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Abstract

Generalization, defined as applying limited experiences to novel sit-

uations, represents a cornerstone of human intelligence. Our re-

view traces the evolution and continuity of psychological theories of

generalization, from origins in concept learning (categorizing stim-

uli) and function learning (learning continuous input-output relation-

ships), to domains such as reinforcement learning and latent struc-

ture learning. Historically, there have been fierce debates between

rule-based mechanisms—using explicit hypotheses about environmental

structure—and similarity-based mechanisms—leveraging comparisons

to prior instances. Each approach has unique advantages: rules sup-

port rapid knowledge transfer, while similarity is computationally sim-

ple and flexible. Today, these debates have culminated in the devel-

opment of hybrid models grounded in Bayesian principles, effectively

marrying the precision of rules with the flexibility of similarity. The on-

going success of hybrid models not only bridges past dichotomies but

also underscores the importance of integrating both rules and similarity

for a comprehensive understanding of human generalization.
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1. INTRODUCTION

Generalization: The
process of applying

previously acquired

knowledge to new,
unfamiliar situations

Concept learning:
Learning to apply
discrete category

labels to objects or

events.

Function learning:
Learning to

understand and
predict the

continuous

relationship between
input and output

variables.

Rules: Explicit
hypotheses about

the structure of the
environment that

can guide

generalization

Similarity: A
comparison of new

situations to
previous experiences,

as a basis for
generalization

In the psychological landscape of theories and models, the study of how people generalize

past experiences to novel situations has occupied a central and domain-bridging role. Given

the unending flux and flow of new experiences and novel situations, generalization stands as

a testament to the flexibility of human intelligence (Lake et al. 2017; Chollet 2019), and is

widely studied in psychology (Shepard 1987; Chater & Vitányi 2003; Tenenbaum & Griffiths

2001; Wu et al. 2018), neuroscience (Taylor et al. 2021; Norbury et al. 2018; Poggio & Bizzi

2004), and machine learning (Zhang et al. 2016; Jäkel et al. 2008a; Geirhos et al. 2018).

Here, we bridge traditional psychological theories with modern computational approaches,

providing new perspectives for both old problems and enduring challenges. While the

computational methods are certainly new, the theoretical underpinnings and core questions

are very familiar to psychology and can be traced back to foundational research in concept

and function learning.

Over the years, debates about the mechanisms underlying human generalization have

spanned multiple domains. Research in concept learning has studied how people generalize

learned category labels when asked to classify new instances, for example, identifying the

breed of a dog or deciding whether a hotdog is a sandwich. Meanwhile, research in function

learning has studied how people generalize by learning the relationship between inputs

and outputs, allowing for interpolation or extrapolation beyond observed data, such as

predicting how much study time is needed to pass a test or anticipating how much you

will enjoy a new menu item at your favorite restaurant. In both domains, theories about

the underlying mechanisms of generalization have largely coalesced around two ingredients:

extracting regularities of the environment in the form of generic rules to apply in novel

settings and using similarity to compare new situations to previously encountered instances,

with the expectation that similar outcomes will result from similar situations.

While fierce historical debates have raged over which ingredient is more central, today

these arguments have largely been settled in favor of hybrid models, which have both rule-

and similarity-based interpretations and are frequently based on Bayesian principles (Tenen-

baum & Griffiths 2001; Lucas et al. 2015). While a duality of interpretations suggests an
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exchangeability between rule- and similarity-based representations (Goodman et al. 2008),

the computations used by hybrid models typically operate over either one or the other—

over hypothesized rules or over representations of similarity (Hahn & Ramscar 2001)—each

conferring distinct advantages. Rules unlock compositionality and rapid transfer, while sim-

ilarity is easy to compute and can flexibly capture various relationships in the environment.

In this review, we revisit the distinction between similarity- and rule-based mechanisms

of generalization. Our approach seeks to bridge the past and the present, by emphasizing

the continuity of these two mechanisms in theories of generalization. We first explore the

development of generalization research in concept learning and function learning, where in

each domain there have been converging trajectories toward hybrid models that integrate

rule-based and similarity-based approaches. Second, we establish connections between func-

tion learning theories and contemporary methods for value generalization in reinforcement

learning. This requires integrating a new dimension of uncertainty-directed exploration

to guide adaptive learning. Third, we highlight inherent relations between Bayesian con-

cept learning and theories of structure induction, which support generalization by inferring

hidden environmental structure. We conclude by proposing new directions for further inte-

grating similarity and rules, combining their relative advantages to unlock faster and more

efficient generalization in increasingly complex problems.

2. COMMON PRINCIPLES FOR GENERALIZATION

We first review foundational psychological theories of generalization in concept learning

and function learning, which broadly map onto the distinction between classification and

regression problems, as they are commonly referred to in statistics and machine learning.

A child distinguishing dogs from cats based on characteristics like barking or meowing is a

type of classification problem used in concept learning, while a teacher predicting students’

test scores based on study habits and past performance is a type of regression problem

used in function learning. Research in these two domains has largely progressed in distinct,

parallel tracks. Yet they share a similar historical trajectory of debates about the main

mechanisms supporting generalization. The proposed mechanisms can be categorized as

rule-based approaches, which focus on extracting regularities or generic ‘rules’ from the

environment, and similarity-based approaches, which compare new situations to previously

encountered instances.

In this section, we examine the evolution of theories about generalization across concept

learning and function learning. In both domains, these theories have largely culminated in

hybrid models, often using Bayesian principles to unify rule-based and similarity-based

approaches. We then show how these hybrid approaches provide the foundations for scaling

up to increasingly more complex and real-world problems, drawing connections between

theories of function learning and modern approaches to value generalization in reinforcement

learning, and from Bayesian concept learning to theories of structure learning.

2.1. Concept Learning

A chief aim of cognitive psychology has been to understand how individuals categorize and

differentiate between different elements of the “blooming and buzzing confusion” (James

1890) of the environment (Bruner et al. 1956). Research in the domain of concept learning

has long used classification problems with discrete stimuli as a means to study generalization
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Figure 1

Generalization in Concept Learning and Function Learning. a) Concept learning is often studied based on

classifying discrete stimuli (e.g., sandwich vs. not sandwich). b) Rule-based methods describe explicit category boundaries

(rectangle), while c) similarity-based methods utilize similarity (arrows) to previous exemplars (data points) or learned
prototypes (centroid of colored oval). d) Bayesian concept learning (Tenenbaum & Griffiths 2001) provides a hybrid

approach by defining a distribution over rules (rectangles), which produce patterns of generalization consistent with

similarity-based accounts (Shepard 1987; Tversky 1977). The likelihood favors narrower hypotheses, which is indicated by
the shading of lines. e) Function learning is studied based on learning a mapping between inputs (e.g., spiciness) and

outputs (e.g., enjoyment). f) Rule-based methods describe specific parametric families of functions (e.g., linear or

polynomial), while g) similarity-based methods commonly use Artificial Neural Networks (ANNs) to approximate
nonlinear functions, where the influence of each data point is proportional to their similarity (i.e., inverse distance;

arrows). h) Gaussian Process regression provides a hybrid approach using kernel similarity to describe a distribution over

hypothesized functions (red lines), which are summarized in terms of an expectation (blue line) and uncertainty (blue
ribbon). Food images are from OpenClipArt under CC0 1.0.

(Rosch 1973; Medin & Schaffer 1978; Smith & Medin 1981; Nosofsky 1986). For instance,

learning the category “sandwich” from examples of paninis and subs, and then generalizing

confidently when shown a grilled cheese for the first time, but perhaps hesitating when shown

a hotdog (Figure 1a). Important debates in this field have concerned which representations

are learned and the mechanisms used for generalizing about novel stimuli (Erickson &

Kruschke 1998; Ashby & Maddox 2005; Johansen & Palmeri 2002; Bowman et al. 2020).

Here, we broadly categorize different influential approaches into rule-based and similarity-

based approaches.

Rule-based Concept Learning. One influential class of theories proposed that concepts are

defined based on rules that describe the explicit boundaries of category membership (Bruner

et al. 1956; Ashby & Gott 1988; Rouder & Ratcliff 2006, rectangle in Fig. 1b). For instance,

one might describe the necessary and sufficient features (Smith & Medin 1981) of a sandwich

as “food flattened between two pieces of bread”, and thus classify any novel food that

satisfies this rule as a sandwich. The specificity of rules facilitates rapid generalization, while

their compositionality (i.e., the ability to combine multiple rules) makes them infinitely
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productive (Goodman et al. 2008).

