stuck in a local optima, while not enough
exploitation and the agent never reaps the rewards they have
discovered.

Since optimal solutions in such tasks are intractable
for all but the most simplistic scenarios (Whittle 1980),
a variety of heuristic algorithms are commonly used. One
such algorithm is upper confidence bound sampling, which
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adds an “uncertainty bonus” to each option’s value (Auer
2002). Since this corresponds to a weighted sum of the
expected reward and its uncertainty, this algorithm explicitly
encodes the trade-off between exploration and exploitation.
Although earlier studies produced mixed evidence for an
uncertainty bonus in human decision making (Daw et al.
2006; Payzan-LeNestour and Bossaerts 2011), many recent
studies have shown that humans do engage in uncertainty-
guided exploration (Gershman 2018a; Wilson et al. 2014;
Knox et al. 2012; Gershman 2019; Speekenbrink and
Konstantinidis 2015; Wu et al. 2018).

A key component for performing uncertainty-guided
exploration is being able to estimate the uncertainty of
one’s predictions. Since GP regression is a Bayesian
model of function learning, uncertainty is quantified by the
posterior distribution. In contrast, a model that makes only
point estimates of expected reward does not have access
to uncertainty-guided exploration. Instead, less efficient

random exploration strategies must be used (e.g., softmax
exploration). A combined model of GP regression with
upper confidence sampling has proved to be an effective
model in a wide number of contexts, describing how people
explore different food options based on real-world data
(Schulz et al. 2019), predicting whether or not to people
will try out novel options (Stojić et al. 2020), and explaining
developmental differences between how children and adults
search for rewards (Schulz et al. 2018; Meder et al. 2020).

Function Learning in Graph-Structured
Spaces

In the current work, we examine whether principles of
function learning can be used to model human inference
and search for rewards in graph-structured spaces (see
Fig. 1). Studying these environments greatly expands the
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Fig. 1 Function learning in discrete (top) and continuous (bottom)
spaces. Moving from left to right, we illustrate how an appropriate
measure of similarity encoded by a kernel function can be used infer
a function, which when conditioned on previous observations makes
Bayesian predictions about novel inputs. a An example of a discrete
graph structure, where nodes represent states, edges indicate transi-
tions, and similarity is based on the connectivity between any two
nodes s and s′. The color of the nodes indicates the covariance of the
diffusion kernel k(s, s′) centered on node s, which decreases monoton-
ically with graph distance. b A continuous input space represents data
as a set of feature values, where similarity is the inverse of (Euclidean)
distance in feature space. Colors indicate the covariance of the radial
basis function (RBF) kernel centered on input s, which decreases
monotonically with Euclidean distance. c The diffusion kernel assumes
function values diffuse across the graph according to a random walk.
The correlation between function values (normalized covariance) at

any two nodes s and s′ decays monotonically as a function of graph
distance. The diffusion parameter α governs the rate of decay. d In the
limiting case of an infinitely fine lattice graph, the diffusion kernel is
equivalent to a radial basis function (RBF) kernel. The RBF kernel is
commonly used in continuous domains, where covariance is a function
of Euclidean distance between data points. The length-scale parameter
λ controls the rate of this decay. e Given some observations on a graph
(colored nodes) or f in a continuous input space (points), we use Gaus-
sian process (GP) regression to make probabilistic predictions (g–h)
about expected function values. g In the graph example, the posterior
mean is represented by numbers in the gray nodes, and the posterior
uncertainty (variance) is represented by the size of the halo. h In the
continuous input space, the posterior mean is represented by the blue
line, while the shaded blue ribbon represents the 95% confidence inter-
val. Each of the red lines represents a randomly sampled function from
the posterior
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scope of classical function learning models, and addresses
an important gap in our understanding of how people
reason about structured environments (e.g., social graphs or
subway networks) that are ubiquitous in our daily lives.

In what follows, we will first introduce the GP regression
framework, and then specialize it to the problem of function
learning on graphs. The key mathematical tool that we
employ is the diffusion kernel (Kondor and Lafferty 2002),
which offers one of the simplest ways to define priors
over functions on graphs. We will show how the diffusion
kernel naturally connects to past models of human function
learning. We will then put this model to an empirical
test, presenting two experiments studying how people make
inferences and search for rewards on graph structures.
In Experiment 1, participants were shown a series of
artificially generated subway maps and asked to predict the
number of passengers at unobserved stations. In Experiment
2, participants played a graph-structured multi-arm bandit
task, where arms correspond to nodes in the graph, and the
payoffs are correlated via the connectivity structure.

Gaussian Process Regression

AGP (Rasmussen andWilliams 2006) defines a distribution
over functions f : S → R that map the input space
s ∈ S (e.g., nodes on a graph; Fig. 1a) to real-valued
scalar outputs (e.g., rewards). Intuitively, for any finite set of
inputs {s1, s2, ...sN }, we can express the output of a function
as a vector of finite length f = {f1, f2, . . . , fN }. Each
function vector f can be modeled as a random draw from a
multivariate normal distribution:

f ∼ GP
(
m(s), k(s, s′)

)
, (1)

where m(s) = E[f (s)] is a mean function1 specifying the
expected output of the function given input s, and k(s, s′)
is the kernel function (see below) defining the covariance
between outputs for a given input pair (s, s′).

We can think of each function as a potential hypothesis,
relating each node s ∈ S to some function value f (s), where
the GP describes a distribution over functions and the kernel
encodes inductive biases about how smoothly the function
varies across the input space. Thus, the distributional nature
of the GP captures uncertainty across different potential
functions (Fig. 1). In the next section, we will define a
kernel specialized for graph-structured functions.

We model a scenario in which an observer measures
observations y = f (s) + ε, where ε ∼ N (0, σ 2) is
Gaussian noise added to the output value. Given a data
set of observations D = {s, y} containing N input-output
pairs (Fig. 1g–h), we can use a GP to compute the posterior

1We follow the convention of setting the mean function to zero, such
that the GP prior is fully defined by the kernel

predictive distribution p(f (s∗)|D) for any target state s∗
(e.g., an unobserved node; Fig. 1g). This posterior is a
Gaussian distribution p(f (s∗)|D) = N (m∗, v∗), where the
mean m∗ and variance v∗ are defined as:

m∗ = k&
∗ (K+ σ 2I)−1y (2)

v∗ = k(s∗, s∗) − k&
∗ (K+ σ 2I)−1k∗. (3)

K is the N × N covariance matrix evaluated at each pair of
observed inputs, and k∗ = [k(s1, s∗), . . . , k(sN , s∗)] is the
covariance between each observed input and the target input
s∗. Thus, as illustrated in Fig. 1g, the GP posterior allows
us to make Bayesian predictions about the expected output
(m∗) and uncertainty (v∗) for any unobserved node s∗ on the
graph.

As pointed out by Lucas et al. (2015), we can draw
a connection between GP regression and similarity-based
models of function learning. In particular, the posterior
predictive mean (Eq. 2) can alternatively be expressed as a
similarity-weighted sum:

m∗ =
N∑

n=1

wnk(sn, s∗), (4)

where each sn is a previously observed input, and the
weights are given by w =

[
K+ σ 2I

]−1 y. Intuitively,
this means that GP regression is equivalent to a linearly
weighted sum of similarities between the target input and
the observed input (see Schulz et al. 2018, for a tutorial).

The Diffusion Kernel

We now introduce a kernel function that is specialized for
graph-structured input spaces. A graphG = (S, E) consists
of nodes s ∈ S and edges e ∈ E (Fig. 1a). As a concrete
example, a subway map describes a graph structure, where
nodes correspond to stations and edges correspond to
connections between stations. For now, we assume that
all edges are undirected, so that probabilistic dependencies
between any two adjacent nodes are symmetric.