However, for the same reasons, rules can also be inflexible (what about open-faced sand-

wiches?) and difficult to learn, since infinite productivity also implies an infinite hypothesis

space of candidate rules to consider. Even with mechanisms for learning exceptions to

rules for added flexibility (Nosofsky et al. 1994), rule-based methods only seem to offer par-

tial explanations of human category learning (Tenenbaum 2000), and perform best when

paired together with other learning mechanisms (Ashby et al. 1998; Erickson & Kruschke

1998; Love et al. 2004). Nevertheless, the basic mechanisms of rule-based generalization

(i.e., proposing explicit hypotheses) play an important role in modern theories of structure

learning (Kemp & Tenenbaum 2008) and program induction (Lake et al. 2015, 2017; Rule

et al. 2020; Fränken et al. 2022; Zhao et al. 2023), which use a probabilistic framework to

add flexibility to the rigid structure of rules.

Universal Law of
Generalization: The
probability of a

response for one

stimulus being
generalized to

another is a function
of the distance

between the two

stimuli in a
psychological space

Bayesian concept
learning: A
probabilistic

approach to concept

learning, using a
distribution over

rule-like hypotheses

about based concept
boundaries,

producing

similarity-like
generalization

patterns.

Bayesian size
principle: Smaller,

more specific
hypotheses are

preferred over

broader ones, given
consistent evidence.

Similarity-based Concept Learning. Another class of theories uses similarity-based methods

for predicting the category of novel stimuli (Figure 1c). Early theories introduced the

notion of a psychological space (Torgerson 1952; Ekman 1954), where stimuli are embedded

as geometric coordinates and a measure of distance (e.g., Euclidean distance) serves to

represent the (dis-)similarity between stimuli. The most influential example is Shepard’s

(1987)“Universal Law of Generalization”, which used confusability (i.e., the probability

of responding to stimulus x when shown stimulus x′) to construct a psychological space

using Multidimensional Scaling (Shepard 1962; Kruskal 1964). Intuitively, stimuli producing

similar responses are embedded in similar locations, such that the same unit of distance in

any direction corresponds to the same level of generalization. Stimuli located further apart

in psychological space are thus less likely to yield the same response, becoming exponentially

less likely as their distance increases (Figure 2a).

At the core of Shepard’s theory is the assumption that representations about categories

correspond to a “consequential region” in psychological space (Figure 2a). Generalization

thus arises due to uncertainty about the extent of these regions. As the distance between

stimuli x and x′ increases, they are less likely to belong to the same region and therefore

less likely to produce similar outcomes, thus producing a smooth gradient of generalization.

Other similarity-based approaches are consistent with this notion of a psychological space,

where comparison to either previously encountered exemplars (Medin & Schaffer 1978;

Nosofsky 1986), or to a learned prototype (Rosch 1973; Smith & Minda 1998) aggregated

over multiple experiences, provides the basis for generalization (arrows in Figure 1c).

Yet the notion of similarity has been famously criticized for being too flexible, with

endless and arbitrary ways to define similarity for any pair of stimuli (Goodman 1972;

Medin et al. 1993; Hahn & Ramscar 2001). Modern theories address this challenge by pro-

viding new approaches for describing the psychological mechanisms people use to construct

context-relevant similarity representations (see Radulescu et al. 2021, for a review), forming

a rational rather than arbitrary basis for computing similarity. Furthermore, advances in

similarity-based approaches to generalization are now able to capture rich relational struc-

ture (Wu et al. 2021; Whittington et al. 2020) and represent the temporal dynamics of the

environment (Stachenfeld et al. 2017; Garvert et al. 2023).

Hybrid Concept Learning Using Bayesian Principles. Today, the most prolific theories of

concept learning are considered hybrids and have a duality of both rule- and similarity-

based interpretations (Pettine et al. 2023). One influential example is the Bayesian concept

www.annualreviews.org • Unifying generalization 5



learning framework (Figure 1d; Tenenbaum & Griffiths 2001), which uses a distribution over

hypothesized category boundaries (boxes in Figure 1d) to categorize novel stimuli (Side-

bar 2.1).

Bayesian Concept Learning

Bayes’ rule is used to describe the posterior probability that each hypothesis h captures category C given

a set of positive observations xi ∈ X :

p(h|X ) ∝ p(h)p(X|h), 1.

This posterior integrates prior beliefs p(h) and the likelihood of the data p(X|h), where the prior is usually

assumed to be uniform, while the likelihood makes use of the Bayesian size principle (Tenenbaum & Griffiths

2001) to favor narrower hypotheses that are still consistent with the data:

p(X|h) =

{
1

|h|n if x1, . . . ,xn ∈ h

0 otherwise
2.

Having defined the posterior probability of a single hypothesis h, the goal is to predict whether a novel

stimulus x∗ falls within the same category C as previously observed examples X . Bayesian concept learning

defines this probabilistically, by aggregating over all hypotheses h (i.e., category boundaries) consistent with

x∗ belonging to C:

p(x∗ ∈ C|X ) =
∑

h:x∗∈C

p(h|X ). 3.

This represents a sum of posterior probabilities p(h|X ) for different hypotheses that encapsulate x∗, where

the contribution of each hypothesis is weighted by the size principle (Eq. 2).

A key concept is the Bayesian size principle (Tenenbaum 1999, 2000; Tenenbaum &

Griffiths 2001), where under the assumption of “strong sampling”, greater likelihoods are

assigned to narrower hypotheses consistent with the data (darker shading for smaller rect-

angles in Figure 1d). Strong sampling assumes that rather than being completely random,

the data X are explicitly sampled from positive examples of the category C, as is commonly

the case in pedagogical settings (Csibra & Gergely 2009), where a parent or a teacher will

provide informative examples of categories, such as “plane”, “dog”, or “sandwich’. Con-

sequently, the distribution of the observed data X is expected to reflect the range of the

category boundary, thus preferring narrower hypotheses consistent with the data, where

the strength of this preference increases with more observations.

Bayesian concept learning thus uses computations over rule-based representations of

explicit category boundaries, yet can replicate behavioral patterns of several influential

similarity-based theories, such as Shepard’s (1987) smooth generalization gradients and is

also equivalent to a special case of Tversky’s set-theoretic model of similarity (Tversky

1977). And while other hybrid models advocated for a “separate-but-equal” approach

(Erickson & Kruschke 1998) by incorporating rules and similarity as separate mechanisms,

Bayesian concept learning represents a “unified” approach, where rules and similarity are

seen as two sides of the same coin (Pothos 2005; Goodman et al. 2008; Tenenbaum 2000;

6 Wu et al.



Austerweil et al. 2015).

This core Bayesian framework—based on describing a distribution of hypotheses and

adapting them to new data—has since proliferated computational theories across a wide

range of phenomena, such as causal learning (Meder et al. 2014; Griffiths & Tenenbaum

2005, 2009a), word learning (Xu & Tenenbaum 2007), structure induction (Kemp & Tenen-

baum 2008), and the learning of compositional programs (Lake et al. 2015, 2017; Ellis et al.

2023; Fränken et al. 2022; Zhao et al. 2023). A distinct advantage of operating over rule-

based representations is the ability to reason compositionally, by syntactically manipulating

and combining multiple rules (Piantadosi et al. 2016). Yet given an expressive hypothe-

sis space, exact Bayesian inference is usually intractable, with most approaches relying on

sample-based (Tenenbaum & Griffiths 2001; Kemp & Tenenbaum 2008; Ellis et al. 2023)

or variational approximations (Dasgupta et al. 2020). Thus, it remains an open question

how humans achieve the power and productivity of rule learning, but with limited cognitive

resources (van Rooij et al. 2019; Sanborn et al. 2010; Rubino et al. 2023).

2.2. Function Learning

Beyond discrete category membership, generalization has also been studied in the domain

of function learning (Figure 1e) based on inferring a continuous relationship between inputs

and outputs (Carroll 1963; Brehmer 1974; Lucas et al. 2015; Koh & Meyer 1991; Kalish

et al. 2007; Busemeyer et al. 1997). For example, learning how spiciness (input) relates

to one’s enjoyment of a meal (output), or how the amount of time spent studying (input)

predicts test scores (output).

Pioneering research by Carroll (1963) used function learning to show that human gen-

eralization goes beyond merely predicting previously observed outcomes, in contrast to

the domain of concept learning, where participant responses are typically limited to pre-

viously learned category labels, even if the stimuli presented are novel. Rather, Carroll’s

(1963) work on function learning showed that people can extrapolate beyond their past

experiences, generalizing not only to new inputs but also predicting new outputs (e.g., an

off-the-charts food experience). While largely operating along a separate research tradition,

the domain of function learning is also characterized by a parallel debate between rule- and

similarity-based theories, which has culminated in hybrid formalizations (Busemeyer et al.

1997; Kalish et al. 2007; Lucas et al. 2015).

Gaussian process
regression: A
probabilistic
approach to function

learning, using a

distribution over
hypothesized

functions, with both

rule- and
similarity-based

interpretations.

Kernel similarity: A
similarity metric

defined for any pair

of stimuli, used in
Gaussian Processes.

Rule-based Function Learning. Many early theories of function learning are considered

rule-based, by assuming people use a specific parametric model (e.g., a linear or polynomial

function), and then learn by optimizing the parameters to best explain the data (Carroll

1963; Brehmer 1976, Figure 1f). In function learning, rules correspond to a hypothesized

relationship between variables, much like the law of gravity describes a polynomial relation-

ship between mass and distance, or fitting a linear regression assumes a linear relationship.

While rule-based methods can capture the systematicity of human extrapolation patterns

(i.e., strong linear assumptions; DeLosh et al. 1997), they lack the flexibility of humans, who

can learn to interpolate almost any function with enough training (McDaniel & Busemeyer

2005).

Similarity-based Function Learning. To better account for the flexibility of human general-

ization, similarity-based models (Figure 1g) of function learning were developed, often using

www.annualreviews.org • Unifying generalization 7



artificial neural networks (ANNs) to encode the generic principle that similar inputs produce

similar outputs (McClelland et al. 1986; Busemeyer et al. 1997). The influence of previous

observations decreases as a function of distance (arrows in Figure 1g) to a given input, with

nearby observations exerting a larger influence. ANNs are universal function approxima-

tors (Hornik 1991; Cybenko 1989), and can approach arbitrarily low error in fitting a given

function, given sufficient neurons in the hidden layers. But while this flexibility aligns with

similar human capabilities in interpolation tasks, ANNs fail to match the specific inductive

biases humans exhibit when extrapolating beyond observed data (Schulz et al. 2017; ?). For

instance, humans tend to extrapolate functions with strong linear expectations (Kwantes &

Neal 2006; Kalish et al. 2004), a tendency not inherently captured by standard ANNs. This

distinction underscores the need to further refine neural network models to more accurately

mirror human cognitive processes in both interpolation and extrapolation.

Hybrid Function Learning Using Bayesian Principles. To combine the rule-like systematic-

ity of human extrapolation with the similarity-like flexibility of interpolation, hybrid func-

tion learning models were developed. One notable example is Gaussian Process regression

(Figure 1h; Rasmussen & Williams 2005), which can account for many empirical patterns

of human function learning (Lucas et al. 2015; Griffiths et al. 2008) while using similar

Bayesian computations as hybrid models of concept learning (Sidebar 2.2).

Bayesian Function Learning

Gaussian Process regression (Rasmussen & Williams 2005) provides a Bayesian approach to function learn-

ing by mapping inputs X to real-valued outputs y through a distribution over hypothesized functions h. A

prior over functions takes the form of a multivariate Gaussian distribution:

p(h) ∼ GP
(
m(x), k(x,x′)

)
, 4.

defined by a prior mean m(x), which is typically set to 0 without loss of generality (Rasmussen & Williams

2005), and a covariance function k(x,x′), which is defined by a choice of kernel. A common choice is the

radial basis function (RBF) kernel:

k(x,x′) = exp

(
−||x− x′||2

2λ2

)
, 5.

capturing the inductive bias that similar inputs are expected to produce similar outputs, with similarity

defined as an exponentially decaying function of distance in feature space (Figure 2b). The posterior

distribution is then defined by conditioning on observed data D = {X ,y} of encountered inputs xi ∈ X and

outputs yi ∈ y. The posterior is also Gaussian, with predictions for any input x∗ characterized by posterior

mean m(x∗|D) and variance v(x∗|D):

p (h(x∗) |D) ∼ GP (m(x∗|D), v(x∗|D)) 6.

Gaussian Process regression provides a Bayesian approach to function learning (see

Schulz et al. 2018a, for a tutorial), based on a distribution over hypothesized functions

8 Wu et al.



that explain the data (red lines in Figure 1h). In contrast to Bayesian concept learning,

the Gaussian assumptions of Gaussian Process regression provide an analytically tractable

posterior distribution, characterized by an expected outcome for any new input (blue line;

Figure 1h), but also an uncertainty estimate (blue ribbon; Figure 1h). These analytically

tractable computations also have exact equivalencies to artificial neural networks in the

limit of an infinite number of hidden units (Neal 1996).

A key ingredient in Gaussian Process regression is the choice of kernel function, which

provides an explicit similarity metric between any pair of inputs x and x′ with desirable

mathematical properties (Schölkopf & Smola 2002). This can captures inductive biases

present in similarity-based theories (Figure 1g), such as the common RBF kernel (Eq. 5),

which assumes similar inputs are likely to produce similar outcomes (Figure 2b). However,

there is a rich set of kernel functions to choose from, capturing different forms of inductive

biases (Duvenaud et al. 2013). For instance, linear kernels make strong assumptions about

linear relationships, periodic kernels encode cyclical trends, and graph kernels capture rela-

tional structure between discrete nodes on a graph (e.g., a diffusion kernel; Wu et al. 2021;

Kondor & Lafferty 2002, Figure 2c).

Like Bayesian concept learning, Gaussian Process regression has been described as a

hybrid model because it has both similarity- and rule-based interpretations (Lucas et al.

2015; Austerweil et al. 2015). The similarity-based interpretation is straightforward, since

the kernel explicitly encodes similarity between data points, facilitating computations that

operate directly over similarity representations. However, the framework also lends support

to two rule-based interpretations.

The first is based on a mathematical property known as Mercer’s (1909) theorem, de-

scribing how any kernel can be decomposed into a combination of basis functions (Lucas

et al. 2015; Austerweil et al. 2015), each corresponding to an abstract rule. Just as any

color can be decomposed into red, green, and blue components, the basis functions that

collectively constitute a kernel form the rule-like building blocks that allow Gaussian pro-

cesses to express a potentially unlimited range of functions. Thus, inversely analogous to

Bayesian concept learning, Gaussian Processes operate on similarity-based computations

but provide equivalent rule-based interpretations.

There is also a second rule-based interpretation, with more direct applications based on

the compositionality of Gaussian Process kernels (Schulz et al. 2017; Duvenaud et al. 2013).

Multiple kernels can be combined via addition or multiplication operations to produce new

kernels. Since each kernel can be seen as providing rule-like biases about the hypothesized

form of a function (e.g., a linear kernel for linear relationships, or a periodic kernel for

periodic functions), compositional kernels thus allow for new compositional biases (e.g., a

linear periodic relationship describing our alarming climate trends), similar to how rules

can be combined to create new composite rules. Composing multiple kernels thus allows for

aggregating multiple hypotheses about the hidden structure of the environment. Notably,

earlier work by Brehmer (1974) already proposed people learn functions by testing how

well increasingly more complex rules can explain the observed data. The Gaussian Process

framework further formalizes this idea and injects the ability to reason about compositional

rules as well.
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Figure 2

Principles of Generalization. a) Shepard’s (1987) Law of Generalization describes

generalization as a function of distance (dashed arrow) between stimuli in psychological space

(inset). The smooth gradient of generalization arises due to uncertainty about the extent of a
consequential region, with more distant stimuli less likely to belong to the same region. b) An

RBF kernel provides a similarity metric based on the squared Euclidean distance between stimuli

in feature space (inset: dashed arrow), producing similar generalization gradients as Shepard’s
model (quantified using Pearson correlation between expected outputs). The lengthscale

parameter λ governs the rate at which generalization decays as a function of distance. c) In

structured environments, a diffusion kernel (Kondor & Lafferty 2002; Wu et al. 2021) offers an
analogous similarity metric based on the connectivity structure of a graph, where the diffusion

parameter α governs the rate that previous observations “diffuse” over the graph.

2.3. Converging Historical Traditions

Given similar historical developments in concept and function learning, there is much to

be gained from integrating theories of generalization across domains. In concept learning

(Figure 1a-d), Shepard’s (1987) “Universal Law of Generalization” provides an influential

similarity-based approach, where generalization is characterized as distance in “psycholog-

ical space”, with stimuli embedded at closer distances are more likely to produce the same

responses (Figure 2a). Yet through a probabilistic application of rule-based mechanisms,

characterized by explicit hypotheses about the boundaries of a category, a hybrid Bayesian

concept learning framework (Figure 1d; Tenenbaum & Griffiths 2001) can reproduce the

same smooth gradient of generalization, showing how rule- and similarity-based mechanisms

can be interpreted as two sides of the same coin (Pothos 2005; Austerweil et al. 2015).

In the domain of function learning, there has been an analogous trajectory of rule-

and similarity-based theories culminating in hybrid approaches using Bayesian principles

(Figure 1e-h). Current hybrid theories of function learning based on Gaussian Process

regression utilize similarity-based mechanisms implemented through “kernel functions” that

capture inductive biases (e.g., stimuli with similar features will yield similar outputs), yet

also provide rule-based interpretations and allow for compositional operations over different

kernels (Lucas et al. 2015; Schulz et al. 2017). An RBF kernel is a common choice, defining

a similarity metric based on distance in feature space and producing similar generalization

gradients as Shepard’s theory (Figure 2b), However, a wide range of possible kernels provide

other inductive biases not present in typical similarity-based theories, such as assumptions

about linear, periodic, or graph-structured relationships (Figure 2c; Wu et al. 2021), which

can be compositionally combined to yield new rule-like assumptions (Duvenaud et al. 2013;

Schulz et al. 2017).