The diffusion kernel (DF; Kondor and Lafferty 2002)
defines a similarity metric k(s, s′) between any two nodes
based on the matrix exponentiation2 of the graph Laplacian:

K = exp(−αL), (5)

where the graph Laplacian L captures the transition
structure of the graph based on the difference between the
adjacency matrix A and degree D:

L = D − A (6)

2In practice, the matrix exponentiation in Eq. 5 can be computed by
first decomposing L into its eigenvectors {ui} and eigenvalues {λi},
and then substituting matrix exponentiation with real exponentiation
using K = ∑

i e
αλiuiu&

i .
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Each element Aij of the adjacency matrix A is 1 when
nodes i and j are connected, and 0 otherwise, while D is
a diagonal matrix computed from the row sums of A and
describe the number of connections of each node. Returning
to our subway example, when there exists a route between
stations i and j , then Aij = 1 while Lij = −1. In addition,
for any station i, both Dii and Lii indicate the number of
connected stations. The graph Laplacian can also describe
graphs with weighted edges, where we can substitute the
weighted adjacency matrix W for A, where each element
Wij describes the edge weight between nodes i and j ,
and the weighted degree of each node is expressed in the
diagonals of D.

Intuitively, the graph Laplacian can be understood as a
measure of the“flux” between nodes, for instance, the flow
of passengers along different sections of a subway network.
Flux between nodes i and j is not only influenced by
whether they are connected, but is also affected by other
connected nodes. For instance, if two train stations are
connected to many other stations, then there is a relatively
low probability that a randomly selected commuter will
transit between them, compared with when the two stations
have few alternative connections.

The diffusion kernel uses this intuition to define a
similarity metric over discrete graph-structured spaces
(Fig. 1a), by assuming that output values diffuse along the
edges of a graph, similar to a heat diffusion process. The
free parameter α models the rate of diffusion, where α → 0
assumes complete independence between nodes, and α →
∞ assumes all nodes are perfectly correlated. Thus, closely
connected nodes are assumed to have similar output values,
where the covariance between nodes decays monotonically
as a function of graph distance (Fig. 1c).

Connecting Spatial and Structured Generalization

The GP framework allows us to relate similarity-based
generalization on graphs to theories of generalization in
continuous domains (Fig. 1 bottom row). Consider the case
of an infinitely fine lattice graph (i.e., a grid-like graph
with equal connections for every node and with the number
of nodes and connections approaching infinity). Following
(Kondor and Lafferty 2002) and using the diffusion kernel
defined by Eq. 5, this limit can be expressed as

k(s, s′) = 1√
(4πα)

exp
(−|s − s′|2

4α

)
, (7)

which is equivalent to the radial basis function (RBF)
kernel. The RBF kernel provides a similarity metric in con-
tinuous spaces based on Euclidean distance between data
points (Fig. 1b), where similarity is the inverse of dis-
tance. In comparison, the diffusion kernel models similarity
based on the dynamics of diffusion, where transitions are

restricted by the graph structure. The RBF kernel can be
understood as a special case of the diffusion kernel, when
the environment is symmetric and transitions are unre-
stricted. The diffusion kernel is therefore able to offer
a broader framework for modeling function learning and
search, which subsumes past research on human behavior
in spatial and conceptual input spaces (Wu et al. 2018; Wu
et al. 2020).

Experiment 1: Subway Prediction Task

In our first experiment, participants were shown various
graph structures described as subway maps (Fig. 2), and
were asked to make predictions about unobserved nodes.
For each prediction, participants also gave confidence
judgments, which we use as an estimate of their (inverse)
uncertainty. We used a GP parameterized with a diffusion
kernel as a model of function learning in this task, which we
compared with several alternative models.

Methods

Participants

We recruited 100 participants (Mage = 32.7; SD =
8.4; 28 female) on Amazon Mechanical Turk (requiring
a 95% approval rate and 100 previously completed HITs)
to perform 30 rounds of a graph prediction task. The
experiment was approved by the Harvard Institutional
Review Board (IRB15-2048).

Procedure

On each graph, numerical information was provided about
the number of passengers at 3, 5, or 7 other stations
(along with a color aid), from which participants were
asked to predict the number of passengers at a target
station (natural numbers from 0 to 50) and provide a
confidence judgment (Likert scale from 1 to 11). The
subway passenger cover story was used to provide intuitions
about graph-correlated functions, similar to our example
from the introduction. The color aid was generated through
a continuous, linear mapping (similar to Wu et al. 2018;
Schulz et al. 2019; Meder et al. 2020), with both
hue and brightness changing monotonically with value.
Additionally, participants observed 10 fully revealed graphs
to familiarize themselves with the task and completed a
comprehension check before starting the task.

Participants were paid a base fee of US$2.00 for
participation with an additional performance contingent
bonus of up to US$3.00. The bonus payment was based on
the mean absolute judgement error weighted by confidence
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Fig. 2 Screenshot from
Experiment 1. Observed nodes
(3, 5, or 7 depending on the
information condition) are
shown with a numerical value
and a corresponding color aid.
The target node is indicated by
the dashed outline, and
dynamically changed
value/color as participants
moved the top slider. Confidence
judgments were used to
compute a weighted error (i.e.,
more confident answers having
a larger contribution), which
was used to determine the
performance contingent bonus

judgments: Rbonus = US$3.00 × (25 − ∑
i c̃iεi )/25 where

c̃i is the normalized confidence judgment c̃i = ci∑
cj

and εi

is the absolute error for judgment i. On average, participants
completed the task in 8.09 min (SD = 3.7) and earned
US$3.87 (SD = US$0.33).

All participants observed the same set of 40 graphs that
were sampled without replacement for the 10 fully revealed
examples in the familiarization phase and for the 30 graphs
in the prediction task. We generated the set of 40 graphs by
iteratively building 3×3 lattice graphs (also known as mesh
or grid graphs), and then randomly pruning 2 out of the 12
edges. In order to generate the functions (i.e., number of
passengers), we sampled a single function from a GP prior
over the graph, where the diffusion parameter was set to
α = 2.

Modeling

We compared the predictive performance of the GPwith two
heuristic models that use a nearest neighbors averaging rule
(see below). Models were fit to each individual participant

by using leave-one-round-out cross-validation to iteratively
compute the maximum likelihood estimates on a test set,
and then make out-of-sample predictions on the held-
out round. We repeated this procedure for all rounds and
compared the predictive performance (see Appendix 2) over
all held-out rounds.

The two heuristic strategies for function learning on
graphs make predictions about the output values of a target
state s∗ based on a simple nearest neighbors averaging
rule. The k-nearest neighbors (kNN) strategy averages the
values of the k nearest nodes (including all nodes with
same shortest path distance as the k-th nearest), while the d-
nearest neighbors (dNN) strategy averages the values of all
nodes within path distance d . Both kNN and dNN default to
a prediction of 25 when the set of neighbors are empty (i.e.,
the median value in the experiment).

Both the dNN and kNN heuristics approximate the
local structure of a graph with the intuition that nearby
nodes have similar output values. While they sometimes
make the same predictions as the GP model while having
lower computational demands, they fail to capture the full
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connectivity structure of the graph. Thus, they are unable
to learn directional trends (e.g., increasing function values
from one end of the graph to the other) or asymmetric
influences (e.g., a central hub exerting relatively larger
influence on sparsely connected neighbors). Additionally,
they only make point-estimate predictions, and thus do not
capture the underlying uncertainty of a prediction,which we
use to model confidence judgments.