Ultimately, this convergence of concept and function learning has leveraged the strengths
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of both rule- and similarity-based approaches to illuminate the rich tapestry of human gen-

eralization. Building on these historical developments, we now turn to examine how princi-

ples of concept learning and function learning have informed new domains of generalization,

tackling increasingly complex and challenging domains.

3. FROM LEARNING FUNCTIONS TO ACTING ON THE WORLD

Compared to concept learning, function learning has received relatively less attention and

produced fewer experiments. Yet there has been a revival of interest, given the impor-

tance of value function approximation (Wang et al. 2020; Schölkopf 2015; Tesauro 1995)

for generalization in Reinforcement Learning (RL) problems (Sutton & Barto 2018). RL

provides a computational framework for understanding learning in both biological and ar-

tificial systems and can trace its origins to early research on associative and instrumen-

tal learning (Thorndike 1911; Pavlov 1927; Skinner 1938). Characterizing learning as a

trial-and-error process, RL agents learn to associate different actions with expectations of

reward through feedback from the environment, leading to gradual improvements in select-

ing reward-maximizing behaviors. However, no biological or artificial agent can try every

possible action in most real-world settings, highlighting the necessity to generalize feedback

from past experiences to novel settings. And while simple two-alternative choice tasks (e.g.,

a 2-armed bandit) are still commonly used in RL to study human learning through repeated

experience with a small number of alternatives, there is a growing impetus to better un-

derstand how humans generalize in more real-world contexts, where the space of possible

outcomes is too vast to be experienced exhaustively (Wu et al. 2018).

Research in RL has long grappled with the need to generalize to novel actions and states

(Tesauro 1995). In complex games such as Go (Silver et al. 2016), the number of possible

game states vastly outnumbers the number of atoms in the known universe. Thus, in

scaling up to solve increasingly complex tasks, more contemporary RL algorithms commonly

learn a value function mapping a vast space of potential actions or states to expectations

of reward (i.e., value) (Wang et al. 2020; Sutton et al. 2000; Tesauro 1995; Silver et al.

2016). This estimated value function can then be used to generalize a limited number of

experienced outcomes to a vast and potentially infinite space of possibilities, guiding efficient

exploration and action selection. Here, we review recent advances in understanding human

generalization in RL settings that do not permit exhaustive exploration and connect these

findings to theories from function learning.

Reinforcement
learning: A
framework for
understanding

learning through

trial-and-error
feedback from the

environment

Value function
approximation: A
key method for

generalization in
reinforcement

learning, by

expected value of
different states or

actions.

Bandit problem:
Experimental

paradigm used to
investigate the

trade-off between

exploration and
exploitation.

Decision-makers

repeatedly choose
among options to

accumulate payoffs,

where each option
yields probabilistic

rewards.

Directed exploration:
A strategic approach

in learning or

decision-making
where exploration is

guided by specific
goals or hypotheses,

such as reducing

subjective
uncertainty.

3.1. Generalization in Reinforcement Learning Using Value Function
Approximation

Several recent studies have investigated human generalization in RL problems (Wimmer

et al. 2012; Wu et al. 2018; Schulz et al. 2018b; Norbury et al. 2018; Stojić et al. 2020;

Giron et al. 2023; Witt et al. 2023, Figure 3a). A common feature of these problems is

the use of structured rewards, where participants can leverage features of the environment,

such as spatial location (Wu et al. 2018), abstract features (Wu et al. 2020; Stojić et al.

2020; Norbury et al. 2018), or nodes on a graph (Wu et al. 2021) to predict the value of

novel actions or stimuli.

In these structured bandit problems, participants are given the goal of maximizing

rewards by iteratively selecting options (e.g., tiles, Gabor patches, or nodes on a graph;
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Figure 3

Value Generalization in RL. a) Reward generalization in Reinforcement Learning as Value Function Approximation.
Left: Bandit tasks with structured rewards, where similar locations, feature combinations, or connected nodes generate

similar rewards. Right: Generalization can be modeled using Gaussian Process regression to infer a value function,

mapping a potentially infinite range of actions or states to probabilistic predictions about expected reward and subjective
uncertainty. b) Overview of the Gaussian Process Upper Confidence Bound (GP-UCB) model in a spatial bandit task.

Conditioned on the observations in panel a (left), the Gaussian Process model makes predictions about expected reward

m(x) and uncertainty v(x), where the parameter λ governs the extent that past observations generalize to new options.
Upper confidence bound (UCB) sampling combines the expected rewards m(x) and uncertainty v(x) using a weighted sum,

where the parameter β defines the value of exploring uncertain options relative to exploiting high reward expectations.

Lastly, UCB values are transformed into probabilistic predictions of where the participant will search next using a softmax
function, where the temperature τ governs the amount of random exploration. c) The developmental trajectory of human

learners (5-55yrs) resembles stochastic optimization over GP-UCB parameters. The labeled dots are the median

parameter estimates from human subjects, while the blue line is the trajectory of the best-performing stochastic
optimization algorithm computed over a fitness landscape of 1 million parameter combinations (Giron et al. 2023).

Figure 3a), each yielding stochastic rewards. To emphasize the need for generalization,

participants are typically given a search horizon that is greatly limited compared to the

number of unique options. However, rather than each option having independent reward

distributions—as is commonly the case in bandit tasks—here, the expected rewards are

correlated, such that options in similar spatial locations, with similar features, or well-

connected to one another on a graph, are expected to yield similar rewards. This correlated

reward structure provides traction for generalization, allowing participants to guide the

selection of actions toward promising regions of the search space. In this body of research,

human generalization is typically best characterized by the same Gaussian Process model as

in traditional function learning tasks, but based on the implicit learning of a value function,

which is then used to predict actions (Figure 3b).

One important distinction between generalization in an RL setting compared to tradi-

tional function learning is that the goal in RL is not necessarily to learn the true underlying

value function. Rather, one needs to balance the explore-exploit dilemma (Mehlhorn et al.
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2015), by both exploring uncertain options to acquire information, while also exploiting op-

tions with high expectations of reward to maximize immediate gains. Thus, a fundamental

challenge in RL is to determine what information should be acquired given current beliefs

(i.e., active learning; Settles 2009; Nelson 2005). In this RL setting, the Gaussian Process

model addresses this challenge by making Bayesian predictions about the expected reward

that include quantifications of uncertainty (blue line and ribbons, respectively, in Figure 3a

right). These two components can be used to implement and test different sampling strate-

gies in their ability to balance the exploration-exploitation dilemma and predict human

behavior (Sidebar 3.1). Two prominent mechanisms of exploration are uncertainty-directed

exploration and random exploration, which play a dissociable role in human exploration

(Wu et al. 2018; Wilson et al. 2014; Wu et al. 2022a; Cogliati Dezza et al. 2019), with

different neural signatures (Zajkowski et al. 2017) and distinct developmental trajectories

(Giron et al. 2023; Meder et al. 2021; Schulz et al. 2019; Somerville et al. 2017a).

Value Generalization in Active Learning

Efficient learning in RL requires a balance between exploring new options for information and exploit-

ing known high-value options for immediate reward. In complex problems with numerous choices, an

added dimension is determining where to explore. Gaussian Process regression offers a Bayesian approach

(Figure 3a-b) to predict both expected rewards (posterior mean m(x|D)) and the associated uncertainty

(posterior variance v(x|D)). These predictions can be integrated with an Upper Confidence Bound (UCB)

sampling strategy, which uses a weighted sum of reward expectations and uncertainty estimates to assign

value to each option:

UCB(x) = m(x|D) + β
√

v(x|D). 7.

Here, the ”exploration bonus“ β dictates the value given to exploring uncertain options relative to

exploiting immediate rewards (i.e., uncertainty-directed exploration). These UCB values can then form

probabilistic predictions about which option an agent will choose next using a softmax function:

p(x) ∝ exp (UCB(x)/τ) , 8.

where options are selected proportional to their UCB value (Figure 3b). The temperature parameter τ

governs the randomness of these predictions, providing an additional, undirected form of exploration.

Figure 3b illustrates how the reward expectations and uncertainty estimates of a

Bayesian function learning model are combined to predict choices in a spatially corre-

lated bandit problem (Wu et al. 2018). The best account of human choice behavior com-

bines Gaussian Process regression as a model of value generalization with Upper Confidence

Bound (UCB) sampling (Auer 2002), which quantifies the value of a choice option by adding

an uncertainty-based ”exploration bonus“ to reward expectations (Srinivas et al. 2009). To-

gether, the GP-UCB model demonstrates how generalization and exploration mechanisms

interact to guide decision-making in RL. Additionally, several studies have fit the GP-UCB

model on choices and then used it to predict out-of-sample judgments participants made

about the expected reward of unexplored options, along with subjective confidence ratings

(Wu et al. 2020, 2021). Thus, participants not only select actions “as-if” they are using a
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form of Bayesian value function approximation, but the same computations can also be used

to predict their judgments, showing a correspondence between implicit value generalization

in RL with explicit function learning in psychology.

3.2. Developmental Changes in Generalization and Exploration

By integrating generalization via value function learning with both uncertainty-directed

and random exploration for active learning, the GP-UCB model has provided a powerful

lens for understanding developmental changes in learning. Human development is often

likened to a “cooling off” process (Gopnik et al. 2017, 2015), in analogy to mechanisms of

stochastic optimization used in modern machine learning models. Like a heated piece of

metal that becomes harder to manipulate as it cools off, stochastic optimization algorithms

start off highly flexible and open to a wide range of solutions, even those that might not

seem very good at first. But as they “cool down”, they become less flexible and more

selective in favoring only local improvements. This analogy is appealing, since children

are highly stochastic and flexible learners, with the randomness of their choices (Bonawitz

et al. 2014) and hypotheses (Buchsbaum et al. 2012; Lucas et al. 2014; Gopnik et al. 2017;

Denison et al. 2013) gradually diminishing over the lifespan.

Yet, there is ambiguity in how to interpret this verbal analogy, with the most common

being “cooling off” as a uni-dimensional transition from exploration to exploitation (Gopnik

2020), focusing solely on a reduction in random exploration. And while past work has indeed

found differences in random exploration between different age-groups (Somerville et al.

2017a; Blanco & Sloutsky 2021; Schulz et al. 2019; Meder et al. 2021), this only seems to be

part of the picture, with developmental differences in more systematic, uncertainty-directed

exploration (Schulz et al. 2019; Blanco & Sloutsky 2021; Somerville et al. 2017b), along with

various aspects of belief integration and generalization about novel options (Van den Bos

et al. 2012; Blanco et al. 2016).

To provide a concrete test of the “cooling off” analogy, Giron et al. (2023) directly com-

pared the trajectory of human learners (aged 5 to 55) against that of various optimization

algorithms (Figure 3c). The results showed that “cooling off” does not only apply to the

single dimension of randomness. Rather, development resembles an optimization process in

the space of learning strategies: what begins as large tweaks in the parameters that define

learning during childhood, plateaus and converges in adulthood. While the developmental

trajectory of human learning strategies is strikingly similar to the best-performing algo-

rithms (Figure 3c), none discovered reliably better regions of the strategy space than adult

participants, suggesting a remarkable efficiency of human development.

In sum, investigating exploration and exploitation within RL settings has proven to

be a productive approach for understanding human generalization across the lifespan in

increasingly complex scenarios. The use of different kinds of structured reward environments

constitutes an important step towards more complex and naturalistic learning and decision

problems that capture the interrelatedness of real-world experiences (Wise et al. 2024).

Such tasks help to better understand what computational and psychological principles guide

action selection in expansive state spaces, where the complexity of the state and action space

does not permit exhaustive search and learning, naturally requiring predictive generalization

and leveraging uncertainty to efficiently act on the world.
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4. FROM LEARNING CONCEPTS TO LEARNING STRUCTURE

Human generalization is much deeper than just comparing features at face value. Rather,

generalization also depends on the relational structure and temporal dynamics of the envi-

ronment, which are often hidden and need to be inferred. Research on structure learning

can be broadly divided into two traditions. The first originates from Tolman’s (1948) pi-

oneering notion of a “cognitive map”. Research in this domain has extensively studied

spatial navigation in the hippocampal-entorhinal system (Whittington et al. 2022; Epstein

et al. 2017; Moser et al. 2014), which has since been extended to a wide range of non-

spatial modalities and domains (Behrens et al. 2018). The second tradition, known as

Bayesian structure induction (Kemp & Tenenbaum 2008, 2009), builds on a similar formal-

ism as Bayesian concept learning (Tenenbaum & Griffiths 2001), where explicit, rule-like

hypotheses about structure can be inferred from observed data, reflecting our ability to

discern patterns and regularities in the environment. While these traditions are based on

different theoretical foundations, here we show that they share a common framework of

similarity-based mechanisms for learning rule-like hypotheses about structure.

Cognitive Map: A
mental
representation of the

structure of the

environment, used
for navigation,

learning, and
generalization

Successor
representation: An
RL model using

anticipated future

states of the
environment for

predictive

generalization

Structure induction:
The process of

inferring underlying
structure from

observed data, often

using Bayesian
principles

4.1. Cognitive Maps

Originally proposed as an alternative to stimulus-response learning, Tolman (1948) found

that rats could rapidly adapt to new situations (e.g., choosing the second shortest path in

a maze when the shortest path is blocked) and to new goals (e.g., efficiently navigating to

food rewards placed in novel locations of a familiar maze). These results suggested the rats

had generalized their experiences based on establishing a “field map of the environment”

(Tolman 1948, pg. 2), Today, this notion of a cognitive map is grounded in neural evidence

(in humans and other animals) relating the activity of specialized cells in the hippocampal-

entorhinal system to computations facilitating navigation and self-location, such as encoding

spatial orientations, boundaries, and distance to objects (see Moser et al. 2014; Peer et al.

2021; Epstein et al. 2017, for reviews). And as Tolman originally speculated, cognitive maps

are not only restricted to representing spatial structure. Rather, the same neural machinery

used for spatial navigation also encodes relational and structural knowledge across a wide

range of domains, including social relationships (Tavares et al. 2015), smells (Bao et al.

2019), abstract visual features (Constantinescu et al. 2016), and the connectivity of hidden

graph structures (Garvert et al. 2017).

One influential account of structure learning in the hippocampal-entorhinal system is

the Successor Representation (SR; Dayan 1993; Stachenfeld et al. 2017; Momennejad 2020).

Originally developed as a method to improve the generalization of Temporal Difference (TD)

learning (Sutton & Barto 2018), the SR describes a decomposition of the value function

into a similarity matrix and the singular rewards of each state (Figure 4a). The similarity

matrix quantifies the similarity between each pair of states based on expected future state

transitions, influenced by both the structure of the environment and the agent’s behavioral

policy (i.e., how the agent moves around in the environment), and thus corresponds to an

explicit, graph-like representation of the environment (Peer et al. 2021). The value general-

izations predicted by the SR—taking the form of a linear combination of state similarities

and reward observations—captures the underlying transition dynamics and connectivity

structure of the environment, with stronger generalizations between well-connected states.

Related methods using kernel similarity (Gershman et al. 2017; Wu et al. 2021, Figure 2c)

rather than SR similarity, operate on similar principles, with exact equivalencies in special
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cases (Machado et al. 2018). For example, Garvert et al. 2023 showed that the Gaussian

Process kernel can be approximated by the successor representation of visited states in an

open environment and then used to successfully predict human choices in a bandit task,

illustrating a continuity between cognitive maps and value generalization using function

learning.

The SR provides a candidate mechanism for how the structure of the environment can

be learned through experience (i.e., “on-policy” learning). This on-policy method learns

the similarity matrix encoding environmental structure using the familiar computations of

prediction-error learning (Rescorla & Wagner 1972; Sutton & Barto 2018), but by pre-

dicting future state transitions rather than predicting rewards (Dayan 1993; Russek et al.

2017a). However, some of the most convincing demonstrations of the SR as a model of

the hippocampal-entorhinal system are based on “off-policy” methods, which sidestep the

problem of learning latent structure by simply assuming a random policy over infinite time,

allowing for an analytic solution (Stachenfeld et al. 2017; Momennejad et al. 2017). One

motivation for using off-policy methods is that on-policy structure learning is slow, requir-

ing exhaustive exploration of an environment before an accurate model of the environment

can develop. In contrast, humans can rapidly learn new structures with relatively few expe-

riences in on-policy settings (Mark et al. 2020; Rubino et al. 2023). For instance, consider

how you might deftly navigate a foreign airport based on intuitions about previously expe-

rienced airport layouts or how you might transfer domain knowledge about bread baking

to a new problem such as making steamed buns. In addition to these limitations, the SR

only makes point estimates about expected reward (but see Geerts et al. 2019; Madarasz &

Behrens 2019; Mark et al. 2020, for Bayesian extensions), which limits the active learning

mechanisms it has access to (Sidebar 3.1).

Overall, the SR provides an elegant and simple theory of structure learning within the

RL framework, where similarity-based representations acquired through associative learning

enable structure-informed generalization through value function approximation. However,

the slowness of this learning process may fall short of explaining the full efficiency with which

humans learn relational structure. Other recent theories of cognitive map learning such as

the Tolman Eichenbaum Machine (TEM; Whittington et al. 2020) combine path integra-

tion (Mittelstaedt & Mittelstaedt 1980) with conjunctive memory (Manns & Eichenbaum

2006) to more efficiently learn latent structure. And while the TEM is capable of trans-

ferring learned structures to new environments, it cannot infer entirely novel structures.