Results and Discussion

All code and data necessary to replicate the analyses in
this manuscript are publicly available at https://github.com/
charleywu/graphInference. Figure 3 shows the behavioral
and model-based results of the experiment. We applied
Bayesian mixed effects regression to estimate the effect
of the number of observed nodes on participant prediction
errors, with participants as a random effect (see Table 1 in
Appendix 1 for details). Participants made systematically
lower errors in their predictions as the number of

observations increased (bnumNodes = −0.60, 95% HPD:
[−0.79,−0.41], BF10 = 1.1× 107; Table 1 in Appendix 1;
Fig. 3a). Repeating the same analysis but using participant
confidence judgments as the dependent variable, we found
that confidence increased with the number of available
observations (bnumNodes = 0.23, 95% HPD: [0.17, 0.30],
BF10 = 4.7 × 108; Table 1 in Appendix 1; Fig. 3b).
Finally, participants were also able to calibrate confidence
judgments to the accuracy of their predictions, with higher
confidence predictions having lower error (bconfidence =
−0.66, 95% HPD: [−0.83,−0.49], BF10 = 4.0 × 108;
Table 1 in Appendix 1; Fig. 3c). We found no effect of
round number on prediction error (bround = 0.01, 95%
HPD: [0.02,−0.03], BF10 = 0.06), suggesting that the
familiarization phase and cover story were sufficient for
providing intuitions about graph-correlated structures.

Figure 3d shows the model comparison results. We
evaluated the relative performance of models using the
protected exceedence probability (pxp), as a Bayesian
estimate of the probability that a particular model is
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Fig. 3 Experiment 1 results. a–b Participant judgment errors and con-
fidence estimates. Each dot is a single participant (averaged over
each number of observed nodes), with Tukey box plots and diamonds
indicating group means. The dotted line in a is a random baseline
(simulated by uniformly sampling judgments from 0 to 50). c Judg-
ment error and confidence. Each colored dot is the aggregate mean
with error bars indicating the 95% CI. The black line is the group-
level effect of a Bayesian mixed model (Table 1 in Appendix 1),
indicating the posterior mean and 95% CI (ribbon). d Hierarchical
Bayesian model comparison between the Gaussian process (GP) with
diffusion kernel, d-nearest neighbors (dNN), and k-nearest neighbors
(kNN). The bars indicate the protected exceedence probability (pxp)

as an estimate of the posterior probability of a given model being the
most frequent in the population (corrected for chance). e The number
of participants best fit by each model. f Parameter estimates, where
each dot is the mean cross-validated estimate for each participant, with
Tukey box plots and diamonds indicating group means. g The inverse
relationship between GP uncertainty estimates (σ ) and participant con-
fidence judgments (Likert scale), where the colored dot and error bars
indicate (respectively) the aggregate mean ± 95% CI computed at 10
equally spaced intervals along the x-axis. The black line is the fixed
effect of a Bayesian mixed model (Table 1 in Appendix 1), with the
ribbon indicating the 95% CI

https://github.com/charleywu/graphInference
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a  Fully revealed environment b  Screenshot of search task c  Bonus round

Fig. 4 Experiment 2 screenshots. a Four fully revealed environments
were shown to participants prior to beginning the task. b During the
task participants were instructed to click nodes to earn as much reward
as possible. Clicked nodes displayed the numeric value of the earned
reward and a color guide (darker colors indicate higher rewards). c
Zoomed in screenshot of the bonus round, which activated after the

20th trial on the last round. 10 unclicked nodes were uniformly sam-
pled and participants were sequentially asked to make judgments about
expected rewards and report their confidence rating. The expected
reward slider was mapped to the selected node, such that the color and
numerical value dynamically changed as the slider was moved

more frequent in the population than all the other models
under consideration, corrected for chance (see Appendix 1;
Stephan et al. 2009; Rigoux et al. 2014). The GP with
diffusion kernel was overwhelmingly the best model, with
pxp(GP) ≈ 1. Overall, 68 out of 100 participants were
best predicted by the GP, 21 by the dNN, and 11 by the
kNN (Fig. 3e; see Fig. 6 for additional comparisons between
model predictions and participant judgments).

Figure 3f shows individual parameter estimates of
each model. The estimated diffusion parameter α was
substantially lower than the ground truth of α = 2 (t (99) =
−31.3, p < .001, d = 3.1, BF10 = 4.4×1029)3, replicating
previous findings that have shown undergeneralization to be
a prominent feature of human behavior (Wu et al. 2018).
Estimates for d and k were highly clustered around the
lower limit of 1, suggesting that averaging over larger
portions of the graph were not consistent with participant
predictions.

Lastly, an advantage of the GP is that it produces
Bayesian uncertainty estimates for each prediction. While
the dNN and kNN models make no predictions about
confidence, the GP’s uncertainty estimates correspond
to participant confidence judgments, which we validated
using a Bayesian mixed model regressing the uncertainty
estimates of the GP onto participant confidence judgments

3Previous results reported in Wu et al. (2019) suffered from numerical
instability during matrix exponentiation when computing the diffusion
kernel, and thus yielded different estimates.

(bgpUncertainty = −1.8, 95% HPD: [−2.5,−1.1], BF10 =
1.2 × 105; Table 1 in Appendix 1; Fig. 3g).

The results of this experiment demonstrate that a GP
with a diffusion kernel can successfully model human
function learning on graphs, in particular the empirical
pattern of predictions and confidence ratings. Our model
extends existing theories of human function learning in
continuous spaces, where the RBF kernel (commonly used
in continuous domains) can be seen as a special limiting
case of the diffusion kernel.

Experiment 2: Graph Bandit

In our next experiment, we tested the suitability of the
diffusion kernel as a model of search, using a multi-
armed bandit task with structured rewards (see also Wu
et al. 2018). In particular, extending our previous work on
spatially and conceptually correlated multi-armed bandits
(Wu et al. 2018; Wu et al. 2020), we constructed a task
where rewards were defined by the connectivity structure
of a graph (Fig. 4). In this task, participants searched for
rewards by clicking nodes on a graph. As in Experiment 1,
the output values (rewards) were generated by a function
drawn from a GP with a diffusion kernel. This induced a
graph-correlated reward structure, allowing for similarity-
based generalization to aid in search, but where similarity
was defined based on connectivity rather than perceptual
features or Euclidean distances between options as in our
previous work.
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Methods

Participants

We recruited 100 participants on Amazon Mechanical Turk
(requiring 95% approval rate and 100 previously completed
HITs). Two participants were excluded because of missing
data, making the total sample size N = 98 (Mage = 34.3;
SD = 8.7; 32 female). Participants were paid $2.00 for
completing the task and earned an additional performance
contingent bonus of up to $3.00. Overall, the task took 7.2
± 3.3 min and participants earned US$4.32 ± US$0.24.
The experiment was approved by the Harvard Institutional
Review Board (IRB15-2048).

Procedure

Participants were instructed to earn as many points as
possible by clicking on the nodes of a graph. Each node
represented a reward generating arm of the bandit, where
connected nodes yielded similar rewards, such that across
the whole graph the expected rewards were defined by a
graph-correlated structure (see Fig. 4a). Along with the
instructions indicating the correlated structure of rewards,
participants were shown four fully revealed graphs to
familiarize them with the reward structure and had to
correctly answer three comprehension questions before
starting the task.