In contrast, humans can reason compositionally about new relational structures that they

have never experienced before. Consider how you can imagine novel food combinations that

have never been observed (e.g., tea-flavored jelly, Barron et al. 2013, or broccoli-flavored ice

cream, Gershman et al. 2017) or novel configurations of previously encountered structures,

such as predicting where your gate might be when racing through a foreign airport to catch

a connecting flight. This highlights the necessity for more explicit, rule-based theories of

cognitive map learning, which is an area ripe for further exploration.

4.2. Structure Induction

Structure induction (Kemp & Tenenbaum 2008; Meder et al. 2014; Griffiths & Tenenbaum

2009b; Kemp & Tenenbaum 2009; Lynn & Bassett 2020; Ke et al. 2022) provides an alter-

native approach to inferring the underlying structure or organizational pattern in a set of

observations or data. For example, inferring the taxonomy of different animals based on
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Structure Learning. a) The Successor Representation (SR; Dayan 1993) defines a

decomposition of a TD-learning (Sutton & Barto 2018) value function V (x) into a similarity
matrix M(x,x′) based on expected future state transitions, and the singular rewards of each state

r(x′). The state similarities are a function of the underlying structure (left) and the agent’s

policy, and allow for generalization via a linear form of value function approximation. b) Bayesian
structure induction (Kemp & Tenenbaum 2008) uses Bayesian principles to infer the underlying

structure (e.g., a taxonomy) that gave rise to observed relational data (e.g., animals and their

shared features).

their shared features (Figure 4b). Animals with similar features can be expected to occupy

closely connected positions in a taxonomy, yet there is a large hypothesis space of possi-

ble configurations. Here, Bayesian structure induction (Kemp & Tenenbaum 2008) uses

a similar mathematical formalism as Bayesian concept learning (Tenenbaum & Griffiths

2001), based on describing a distribution of rule-like hypotheses, which are evaluated based

on their similarity to the observed data. Instead of defining hypotheses about category

boundaries, structure induction defines an inference process operating on hypotheses about

structural configurations (i.e., different graph structures). A prior over hypothesized graphs

encodes a preference for simpler structures, with each hypothesis weighted according to its

likelihood of generating the observed data (Kemp & Tenenbaum 2008).

Although Bayesian inference about latent structure is often intractable when scaled

to complex problems, hybrid models of structure induction can circumvent this problem

by incorporating similarity-based mechanism. One notable method (Kemp & Tenenbaum

2008, 2009) used to evaluate the likelihood of each candidate hypothesis is identical to a

Gaussian Process1. Here, each candidate hypothesis is used to parameterize a graph kernel

(Zhu et al. 2003), and simulated observations are sampled from the Gaussian Process prior

(Eq. 4). Higher similarity between generated and observed data corresponds to a higher

likelihood for the hypothesized structure.

Thus, structure learning and function learning can be seen as complementary problems

to each other, with a hybrid approach to Bayesian structure induction relying on the same

Gaussian Process computations as in function learning (Lucas et al. 2015) and value gen-

eralization settings (Wu et al. 2021). Hypotheses about rule-like structures are used to

define a similarity metric based on a Gaussian Process kernel, and used to simulate data.

Comparisons between the simulated and observed data facilitates inference about which

1The authors refer to this as a Gaussian Markov Random Field (Zhu et al. 2003), which is a
multivariate Gaussian distribution identical to a Gaussian Process prior (Eq. 4).
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structures are most likely. Once the structure has been inferred, these same computations

can then be reused to generalize about novel outcomes (Kemp & Tenenbaum 2008) and

guide exploration (Wu et al. 2021; Ludwig et al. 2022) in structured environments. For

instance, this complementary relationship has also been leveraged to generalize about novel

properties of the data (i.e., property induction; Kemp & Tenenbaum 2009). Given a set

of binary features of various animals (Figure 4b), structure induction can be used to in-

fer the underlying taxonomy structure. Once a posterior distribution over structured has

been defined, the same Gaussian Process function learning approach (with an additional

binarization of outcome variables) is used to infer the probability of novel features. If you

were to learn a new fact about squirrels (e.g., their front teeth never stop growing), you

might be more likely to generalize this fact to similar animals, such as mice, but less likely

to generalize it to more dissimilar animals, such as penguins.

In summary, structure induction offers a prime example of the complementarity between

rule- and structured-based mechanisms. Rule-based computations over a distribution of

hypothesized structures offer the possibility of rapid generalization. Yet the intractabil-

ity of Bayesian inference can be side-stepped through sample-based approximations, using

Bayesian function learning operating over similarity-based computations. Together, these

complementary approaches to generalization support both the inference of latent structure

and the use of this structure to infer new features and outcomes.

5. GENERAL DISCUSSION

We have traced the development of psychological theories of generalization, from foun-

dational research on concept learning and function learning to more modern domains of

RL and latent structure induction. Throughout this long history, fierce debates between

rule- and similarity-based theories have been reconciled through the development of hybrid

models, often based on Bayesian principles. The ongoing success of hybrid models suggests

that accommodating both rule- and similarity-based representations is central to explaining

human generalization.

Yet, each approach makes computational commitments to a specific representational

format, offering distinct advantages. Similarity provides a flexible and efficient approach

to generalization, relating new situations to prior experiences, and leveraging relational

knowledge when the underlying structure is known. In turn, rules unlock compositionality,

facilitating generalization and inference about novel structures, which is exemplified in

Bayesian structure induction. However, there may also be exchangeability between rule-

based and similarity-based mechanisms of generalization, suggesting a dynamic interplay

that enables adaptive learning through hybrid approaches that blend both strategies. We

first explore these themes, before plotting out a trajectory for the future of research on

generalization.

Rules Unlock Compositionality, but Are Challenging to Learn. Rule-based mechanisms

are foundational to our understanding of generalization, drawing upon a rich history of

theoretical and empirical research (Simon & Lea 1974; Bruner et al. 1956; Ashby & Gott

1988; see Ashby & Maddox 2005, for a review). These mechanisms are particularly effective

in structured domains, where the precision of rules facilitates rapid, one-shot generalization

(Dasgupta et al. 2022). Whether taught pedagogically (e.g., “i before e except after c”) or

learned through experience (e.g., “talking loudly in the library is forbidden”), rules represent
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explicit hypotheses about regularities of the environment extracted from data (Reber &

Lewis 1977). In concept learning, rules can represent hypotheses about the boundaries

between categories, while in function learning, rules can represent hypotheses about the

(parametric) relationship between inputs and outputs. Signatures of rule-based mechanisms

can also be seen in theory-based RL (Tsividis et al. 2021; Deisenroth & Rasmussen 2011;

Allen et al. 2020), where agents generate hypotheses about the underlying rules governing

its environment to inform learning and exploration (e.g., “keys open doors, but only if the

colors match” in game environments; Pouncy et al. 2021).

This ability to reason about and use rules thus unlocks an unrivaled capacity of human

intelligence, since rules allow for compositional and syntactic manipulation (Piantadosi

et al. 2016; Dehaene et al. 2022). Indeed, the power of logic and mathematics can be

thought of as nothing more than the manipulation of syntactic rules (Newell & Simon 1976).

Thus, rule-based mechanisms unlock the ability to compositionally combine multiple rules

or substructures to generate an infinitely productive space of potential hypotheses. Recent

advances in program induction (Rule et al. 2020; Ellis et al. 2023; Lake et al. 2017)—

using similar computations as Bayesian concept learning (Tenenbaum & Griffiths 2001)

and structure induction (Kemp & Tenenbaum 2008)—indicate a promising framework for

modeling how humans infer generative rule-like structure from data, providing a modern

interpretation of Fodor’s (1975) Language of Thought (LoT). However, the compositionality

of rules also creates a combinatorial explosion of possible hypotheses, making search and

inference increasingly difficult (Fränken et al. 2022). Thus, despite the utility of rule-based

mechanisms, open challenges lie in their complexity and the demands they place on cognitive

resources for generating and testing new hypotheses (Rubino et al. 2023).

Similarity Is Flexible, but Can Be Arbitrary. Similarity-based mechanisms for generalization

are ubiquitous in psychology (Tversky 1977; Shepard 1987; Tenenbaum & Griffiths 2001;

Chater & Vitányi 2003; Jäkel et al. 2008a; Gershman & Daw 2017; Botvinick et al. 2019).

The notion that stimuli with similar features or occurring in similar contexts are more likely

to belong to the same category or yield comparable outputs is a powerful principle of gener-

alization, and can be flexibly applied to a wide range of domains. While historically defined

based on feature comparisons or by appeal to some abstract psychological space (Shepard

1987), recent advances have expanded these mechanisms to capture rich relational struc-

tures (Wu et al. 2021) based on network connections (Lau et al. 2020; Tavares et al. 2015)

or environmental dynamics (Stachenfeld et al. 2017; Machado et al. 2018), thus extending

similarity-based theories of generalization to increasingly structured environments.

However, these mechanisms are not without drawbacks. It is far from straightforward to

simply go out into the world to measure how similar things are to one another. Consider how

naturalistic stimuli have a host of different features and relationships, offering a potentially

unlimited number of ways by which similarity can be computed (Goodman 1972). Should

an apple be compared to an orange on the basis of color, shape, taste, or country of origin?

Thus, one must specify with respect to which features (or via which relationships) the

stimuli are being compared (Medin et al. 1993). This is often dependent on the underlying

context: when at a fruit orchard, color might provide a useful comparison on the basis of

ripeness, whereas, at a customs office, country of origin is more relevant for determining the

amount of tax to levy. Thus, the endless ways in which different stimuli can be compared

has led to the criticism that similarity is too flexible (Murphy & Medin 1985), potentially

undermining its utility as a concept in psychology. The context-dependent nature of human
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similarity judgments can also lead to paradoxical conclusions, as illustrated by violations of

logical axioms like the law of triangle inequality (Tversky 1977). And while recent theories

of rational attention have proposed associative learning mechanisms for gradually ignoring

reward-irrelevant features (Radulescu et al. 2021), this approach is only feasible for simple

stimuli with a handful of predefined features. In more naturalistic settings, stimuli may have

a potentially innumerable set of features, making it infeasible to gradually prune irrelevant

features from an infinite set. These complexities illustrate the nuanced and sometimes

contradictory nature of similarity-based generalization in human cognition.

Similar challenges also apply when defining similarity representations over latent struc-

ture, which share context- and goal-dependent assumptions about which features are rele-

vant. For instance, the development of Darwin’s Tree of Life was rooted in targeted obser-

vations about features that were shared or differed between species (Doolittle & Bapteste

2007), while dimensional accounts of psychopathology similarly aim to capture shared symp-

tom patterns across mental illnesses based on a targeted subset of features (Kotov et al.

2021, 2017). Thus, while latent structure plays a pivotal role in generalization by comple-

menting similarity-based inferences, it shares some of the very same challenges that arise

in defining relevant features for computing similarity. This intertwined nature of similarity

and structure highlights both their importance and the enduring challenges concerning their

role in human cognition and generalization.

Integrating Rules and Similarity. We have highlighted the relative advantages and disad-

vantages of rule- and similarity-based mechanisms of generalization. However, the success

of hybrid approaches suggests it is not necessarily one or the other. Rather, there is likely

a degree of exchangeability between rules and similarities, involving transformations from

one currency to the other (Cushman 2020). This is not a new concept. In RL, model-based

representations of the environment can be used to rationally plan out actions (Miller et al.

2017), but in the process, new value and policy representations are constructed, supporting

future model-free action selection (Kool et al. 2018). In social learning, observed actions

can be “unpacked” via inverse reinforcement learning (IRL; Jara-Ettinger 2019) to infer

latent model-free and model-based representations assumed to have generated the behavior

(Wu et al. 2022b). Thus, the caching of past computations (i.e., amortization; Dasgupta

et al. 2018) and inference via IRL provide two mechanisms by which the representations

involved in model-free and model-based RL are exchanged and combined with one another

(Cushman 2020; Wu et al. 2022b). Our current theories in this domain suggest that we use

a mixture of strategies, composing elements from each mechanism into an adaptive mixture

of representations (Russek et al. 2017b; Keramati et al. 2016; Huys et al. 2015).

Model-free learning:
Category of RL
methods using

reward outcomes to

learn a behavioral
policy and value

function, without

simulating future
scenarios.

Model-based
learning: More
complex form of RL,

which builds a model
of the environment

to simulate and plan

future actions.

Are rules and similarity-based representations exchangeable in a similar sense? Rule-

based representations about category boundaries, functional forms, or the structure of the

environment can inform or be directly used to define similarity representations. We have

shown how rule-like hypotheses about the structure of some latent graph can be used to

define a similarity matrix using a graph kernel (Figure 2c), to infer rule-like representations

about the latent structure (Kemp & Tenenbaum 2008), predict novel features outside of

the training data (Kemp & Tenenbaum 2009), or to perform value generalization in an RL

setting (Wu et al. 2021). In the other direction, we have also shown how similarity-based

representations support the inference of rule-like hypotheses about latent structure. The

SR (Dayan 1993) leverages simple associative learning mechanisms to learn a similarity

matrix, corresponding to a rule-like hypothesis about the underlying latent structure of the
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environment. Even more directly, hybrid models of Bayesian structure induction (Kemp

& Tenenbaum 2008) have relied on similarity-based computations using Gaussian Process

kernels to simulate data under each hypothesized graph structure. Thus, learned rules

can be “cached” as similarity representations, facilitating rapid and efficient generalization.

Meanwhile, inferring rules and structure can be supported by sample-based approximations,

where each candidate hypothesis can be used to construct a similarity representation to

perform tractable inference.

SUMMARY POINTS

1. Rules and similarity are foundational concepts across the entire expanse of psy-

chological research on how humans generalize from limited experiences to novel

situations.

2. Hybrid models include elements of both rule- and similarity-based approaches, pro-

viding a unified computational framework for investigating human generalization

across diverse contexts.

3. Gaussian Process function learning coupled with uncertainty-directed exploration

provides a model of generalization and active learning in a wide range of reinforce-

ment learning problems with large decision-spaces.

4. Structure learning supports similarity-based generalization by representing latent

relational structure and the temporal dynamics of the environment, while con-

versely, similarity-based mechanisms may play a key role in learning latent struc-

ture.

5. Rule- and similarity-based representations have complementary advantages, with

an exchangeability between these representations offering insights into how humans

simultaneously display flexible and compositional generalization.

5.1. The Future of Generalization

Having surveyed the past and present, we now turn our attention to the future.

Psychology—like many sciences—is often at its best when combining different approaches,

where recent advances demonstrate the potential of combining computational and psycho-

logical theory. At the same time, several challenges remain to account for the unparalleled

flexibility and efficiency of human generalization.

First, we propose a new integration of rule- and similarity-based mechanisms for struc-

ture learning in RL settings, combining their relative strengths and leveraging the exchange-

ability of representations to achieve more a comprehensive framework of generalization.

Second, we point out fundamental connections between Gaussian Process regression and

theories of episodic memory, which suggest the potential for developing boundedly rational

models of generalization to account for cognitive limitations. Third, there is still a need

to explore generalization in environments that more closely resemble real-world conditions,

requiring the integration of individual and social information. By addressing these issues,

future research will continue a long and always central line of research seeking to understand

how humans adapt and continually improvise and adapt to novel situations.
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Figure 5

Future Directions. b) Integrating structure learning with function learning under a common
framework, using a particle filter. a) The Episodic RL framework provides a different

conceptualization of the computations in a Gaussian Process, with exact equivalencies to expected
reward predictions (but not uncertainty). Here, similarity is computed between new stimuli and

past episodes, which are then weighted by rewards and summed up.

Combining Structure Learning and Function Learning. We propose that rather than ac-

cepting a duality of interpretation as the final synthesis of rule- and similarity-based mech-

anisms, future models of generalization could provide a more complete unification, utilizing

each mechanism to its strengths. We have advocated for Gaussian Process function learn-

ing as a candidate model of human value generalization in many domains, where the kernel

provides a similarity metric based on a given representation of the environment. Yet we

currently lack a model that simultaneously infers structure while performing predictive

generalization. Since Gaussian Processes play a key role in the computations of Bayesian

structure induction (Kemp & Tenenbaum 2008), a future model (Figure 5a) could simulta-

neously perform inference over candidate structures and generate predictions about novel

outcomes. Rule-based mechanisms can be used to propose hypotheses about structure (e.g.,

proposing different graph configurations by leveraging previously learned schemas; Wingate

et al. 2013; Kemp & Tenenbaum 2008; Ellis et al. 2023; Le et al. 2021; Fränken et al. 2022;

Rubino et al. 2023). Each hypothesized structure can then be used to parameterize a graph

kernel (Fig. 2c), where a Gaussian Process using similarity-based mechanisms can be used

to both predict new outcomes and to evaluate the likelihood of a given hypothesis (as in

Kemp & Tenenbaum 2008). Lastly, Bayesian principles will allow us to describe a distribu-

tion over hypotheses (about structure), which can adapt to the observed data. With rules

providing the structure and similarity providing the canvas, generalization combining both

mechanisms can achieve both flexibility and efficiency.
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One candidate algorithm to implement this proposal is a particle filter (Doucet et al.

2009; Speekenbrink 2016). A particle filter uses a finite set of hypotheses (i.e., particles),

which are refined and updated based on new data to provide an approximation to Bayesian

inference. Here, particles can represent different hypotheses about latent structure—

for instance, a specific graph configuration. When encountering new data, particles are

reweighted by their likelihood (e.g., by generating simulated observations from a Gaussian

Process; Kemp & Tenenbaum 2008), and then resampled in proportion to this likelihood.