After completing the comprehension questions, partici-
pants performed a search task over 10 rounds, each corre-
sponding to a different randomly sampled graph structure.
In each task, participants were initially shown a single ran-
domly revealed node, and had 25 clicks to either explore
unrevealed nodes or to reclick previously observed nodes,
where each observation included normally distributed noise
ε ∼ N (0, 1). Each clicked node displayed the numerical
value (most recent observation if selected multiple times)
and a color aid, where darker colors corresponded mono-
tonically to larger rewards (Fig. 4b). After finishing each
round, participants were informed about their performance
as a percentage of the best possible score (compared with
selecting the global optimum each trial). The final perfor-
mance bonus (up to $3.00) was also calculated based on this
percentage, averaged over all rounds.

In total, we generated 40 different graphs by building
8 × 8 lattice graphs and then randomly pruning 40%
of the edges, with the constraint that the resulting graph
be comprised of a single connected component. We then
sampled a single reward function for each graph from a
GP prior, parameterized by a diffusion kernel fit on the
graph (with α = 2). The layout for each graph was pre-
generated using the Fruchterman-Reingold (1991) force-
directed graph placement algorithm, such that a single

canonical layout for each graph was observed by all
participants. For each participant, we sampled (without
replacement) from the same set of 40 pre-generated graphs
to build the set of 4 fully revealed graphs shown in the
instructions and the 10 graphs used in the main experiment.

Prior to beginning the very last round, participants were
informed that it was a “bonus round”. The goal of acquiring
as many points as possible remained the same, but after 20
clicks, participants were shown a series of 10 unrevealed
nodes and asked to make judgments about the expected
reward and their confidence (Fig. 4c). After all 10 judgments
were completed, participants were forced to choose one of
the 10 options, and then the task was completed as normal.
Behavioral and modeling results exclude the bonus round,
except for the analyses of the judgment data.

Modeling

In order to understand how participants search for rewards,
we used computational modeling to make predictions
about choices in the bandit task and the judgments
from the bonus round. Models were fit to the bandit
data (omitting the bonus round) using leave-one-round-
out cross-validation, where we iteratively held out a single
round as a test set, and computed the maximum likelihood
estimate on the remaining rounds as the training set.
We compared models using the summed out-of-sample
prediction accuracy on the held-out rounds. Altogether, we
compared four different models corresponding to different
strategies for generalization and exploration (see below).

Each model computes a value for each option q(s), which
is then transformed into a probability distribution using a
softmax choice rule:

P(si) =
exp(q(si)/τ )∑
j exp(q(sj )/τ )

, (8)

where the temperature parameter τ is a free parameter
controlling the level of random exploration. In addition,
all models also use a stickiness parameter ω that adds
a bonus onto the value of the most recently chosen
option. This is a common feature of reinforcement learning
models (Christakou et al. 2013; Gershman et al. 2009) and
particularly in multi-armed bandit tasks (Schulz et al. 2019),
which we include here to account for repeat clicks.

The GP model uses the diffusion kernel (Eq. 5) to make
predictive generalizations about reward, where we fit α as a
free parameter defining the extent to which generalizations
diffuse along the graph structure. For each node s, the
GP produces normally distributed predictions that can be
summarized in terms of an expected value m(s) (Eq. 2)
and the underlying uncertainty v(s) (Eq. 3). In order to
model how participants balance between exploiting high-
value rewards and exploring highly uncertain options, we
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use upper confidence bound (UCB) sampling (Auer 2002)
to produce a valuation of each node:

qUCB(s) = m(s)+ β
√
v(s), (9)

where the exploration bonus β is a free parameter that
governs the level of exploration directed towards highly
uncertain options. Higher values of β correspond to more
exploratory behavior, which is directed towards nodes with
the highest estimated level of uncertainty.

The Bayesian mean tracker (BMT) is a prototypical
reinforcement learning model that can be interpreted as a
Bayesian variant of the traditional Rescorla-Wagner (1972)
model (Gershman 2015). Like the GP, the BMT assumes
a normally distributed prior over rewards N (mj,0, vj,0).
However, unlike the GP, the BMT assumes independent
priors for each option j , where we set the prior mean to the
median value of payoffs mj,0 = 50 and the prior variance
to vj,0 = 500.

Given some observations Dt−1 = {Xt−1, yt−1} of
rewards yt−1 for inputs Xt−1, the BMT learns the
rewards of each option by computing independent posterior
distributions for the expected reward µj for each option j

P (µj |Dt−1) = N (mj,t−1, vj,t−1) (10)

Thus, the BMT does not generalize but rather updates each
posterior mean mj,t and variance vj,t independently:

mj,t = mj,t−1 + δj,tGj,t

[
yj,t − mj,t−1

]
(11)

vj,t =
[
1 − δj,tGj,t

]
vj,t−1 (12)

where the Kronecker delta δj,t = 1 if option j was chosen
on trial t , and 0 otherwise, meaning the posteriors for the
unchosen options are unchanged. Intuitively, the estimated
mean of the chosen option mj,t is updated based on the
difference between the observed value yt and the predicted
mean from the previous time point mj,t−1 (i.e., prediction
error). This update is scaled by a learning rate known as the
Kalman gain Gj,t :

Gj,t =
vj,t−1

vj,t−1 + θ2ε
, (13)

defined as a ratio of the prior variance vj,t−1 and the
error variance θ2ε . While the estimated mean is updated
based on prediction error, the estimated variance for the
chosen option vj,t is reduced by a factor of 1 − Gj,t ,
which is in the range [0, 1]. The error variance (θ2ε ) is
treated as a free parameter and can be interpreted as inverse
sensitivity. Smaller values of θ2ε therefore result in more
substantial updates to the mean mj,t , and larger reductions
of uncertainty vj,t .

Like the GP, the BMT also used UCB sampling, along
with stickiness and a softmax choice rule. Unlike the GP,
the BMT does not generalize, and thus defaults to the
prior mean and variance for any unobserved options. For

this reason, we did not consider the BMT as a candidate
model for Exp. 1. Nevertheless, it provided a sensible
benchmark in the graph bandit task, since it is an optimal
model for learning independent reward distributions through
experience, and can support both directed and random
exploration algorithms.

In addition to reinforcement learning models, we
also considered both the dNN and kNN heuristics from
Experiment 1. Predictions about expected reward were
computed using the respective nearest neighbor averaging
rule, where d and k were estimated as free parameters. For
predictions where no observed nodes satisfied the averaging
rule (i.e., all observations were too far away), we defaulted
to an expected value of m(s) = 50 (median over all
environments). In contrast to the GP and BMT models,
these models make only point estimates about reward, and
thus precluded UCB sampling. Instead, choice probabilities
were calculated using only softmax choice rule on expected
reward and with estimated stickiness weights.

Results and Discussion

Participants performed well in the task, achieving higher
rewards over successive trials (r = .93, p < .001, BF10 =
4.5 × 107; Fig. 5a) and decisively outperforming a random
baseline (t (97) = 29.6, p < .001, d = 3.0, BF10 = 7.2 ×
1046). There was no substantial evidence for an influence
of round number on performance (r = .49, p = .182,
BF = 1.1), indicating that the fully revealed environments
in the instructions (Fig. 4a) and comprehension questions
were sufficient for conveying the goal of the task and the
underlying covariance structure of rewards.

Participants adapted their search behavior as a function of
reward value: higher rewards predicted a higher probability
of making a repeat selection (Bayesian mixed model: odds
ratio = 1.13, 95% HPD: [1.12, 1.14], BF10 = 3.2 ×
1040; Table 2 in Appendix 1; Fig. 5b). We also found
that higher rewards predicted shorter path distances to the
subsequent selection (bprevReward = −0.11, 95% HPD:
[−0.12,−0.10], BF10 = 2.6 × 1043; Fig. 3c). Thus,
participants searched locally when finding high rewards,
and explored further way upon finding poor rewards
(see Appendix 3 for analyses on connectivity structure
and sampling patterns). This provides early evidence that
participants used generalization to guide their search for
rewards, since they systematically adapted their search
distance as a function of reward value, thereby avoiding
regions with poor rewards and searching more locally in
richer areas.

Overall, the GP was the most predictive model (Fig. 5d)
with an estimated prevalence of pxp(GP) = .86, with the
other models having pxp(BMT ) = .11, pxp(dNN) =
.02, and pxp(kNN) = .001. As a benchmark, we also fit
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Fig. 5 Experiment 2 results. a Mean performance over trials, where
each blue line is a single participant and the red line is the group mean
(± 95% CI). The dashed line provides a comparison to a random base-
line. b The probability of repeating a selection as a function of the
reward value. Each dot is the aggregate mean calculated at intervals of
1, while the red line is the group-effect of a Bayesian mixed effects
logistic regression (Table 2 in Appendix 1), with the ribbon indicating
the 95% CI. c The relationship between reward value and the graph
distance (shortest path) to the subsequent selection. Each dot is an
aggregate mean, while the red line indicates the group-level effect of a
Bayesian mixed model (Table 2 in Appendix 1). d Model comparison
based on out-of-sample predictive accuracy. We compare the Gaus-
sian process (GP) model, the Bayesian mean tracker (BMT), d-nearest
neighbors (dNN), k-nearest neighbors (kNN), and a stickiness-only
(Sticky) model. The y-axis shows the protected exceedance probabil-
ity (pxp) describing the prevalence of each model in the population
(corrected for chance). e Simulated learning curves by sampling (with

replacement) from participant parameter estimates (10k replications),
where the black line shows a random baseline and the pink line shows
mean participant performance. f Participants best described on the
bonus round data, where we used parameter estimates from the bandit
task to make predictions of participant judgments about unobserved
rewards on the bonus round and compared RMSE. g The correspon-
dence between each bonus round judgment and model predictions,
where each dot is the aggregate mean calculated in intervals of 1, and
each line is the group-level effect of a Bayesian mixed model (with
ribbon indicating 95% CI). The Bayesian R2 of each mixed model
is reported (see Table 3 in Appendix 1 for details). h Only the GP
and BMT make uncertainty estimates. Here we show the correspon-
dence between rank-ordered (per participant) confidence judgments
and model uncertainty estimates. Dots indicate means with error bars
showing 95% CI, and colored lines represent a linear regression. The
regression coefficient corresponds to a Bayesian mixed model fit to the
raw, untransformed data (see Table 3 in Appendix 1)

a null model that made the same prediction for every node,
which combined with stickiness and the softmax choice
rule, was worse than all other models pxp(sticky) < .001.
At the individual level, 34 out of 98 participants were best
fit by the GP, 27 by the BMT, 20 by the dNN, and 17 by
the dNN. Participants with higher performance on the bandit
task were better predicted by the GP model (r = −.83,

p < .001, BF = 8.8 × 1021) and also tended to be more
diagnostic between the GP and BMT models (see Fig. 10 in
Appendix 4), in favor of the GP.

We simulated the behavior of each model by sampling
(10k samples with replacement) from the set of participant
parameter estimates and computing the average learning
curves (Fig. 5e). Although all models performed below
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the human curves, the GP achieved the closest levels of
performance, with the BMT performing next best (see
Appendix 4 for a detailed analysis of parameter estimates
from each model).

To provide additional support for our modeling results,
we also predicted participant judgments in the bonus round
using participant parameter estimates from the bandit task.
Since model parameters were estimated through cross-
validation on all rounds except the bonus round, we
used each participant’s median parameter estimates (over
rounds 1 to 9) to make out-of-task predictions about the
bonus round judgments. The GP model best predicted
the largest number of participants (Fig. 5f) and had the
lowest prediction error on average (comparing RMSE),
although there was no difference in comparison with the
dNN (t (97) = −0.1, p = .897, d = 0.01, BF =
.11), which had the second lowest prediction error. Looking
more closely at the individual correspondence between
participant judgments and model predictions (Fig. 5g), we
fit separate Bayesian mixed effects regression for each
model, predicting participant judgments based on model
predictions (Table 3 in Appendix 1). Overall, the fits of these
models for the GP, dNN, and kNN were highly similar.

While there was mixed evidence for which model best
predicted judgments of expected reward, we next looked at
how predictions of uncertainty corresponded to participant
confidence ratings. Here, we interpreted confidence to be
the inverse of uncertainty. In this analysis, we considered
only the GP and BMT models, since no other models
could generate uncertainty estimates. Figure 5h shows
a comparison between the (per participant) rank-ordered
confidence ratings and rank-ordered uncertainty estimates
of the models. While the BMT estimated the same level of
uncertainty for all unobserved nodes (making correlations
undefined), we found that the GP uncertainty estimates
corresponded well with participant confidence ratings. In
order to test this relationship by accounting for individual
differences in subjective ratings of confidence, we fit a
mixed effects model to predict the raw confidence judgment
(Likert scale 1-11) using the GP uncertainty estimate as a
fixed effect and participant as a random effect (Table 3 in
Appendix 1). The results showed a strong correspondence
between lower confidence ratings and higher GP uncertainty
estimates (bgpUncertainty = −3.1, 95% HPD: [−4.4,−1.9],
BF10 = 4.5 × 105).

To summarize, Experiment 2 showed that participants
leverage their functional knowledge over graph-structured
reward environments to guide sampling decisions. Partici-
pants searched for rewards locally and found highly reward-
ing nodes much faster than would be expected under the
assumption of independent options. We again found sup-
port for a GP model of function learning, augmented with
a probabilistic action policy including both directed and

undirected exploration. The GP provided the best predic-
tive accuracy of choices, produced similar learning curves
to human performance, and accurately predicted judgments
about expected reward and confidence.

Nevertheless, we also found that the two nearest neighbor
models closely matched the GP in terms of predicting
choices and participants’ judgements of unobserved nodes.
However, only the GP model can generate predictions
of uncertainty, which we found to match well with
participants’ confidence judgments. Given that we also
found lower levels of α compared with the ground truth,
participants likely generalized only very locally. Yet they
still tracked their uncertainty about different options, and
used that uncertainty to guide their exploration and to rate
the confidence of their own predictions. The ability to model
these characteristics of human behavior is what makes the
GP model a superior model of human behavior in our
task.

General Discussion

We studied how people learn and exploit graph-structured
functions in two experiments. In Experiment 1, we
studied how people make predictions about the values of
unobserved nodes on a graph and estimated their level
of confidence. In Experiment 2, we studied how people
searched for rewards in a multi-armed bandit task with
graph-correlated rewards. In both experiments, we found
that participants made inferences, rated confidence, and
navigated the exploration-exploitation dilemma consistent
with a Bayesian model of human function learning. This
model is implemented using GP regression, which has
previously been shown to accurately describe function
learning in continuous domains. Here, we replaced the
RBF kernel commonly used in continuous domains with
a diffusion kernel, where connectivity rather than feature
similarity defines relationships in structured environments.
The diffusion kernel in turn contains the RBF kernel as a
special case, where any Cartesian feature space is equivalent
to an infinitely fine undirected lattice graph. Thus, our
model expands upon past research on human function
learning to richer, graph-structured domains.