Thus, inaccurate hypotheses die out, while more accurate hypotheses proliferate, and are

refined. To take into account uncertainty about the underlying hypotheses (i.e., variance
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across particles), one could tap into the compositional nature of kernels (Rasmussen &

Williams 2005; Schulz et al. 2017), and combine all current hypotheses (i.e., the resampled

population of particles) into a composite kernel by averaging across particles. Such an ap-

proach could propagate uncertainty about the underlying structure through to uncertainty

about potential outcomes, facilitating active learning at both levels.

Generalization with Limited Resources. While originating as a machine learning technique,

Gaussian Process regression has direct links to psychological theories integrating RL mecha-

nisms with episodic memory (Lengyel & Dayan 2007; Gershman & Daw 2017). In this light,

Gaussian Processes can be understood as a Bayesian extension of Episodic RL (Gershman

& Daw 2017; Botvinick et al. 2019). In Episodic RL (Figure 5a), an agent stores episodic

memories about previously encountered stimuli and their associated rewards. To predict

the value of some novel stimuli, one first computes similarity to each previously encountered

“episode”. Then, the reward value for each episode is multiplied by its similarity to the

novel stimuli and then summed up. In other words, generalization is performed through

inferring similarity-weighted expectations, where more similar episodes exert more influence

on how their rewards generalize to the novel stimuli.

When using a kernel function to compute similarity (Gershman & Daw 2017), these

predictions are equivalent to the posterior mean of a Gaussian Process (Jäkel et al. 2008b;

Wu et al. 2021). This use of a similarity-weighted sum for generalization is reminiscent of

classic exemplar-based theories of concept learning (Nosofsky 1986; Kruschke 1992; Medin

& Schaffer 1978), while also having direct equivalencies to computational methods used in

function learning. Furthermore, when using an RBF kernel (Figure 2b) as the similarity

metric, Episodic RL is equivalent to an RBF network, which has featured prominently in

machine learning approaches to value function approximation (Sutton & Barto 2018; Jäkel

et al. 2008b) and as a theory of human generalization in the visual and motor systems (Pog-

gio & Bizzi 2004). Thus, while the mathematics of Gaussian Process regression may seem

unfamiliar to psychology, the underlying computations reoccur in numerous psychological

theories of learning and generalization. However, a crucial difference is that the Gaussian

Process—being a Bayesian model—also makes predictions with uncertainty, which play an

essential role in describing human exploration (Wu et al. 2018; Giron et al. 2023; Wilson

et al. 2014; Gershman 2018) and subjective confidence judgments (Wu et al. 2020, 2021).

The relationships between Gaussian Process regression and Episodic RL provide path-

ways for further integrating psychological and computational theories. For instance, to

investigate the role of memory limitations in value generalization, one can induce memory

load by removing information about previous choices and their outcomes (e.g., withholding

observations from the grid shown in Figure 3a; Breit et al. 2022). In this case, learners

would be reliant on episodic memory of past choices to generalize previous experiences.

This scenario offers opportunities to study “Episodic Generalization”, by applying the ker-

nel function to a sample of episodic memories to make predictive generalizations. Such

a paradigm would also facilitate the utilization of process tracing techniques, such as eye

movements serving as indicators of memory retrieval (Spivey & Geng 2001; Johansson &

Johansson 2014; Scholz et al. 2015). For instance, when answering a question about a

stimulus previously presented in a particular spatial location, eye movements tend to be di-

rected towards this (now empty) location (Spivey & Geng 2001). This “looking at nothing”

suggests that episodic memory representations include spatial or oculomotor information,

and that eye movements are indicative of the retrieval of episodic memories. In an RL
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task with spatially correlated rewards and memory load, eye movements may be directed

towards previously sampled reward locations, forming the basis for similarity-based value

generalization operating on the costly retrieval of memory traces.

What Is Still Missing?. Here, we have explored an expanding core of psychological research

on generalization. From early work studying stimulus categorization and function learning,

we have traced a continuity of mechanisms to new domains, such as active learning in RL

and latent structure learning. However, the full scope of human generalization is certainly

still beyond our current theories. Consider a chef figuring out how to substitute a miss-

ing ingredient in a recipe or a biologist identifying new species in an unexplored habitat.

Generalization in both settings is informed by an interplay of rules and similarity—about

the interactions between different foods and cooking techniques or about the interplay of

biological traits, ecological niches, and reproductive success. Yet, the open-ended complex-

ity of features to evaluate (Wise et al. 2024) and actions to consider (Moskvichev et al.

2023) present open challenges for our current theories. Additionally, chefs, biologists, and

humans in all walks of life primarily learn from one another. While psychological research

has often focused on studying isolated individuals learning from the environment (imag-

ine a Skinner box as a canonical example), there is evidence of distinct mechanisms when

learning from other people (Ho et al. 2017), compared to learning from the environment.

Thus, future theories of human generalization must also account for more open-ended and

socially embedded problems.

On one hand, psychological research has been continually expanding to investigate learn-

ing and generalization in more complex, and open-ended problems. While 2-alternative

forced choice problems are still prevalent, experimental studies have begun to use increas-

ingly complex tasks with higher-dimensional stimuli (Meagher & Nosofsky 2023), depleting

rewards (Wu et al. 2023b), balancing rewards with avoiding risky outcomes (Schulz et al.

2018b), and non-stationary environments that change over time (Speekenbrink & Konstan-

tinidis 2015). Here, open questions concern how relevant features of aspects of the latent

environment structure are identified, and to which extent inductive biases simplify these

inferences through strong, prior assumptions. In addition, there is currently great interest

in studying generalization in the Abstraction and Reasoning Corpus (ARC; Chollet 2019).

The ARC challenge is comprised of visual grids representing an abstract concept (input),

with the decision-maker tasked with constructing an output grid corresponding to the in-

put. This can be seen as type of function learning problem, requiring strong inductive

biases about the generative process, since one needs to generate solution grids instead of

only selecting from possible answers. These challenges may play a key role in explaining

why AI approaches, including Large Language Models (LMMs), have yet to come close to

human performance (Moskvichev et al. 2023). Thus, there is a promising future for efforts

directed toward studies of generalization that integrate the complexity and open-endedness

inherent in real-world decision-making environments.

On the other hand, a promising yet under-explored area is the integration of individual

and social generalization mechanisms (Witt et al. 2023; Wu et al. 2023b). Far from being a

peripheral feature, the capacity for social learning (and by extension social generalization;

Witt et al. 2023) is often proposed as being the defining characteristics of human intelli-

gence (Henrich 2016; Heyes 2018), differentiating us from other animals and AI (Wu et al.

2022b). Yet, research on generalization has commonly focused on individual learning in a

vacuum. In many real-world contexts, however, we are surrounded by social information,
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which can greatly inform our generalization and decision-making processes. For instance,

observing which menu items other customers order in a restaurant, and using that to inform

your own choices. In such scenarios, individual and social learning mechanisms exhibit a

dynamic interplay (Wu et al. 2023b), working in tandem to achieve efficient generalization.

Here, there are also new applications for familiar concepts from individual generalization,

since social information cannot always be taken verbatim, but needs to account for differ-

ences in individual preferences, abilities, and goals (Witt et al. 2023). Additionally, our

ability to communicate via language in social settings offers new advantages for rule-based

mechanisms, since they can be easily transmitted to one other (Wu et al. 2023a). Such

scenarios offer a promising avenue for investigating how humans generalize and make deci-

sions in real-world contexts, where social information plays a vital role in shaping adaptive

behavior.

FUTURE ISSUES

1. The mechanisms underlying the integration of rule- and similarity-based generaliza-

tion are still unknown, and the dynamic interplay between these processes should

be explored in different learning contexts.

2. Combining structure induction with models of active learning is a promising direc-

tion for developing more comprehensive models of generalization that leverage the

advantages of both rule- and similarity-based mechanisms.

3. Exploring the relationship between Gaussian Process regression and Episodic Re-

inforcement Learning provides a foundation for investigating how cognitive con-

straints, like working memory load, influence generalization under bounded ratio-

nality.

4. Investigating how humans and computational models navigate and generalize in

high-dimensional spaces, will require new methods for identifying and prioritizing

relevant features and relevant hypotheses.

5. The role of social learning has been under-represented in theories of generalization,

with a need for new research studying how social and cultural contexts influence

the mechanisms of generalization.

5.2. Conclusions

Human generalization has long been considered a hallmark of our unique cognitive abilities

(Lake et al. 2017), with Roger Shepard famously proclaiming that the first general law of

psychology should be a law of generalization (Shepard 1987). Here, we have traced the

development of theories of generalization, illustrating a continuity of formerly competing

mechanisms—rules and similarity—culminating in hybrid approaches. Ultimately, the fu-

ture of generalization will hold new and exciting ideas, but still carry echoes of perennially

reoccurring principles from history.
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