Our work also relates directly to classical work on
human generalization (Shepard 1987). Just as in Shepard’s
original theory, the diffusion kernel defines a distance-
dependent similarity measure which assumes that the
similarity between nodes decays with their (graph) distance.
Similar mechanisms have permeated theories of category
learning, where participants learn about a stimulus class
given its features (Nosofsky 1984; Medin and Schaffer
1978; Kruschke 1992; Love et al. 2004). Indeed, similar
models have also been used to explain human decision
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making. For example, Gureckis and Love (2009) showed
that participants can use the covariance between changing
payoffs and the systematic change of a state cue to
generalize experiences from known to novel states, and
that a linear network learning using similarities between
features matched well with participants’ behavior. By
further combining the diffusion kernel with traditional
models of generalization and category learning, we hope
to pave the way towards a truly unifying theory of human
generalization (Shepard 1987; Tenenbaum and Griffiths
2001; Wu et al. 2018).

Most directly related to our work is the theory of property
induction developed by Kemp and Tenenbaum (2009), who
showed how different assumptions about graph-structured
functions can lead to different patterns of generalization,
consistent with human data. For example, assumptions
about genetic transmission through a taxonomic tree
license different patterns of generalization compared with
assumptions of disease transmission through a food chain.
Whereas Kemp and Tenenbaum studied binary property
induction, we have focused on real-valued properties
in this paper. We have also gone beyond induction to
study the role of structured function learning in decision
making.

Recent work in reinforcement learning has also devel-
oped models related to the diffusion kernel. In particular,
cumulative rewards can be estimated efficiently using the
successor representation (SR), which represents states of
the environment in terms of the expected future occupancy
of other states (Dayan 1993; Gershman 2018b; Stachen-
feld et al. 2017). For example, a particular subway station
would be represented by a vector encoding the expected
future occupancies of other stations in the network. When
an agent follows a random walk in state space (approximat-
ing a diffusion process), the SR is equivalent to the inverse
graph Laplacian. Thus, while it does not make probabilistic
predictions about cumulative reward values (but see Geerts
et al. 2019), the SR is able to generalize based on the dif-
fusion of cumulative rewards in a graph-structured state
space.

One limitation of our current model implementation
is that we assumed the graph structure to be known a
priori. While this may be a reasonable assumption in
problems such as navigating a subway network, where
maps are readily available, this is not always the case.
One promising avenue for future research is to combine
our model with other approaches that learn the underlying
structure from experience. The Bayesian structure learning
framework proposed by Kemp and Tenenbaum (2008)
learns a “conceptual universe” of different graphs. The
Bayesian model assigns a score to each candidate graph

based on its prior probability and its likelihood. The prior
is specified by a generative model for graphs (which can
generate grids, trees, and chains, among other graphs)
that favors simple, regular graphs over complex ones. The
likelihood is based on the match between the observed
data and the graph structure, under the assumption that the
feature values of the data vary smoothly over the graph.
In particular, the features are assumed to be multivariate
Gaussian distributed with a covariance function defined by
a variant of the regularized Laplacian kernel (Smola and
Kondor 2003; Zhu et al. 2003), which is closely related to
the diffusion kernel used here.

Another limitation of our current study is that several
variants of a simple nearest neighbor averaging rule were
also surprisingly effective heuristics to capture human
behavior in our tasks. Both the dNN and kNN can be
understood as binarized simplification of the similarity
metric used by the GP. While the GP predicts expected
rewards using a similarity-weighted sum of previous
observations (Eq. 4), the dNN and kNN use either a distance
or count-based threshold of similarity, such that nodes
are either similar if considered a neighbor, or dissimilar
otherwise. Similar nodes are then averaged, equivalent
to an equal-weight regression model (Lichtenberg and
Simsek 2016; Wesman and Bennett 1959). Although these
heuristics are able to efficiently capture many aspects of
judgments and choices, our results also show that human
behavior is sensitive to the uncertainties about their own
predictions, using them to rate their own confidence and
to preferentially explore more uncertain options when
searching for rewards. This aspect could only be captured
by the GPmodel, which can generate Bayesian uncertainties
about its own predictions. Future studies could try
to create further heuristic models that also calculate
uncertainties of different nodes, for example by using
Bayesian versions of the nearest neighbor algorithms
(Behmo et al. 2010).

Currently, we have only focused on using the diffusion
kernel for modeling smooth functions on graph structures.
However, the real world contains mixes of continuous and
discrete structures, such as in our example of Darwin’s
finches. How could we model these more complex mixtures
of structures? Participants’ ability to learn more complex
yet highly structured functions in a continuous domain
have been explained by using compositional kernels (Schulz
et al. 2017). Compositional kernels learn about functions
through combining different structures, starting from simple
building blocks that can be composed. Thus, one avenue for
future research could be to model human function learning
using kernel that composes together these mixtures of graph
and continuous structures.
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Finally, even under the assumption that participants know
the full graph structure, our model additionally assumes that
they have direct access to the value of each node during
inference. Future studies could try to further enrich our tasks
to scenarios in which participants have to plan moves over
the graph, or to require that participant remember previously
observed outputs. While studying how people plan on
known graphs would connect our work further to past
research on hierachical planning in human reinforcement
learning (Balaguer et al. 2016; Tomov et al. 2018), adding a
forgetting component to our model and task would connect
it to memory-based models of learning (Collins and Frank
2012; Bornstein and Norman 2017) and decision making
(Bhui 2018; Stewart et al. 2006).

In summary, our behavioral results and proposed model
considerably expand past studies of human function
learning to graph-structured domains, and emphasize the
importance of function learning and uncertainty-guidance to
explain human behavior in such domains.
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Appendix 1: Statistics and regressionmodels

Comparisons

We report both frequentist and Bayesian statistics. Fre-
quentist tests are reported as Student’s t-tests (specified as
either paired or independent). The Bayesian variant uses the
default two-sided Bayesian t-test for either independent or
dependent samples, where both use a Jeffreys-Zellner-Siow

prior with its scale set to
√
2/2 (Rouder et al. 2009). Each

test is accompanied by a Bayes factor (BF10) to quantify
the relative evidence the data provide in favor of the alterna-
tive hypothesis (H1) over the null (H0), which we interpret
following (Jeffreys 1961). All tests are non-directional as
defined by a symmetric prior (unless otherwise indicated).

Correlations

For testing linear correlations with Pearson’s r , the Bayesian
test is based on Jeffrey’s (1961) test for linear correlation
and assumes a shifted, scaled beta prior distribution B( 1k ,

1
k )

for r , where the scale parameter is set to k = 1
3 (Ly et al.

2016).

Bayesianmodel selection

We use a Bayesian model selection framework designed
for group studies (Stephan et al. 2009; Rigoux et al. 2014)
to evaluate our models. Intuitively, it can be described
as a random effect analysis, where models are treated as
random effects and are allowed to differ between subjects.
Assuming that there is a fixed but unknown distribution
of models in the population, the goal is to determine
the probability of each model being more frequent in the
population than all other models in consideration. This is
modeled hierarchically, using variational Bayes to estimate
the parameters of a Dirichlet distribution describing the
posterior probabilities of each model P(mk|y) given
the model evidence y, which is approximated using
the cumulative out-of-sample negative log likelihoods of
each participant, obtained from cross-validated maximum
likelihood estimation (Fong and Holmes 2020). The
exceedance probability (xp) is thus defined as the posterior
probability that the frequency of a given model rmk is larger
than all other models rmk′ ,=k

under consideration:

xp(mk) = p(rmk > rmk′ ,=k
|y) (A1.1)

Rigoux et al. (2014) extend this approach by correcting
for chance, based on the Bayesian Omnibus Risk (BOR),
which is the posterior probability that all model frequen-
cies are equal. This produces the protected exceedance
probability (pxp) reported throughout this article.

pxp(mk) = xp(mk)(1 − BOR)+ BOR

K
(A1.2)

Regression

All Bayesian mixed effects regression models were
implemented in brms with generic weakly informative
priors (Bürkner 2017) using No-U-Turn sampling (Hoffman

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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Table 1 Experiment 1: Mixed effects models

Judgment accuracy Judgment accuracy Confidence rating Confidence rating

Est. Est. Est. Est.

Intercept 12.77 14.89 6.62 8.26

[11.73, 12.80] [13.50, 16.31] [6.14, 7.11] [7.95, 8.58]

Observed nodes −0.60 0.23

[−0.79, −0.41] [0.17, 0.30]

Confidence rating −0.66

[−0.83, −0.49]

GP uncertainty −1.80

[−2.50, −1.12]

Random effects

σ 2 4.86 4.77 2.61 2.40

τ00 73.37 73.52 3.37 3.58

ICC 0.06 0.06 0.44 0.40

N 100 100 100 100

Observations 3000 3000 3000 3000

Bayesian R2 0.07 0.09 0.46 0.43

We report the posterior mean and 95% highest posterior density (HPD) interval below in brackets. σ 2 indicates the individual-level variance, τ00
indicates the variation between individual intercepts and the average intercept, and ICC is the intraclass correlation coefficient

Table 2 Experiment 2: Mixed effects models

P (repeat) Graph distance Reward Eigen centrality

Odds ratio Est. Est. Est.

Intercept 0.00 10.59 78.61 0.15

[0.00, 0.00] [9.85, 11.36] [76.65, 80.51] [0.14, 0.17]

Previous reward 1.13 −0.11

[1.12, 1.14] [−0.12, −0.10]

Trial −0.003

[−0.003, −0.002]

Eigen centrality −26.65

[−31.17,−22.04]

Random effects

σ 2 −0.01 1.37 65.15 0.003

τ00 0.25 18.47 496.55 0.04

ICC −0.02 0.07 0.12 0.07

N 98 98 98 98

Observations 22,050 22,050 22,050 22,932

Bayesian R2 0.58 0.42 0.17 0.08

We report the posterior mean and 95% highest posterior density (HPD) interval below in brackets, except the first column, which is a logistic
regression reporting the odds ratio and the respective 95% CI. σ 2 indicates the individual-level variance, τ00 indicates the variation between
individual intercepts and the average intercept, and ICC is the intraclass correlation coefficient
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Table 3 Experiment 2: Bonus round

Judgment Judgment Judgment Confidence
Est. Est. Est. Est.

Intercept −12.38 5.15 5.24 7.72
[−26.16, −0.89] [−1.04, 11.11] [−2.37, 12.33] [7.23, 8.22]

GP prediction 1.16
[0.93, 1.43]

GP uncertainty −3.13
[−4.37, −1.92]

dNN prediction 0.80
[0.69, 0.92]

kNN prediction 0.79
[0.66, 0.94]

Random effects
σ 2 51.14 53.38 63.86 2.55
τ00 275.06 274.38 272.84 4.37
ICC 0.16 0.16 0.17 0.37
N 98 98 98 98
Observations 980 980 980 980
Bayesian R2 0.32 0.33 0.33 0.50

Note that the Bayesian mean tracker (BMT) is not included, since it invariably makes the same prediction for all unobserved options based on the
prior mean and prior variance. The bonus round only consisted of judgments about unobserved options. GP, Gaussian process; dNN, d-nearest
neighbors; kNN, k-nearest neighbors. We report the posterior mean and 95% highest posterior density (HPD) interval below in brackets. σ 2

indicates the individual-level variance, τ00 indicates the variation between individual intercepts and the average intercept, and ICC is the intraclass
correlation coefficient

and Gelman 2014) with the proposal acceptance probability
set to .99. In all cases, participant id was used as a random
intercept. All fixed effects were also entered as random
slopes following a maximal random structure approach
(Barr et al. 2013). This allows us to compute a Bayes factor
comparing each model against a null model, which used
the same random effect structure but with the target fixed
effect omitted. The Bayes factor was computed using bridge
sampling (Gronau et al. 2017) as a method to approximate
the marginal likelihood of both models. All models were
estimated over four chains of 4000 iterations, with a burn-in
period of 1000 samples.

Appendix 2: Experiment 1model
supplement

Predictive performance

The predictive performance is defined in terms of log
likelihood of the out-of-sample predictions, which is a
monotonic transformation of the mean squared prediction
error by assuming a Gaussian probability density:

logL =
∑

i

−(f (xi) − xi)
2

2σ 2
ε

− log
(

1

σε

√
2π

)
, (A2.1)
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Fig. 6 Experiment 1 correspondence between participant and model
predictions. a Participant judgments against the ground truth. b–d
Model predictions compared against participant judgments. Each dot
is a single judgment and the red line is a linear regression. The Pearson

correlation coefficient is shown above (BF10 > 109 in all cases). GP,
Gaussian process; dNN, d-nearest neighbors; kNN, k-nearest
neighbors
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where each xi are the participant judgments, each f (xi) are
the out-of-sample model predictions, and we set σε = 1.

Correspondence between participant judgments
andmodel predictions

In addition to comparing prediction accuracy (Fig. 3d–e),
we also examined the correspondence between participant
judgments, the true underlying values, and model predic-
tions. Figure 6 in Appendix 2 shows a scatter plot comparing
participant judgments to the true target value (r = .59, p <

.001, BF10 > 109), which shows participants were well cal-
ibrated to ground truth. Figure 6b–d in Appendix 2 provide
similar scatter plots showing the correspondence between
each model’s predictions and participant judgments. Over-
all, the GP had the highest correlation with participant
judgments (r = .71, p < .001, BF10 > 109), followed
by the dNN (r = .68, p < .001, BF10 > 109) and kNN
models (r = .67, p < .001, BF10 > 109). Comparing
z-transformed correlation coefficients computed at the indi-
vidual level, we find that the GP predictions were more
correlated to participant judgments than the kNN (t (99) =
8.6, p < .001, d = 0.9, BF10 > 109), but with no differ-
ences between the GP and dNN (t (99) = −1.0, p = .335,
d = 0.0, BF = .17).

Appendix 3: Eigen centrality

We analyzed search behavior from Experiment 2 as a
function of the connectivity of the sample nodes, which
we quantify using eigen centrality (EC; Bonacich 1972).
Intuitively, EC quantifies the connectivity of a node similar
to how Google’s PageRank (Langville and Meyer 2011)
quantifies webpages based on the number and quality of
hyperlinks. Nodes with higher EC are those that exert higher
influence on the network, by being connected to other nodes
that are themselves highly central in the network. The ECs
of each node in a graph xi ∈ x are defined by the normalized
eigenvector belonging to the largest eigenvalue λ of the
adjacency matrix A, fulfilling the identity:

λx = Ax (A3.1)

Compared with the overall distribution of ECs in the
task, participants systematically selected nodes with lower
EC (one-sample t-test: t (97) = −9.0, p < .001,
d = 0.9, BF = 3.2 × 1011; Fig. 7a in Appendix 3).
Participants also increasingly selected lower EC nodes
over successive trials (Bayesian mixed model: btrial =
−0.003, 95% HPD: [−0.003,−0.002], BF10 = 1.6 ×
1011; Table 2 in Appendix 1; Fig. 7b in Appendix 3).
While EC was not predictive of expected rewards in
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Fig. 7 Eigen centrality. a Distribution of EC values of selected
options (blue) compared with the ground truth of the task (red).
The vertical dashed lines indicate the means of each distribu-
tion. b Participants preferentially selected nodes with lower EC
over subsequent trials. Each dot is the aggregate mean (± 95%
CI) and the red line shows the group-level effect of a Bayesian
mixed model (Table 2 in Appendix 1), with the ribbon showing

the 95% CI. The dashed horizontal line indicates the mean eigen
centrality across all nodes in the task. c EC was not predictive
of rewards in the task. d However, from the nodes sampled by
participants, those with lower EC corresponded to higher rewards.
Each dot is the aggregate mean (calculated at intervals of 0.01)
and the red line is the group-level effect of a Bayesian mixed model
(Table 2 in Appendix 1), with the ribbon indicating the 95% CI.
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the underlying task environment (r = −.03, p =
.109, BF = .17; Fig. 7c in Appendix 3), we found a
systematic relationship in the choices made by participants:
lower EC nodes sampled by participants had higher
reward values (beigenCentrality = −26.54, 95% HPD:
[−31.17,−22.04], BF10 = 1.9 × 1020; Table 2 in
Appendix 1; Fig. 7d in Appendix 3). This is perhaps
because nodes with lower EC tended to have more eccentric
reward values. Indeed, the highest and lowest rewards across
environments had very similar average EC values, of 0.06
and 0.05, respectively. Thus, this trend of preferentially
sampling less central nodes may reflect a high-risk high-
reward heuristic (Leuker et al. 2018), which combined with
generalization proved to be an adaptive search strategy.

Appendix 4: Experiment 2model
supplement

Figure 8 in Appendix 4 provides an overview of parameter
estimates for each model, while Fig. 9 in Appendix 4
shows how different parameter estimates were related to
different levels of predictive accuracy. In addition, Fig. 10

in Appendix 4 compares the difference in out-of-sample
prediction error between the GP and each other model as a
function of performance on the bandit task.

Parameter estimates

GP

The GP used the diffusion parameter (α) to define the extent
of generalization, where larger values of α implied a wider
influence of observed rewards over the graph structure.
While the superior predictive accuracy of the GP over
alternative models provided evidence for generalization, α

estimates were systematically lower than the underlying
value of α = 2 used to generate the environments (t (97) =
−13.5, p < .001, d = 1.4, BF10 = 9.3 × 1020). Thus,
undergeneralization rather than overgeneralization was the
norm, consistent with previous findings of a beneficial
a bias towards undergeneralization in a similar search
context (Wu et al. 2018). Additionally, the exploration
bonus (β) estimated how participants traded off between
exploring uncertain options vs. exploiting options with
high expectations of reward. We found that the estimated
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Fig. 8 Experiment 2 parameter estimates. Each dot is the median
cross-validated estimate for a single participant. The diamond indi-
cates group mean and Tukey box plots show the median and 1.5

inter-quartile range. Note that values of d and k are restricted to the
set of natural numbers. GP, Gaussian process; BMT, Bayesian mean
tracker; dNN, d-nearest neighbors; kNN, k-nearest neighbors
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Fig. 9 Experiment 2 model parameters and predictive accuracy. Each
panel compares median per-participant parameter estimates against
predictive accuracy (R2), as an intuitive measure of objective model
performance. Predictive accuracy compares the cumulative out-of-
sample negative log likelihood of any given model k against a random
model: R2 = 1 − logLk/ logLrand . Intuitively, R2 = 0 indicates a
model is equivalent to random chance, while R2 = 1 is a theoretically
perfect model. Each dot is a single participant, with linear regression
lines added (ribbon indicates standard error). a The diffusion param-
eter α measuring the level of generalization, where higher levels of
generalization corresponded to better model predictions (r = .34,
p < .001, BF10 = 54) b The inverse sensitivity parameter σ 2

ε , where
higher estimates (i.e., smaller learning updates) corresponded to better

model predictions (r = .25, p = .012, BF10 = 4.7). c The explo-
ration bonus β controls the level of directed exploration. For both GP
and BMT models, higher levels of directed exploration corresponded
to worse model predictions (BF10 > 100). d The softmax temperature
parameter τ controls the level of random exploration. For all models,
temperatures corresponded to worse model predictions (BF10 > 100).
e The stickiness parameter ω added a bonus to the previously selected
option, making it more likely to choose the same option on the next
trial. For the GP and BMT models, stickiness was correlated with
worse model model predictions (BF10 > 100), whereas there was no
relationship for the dNN and kNN models (BF10 < 1). GP, Gaus-
sian process; BMT, Bayesian mean tracker; dNN, d-nearest neighbors;
kNN, k-nearest neighbors

β values were substantially larger than the lower bound
(t (97) = 4.5, p < .001, d = 0.5, BF10 = 949), providing
further evidence for directed exploration. Lastly, we also
define a stickiness parameter (ω), which captures an aspect
of the high rates of repeat clicks by adding an additional
bonus to the value of the last selected options.

BMT

In comparison, while the BMT also made uncertainty
estimates, these were defaulted to the prior variance (v0 =
500) for all unobserved options. Thus, the BMT made the
predictions uncertainty predictions for nodes near and far
from previous observations. In contrast to the GP model,

we found little evidence for directed exploration using the
BMT, with β estimates only marginally different from the
lower bound of .007 (t (97) = 2.1, p = .038, d = 0.2,
BF10 = .92). The BMT also made similar use of the
stickiness parameter compared with the GP (t (97) = 0.7,
p = .460, d = 0.1, BF10 = .15).

Nearest neighbors

The dNN generated predictions by averaging the rewards of
observed nodes within a distance of d . The mean estimate
of distance was d = 2.4, although the mode and median
were both 1. Thus, the dNN predominately made predictions
solely based on observations of directly connected nodes.
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Fig. 10 Experiment 2 model differences and score. Each panel com-
pares the difference in out-of-sample prediction error, measured as
negative log likelihood (nLL), of two models as a function of mean
performance on the bandit task. Each dot is a single participant, with
the Pearson correlation shown above and a linear regression line added

to the plot (ribbon indicates standard error). The color of each dot indi-
cates the model with the lower nLL. a GP vs. BMT. b GP vs. dNN. c
GP vs. kNN. dGP vs. stickiness and softmax model. GP, Gaussian pro-
cess; BMT, Bayesian mean tracker; dNN, d-nearest neighbors; kNN,
k-nearest neighbors

Nonetheless, it was still able to predict participant choices
fairly accurately. While the dNN had no access to directed
exploration, we nevertheless find similar levels of random
exploration (τ : t (97) = 1.2, p = .230, d = 0.1,
BF10 = .23) and stickiness (ω: t (97) = −1.0, p =
.317, d = 0.1, BF10 = .18) compared with the GP.
Thus, one potential source of the gap in simulated learning
performance compared with the GP (Fig. 5e), could be due
to the dNN lacking a form of directed exploration. The kNN
model also performed similar to the dNN, by averaging the k
nearest nodes rather than selecting nodes at a fixed distance.
The mean number of neighbors was k = 3, and with a
mode and median of 2. Thus, like the dNN, generalizations
were on the basis of integrating a small number of other
observations. The dNN and kNN also shared similar levels
of both undirected exploration (t (97) = 1.8, p = .077,
d = 0.3, BF10 = .52), and stickiness (t (97) = 1.1,
p = .290, d = 0.2, BF10 = .19).
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