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Abstract

To what extent do human reward learning and decision-making
rely on the ability to represent and generate richly structured
relationships between options? We provide evidence that
structure learning and the principle of compositionality play
crucial roles in human reinforcement learning. In a new multi-
armed bandit paradigm, we found evidence that participants
are able to learn representations of different reward structures
and combine them to make correct generalizations about op-
tions in novel contexts. Moreover, we found substantial ev-
idence that participants transferred knowledge of simpler re-
ward structures to make compositional generalizations about
rewards in complex contexts. This allowed participants to
accumulate more rewards earlier, and to explore less when-
ever such knowledge transfer was possible. We also provide
a computational model which is able to generalize and com-
pose knowledge for complex reward structures. This model de-
scribes participant behaviour in the compositional generaliza-
tion task better than various other models of decision-making
and transfer learning.
Keywords: Compositionality; Reinforcement learning; Trans-
fer learning; Gaussian Processes;

Introduction
Humans have a remarkable propensity for discovering struc-
ture in data. For instance, we can easily recognize that
certain quantities, like global CO2 emissions, increase ap-
proximately linearly with time, or that the quality of certain
fruits and vegetables varies periodically with the time of year.
Moreover, having learnt such representations, we can com-
bine and compose them to generate more sophisticated struc-
tures. For instance, if we know that a variable increases lin-
early over years, and periodically within years, we can com-
bine this knowledge into a compositional representation of
the statistical relationship between the variable and time.

Compositionality is argued to be indispensable to vari-
ous parts of human cognition, such as language and reason-
ing (Hauser, Chomsky, & Fitch, 2002; Fodor, 1987), but its
role in reinforcement learning (RL) has received less atten-
tion. Recent work shows that structure and function learning
support reward prediction and guide exploration in RL tasks
(Schulz, Franklin, & Gershman, 2020; Stojić, Schulz, P. An-
alytis, & Speekenbrink, 2020). The ability to combine such
learnt representations compositionally could prove highly ad-
vantageous to performance in novel and complex RL situa-
tions.

Seeking to expound upon these ideas, we introduce the
compositionally-structured bandit task, a paradigm for study-

ing compositional generalization and transfer learning in a
class of RL tasks in which an agent needs to sequentially
choose between options (the “arms” of the bandit), balancing
exploration and exploitation in order to accumulate as much
reward as possible. Crucially, in our paradigm, certain re-
ward functions the agent encounters are compositions of re-
ward functions encountered previously, allowing the agent to
gain more rewards by harnessing the appropriate composi-
tional inductive biases.

To foreshadow our results, we found substantial evidence
that participants composed knowledge of previously learnt
reward structures to make generalizations about rewards in
novel situations. This compositional knowledge transfer af-
forded participants the ability to make more informed deci-
sions in these novel situations, allowing them to focus their
decisions and exploration on more rewarding options and
hence accumulate more rewards earlier on. We also propose
a novel computational model that combines symbolic reason-
ing, embodied in a generative grammar, with statistical infer-
ence, embodied in Gaussian process regression, which can
reproduce human behaviour in our task. Ultimately, our re-
sults suggest that the principles of compositionality may play
a crucial role in human reward learning and decision-making.

The compositionally-structured bandit
In traditional bandit tasks, the agent selects at each trial t an
option/arm at ∈ A from the choice set A , which produces a
reward rt drawn from an option-specific reward distribution.
In structured bandit tasks (Schulz et al., 2020; Stojić et al.,
2020), each arm a is described by a set of features xa, and
rewards are drawn from a joint distribution that is governed
by a latent function f :

rt = f (xat )+ εt (1)

where εt ∼ N (0,σ2). As such, rewards are determined by
a latent function defined over the features of the arms in the
choice set. Critically, this function defines a structural rela-
tion between the features and rewards. For instance, rewards
may increase linearly with certain features of the arms, such
as their spatial position, their color, and so forth. Learning the
structures that govern the rewards can significantly improve
performance, as it allows the agent to generalize from past
observations to novel, unexplored options of the choice set.



The compositionally-structured bandit extends this
paradigm by allowing rewards to be governed by multiple
latent reward functions, where each reward function is asso-
ciated with a set of contextual features f. In such multi-task or
contextual bandit problems, the expected rewards associated
with each arm changes depending on the contextual features
f, i.e. which latent function currently governs its reward
distribution. As such, the agent is tasked with learning a
separate reward function for each context. Finally, in our
paradigm the features of a context may be composed of other
features which the agent explored and learned about in the
past. That is, certain contexts will contain the features of
multiple other contexts which the agent encountered in the
past. We call such contexts compositional. Crucially, in our
setup the latent reward function in these contexts is always
an additive composition of the latent functions governing
rewards in the corresponding constituent contexts. This way,
the agent can make informed predictions about the reward
structure in compositional contexts by composing the reward
functions learnt in the relevant prior contexts.

We implemented this bandit task in a game where partic-
ipants had to sequentially choose which dish (arm) to offer
to alien customers in order to maximise the customers’ pay-
ment (reward). Each dish was made up of a specific amount
of two visually distinct ingredients (features), x. Alien cus-
tomers were adorned with visual attributes, which reflected
the contextual features f. Rewards were defined by context-
specific reward functions over the two-dimensional features:
rt = f (xt , ft)+ εt . Crucially, the reward functions for some
contexts were compositions of the reward functions of other
contexts. The game was structured in four rounds, each con-
taining several contextual reward functions (both composi-
tional and not), for which participants had a set amount of
trials to select arms. With this task, we set out to investigate
how humans explored and exploited options in a task which
allowed both for structure learning and compositional gener-
alization. We hypothesized that participants would compose
representations of reward-structures learnt in the past to make
informed decisions when the latent function and contextual
features were compositional. As such, we expected the re-
wards obtained on the first trial of compositional contexts to
be higher than those of non-compositional contexts. More-
over, we reasoned that if participants composed reward func-
tions from past contexts, then uncertainty around the com-
positional context would be significantly reduced, and the
need for exploration would decrease. We therefore hypoth-
esized that participants would explore less in compositional
contexts.

Method
Participants
We recruited 47 participants (22 female, Mage = 28.3,
SDage = 7.5) through Prolific. All participants had an ap-
proval rate of 95% or more, were fluent English speakers and
had no color vision deficiencies. To improve the quality of the

data, participants had to complete a tutorial before beginning
the task. Participants were rewarded a base payment of £1.92
and a performance-dependent bonus payment of £1 on aver-
age. It took participants 22.9 minutes to complete the task on
average (SDtime = 6.9).

Task and procedure

Participants gave their informed consent and were instructed
that they would play a game where their job was to combine
two types of ingredients to make and sell food items to aliens.
The aliens would then give money for the served food and
the amount of money they gave depended on how much they
liked the food they were served. Participants were also in-
formed that the aliens had different colored symbols on their
bellies that signal their food preferences, and that aliens with
similar features had similar preferences.

On each trial, participants were presented with an alien
customer (contextual cue), and then selected a dish to serve
from a two-dimensional ingredient space, in which each di-
mension corresponded to the amount (between 0 to 10) of an
ingredient. Formally, each possible dish from the 11×11 grid
representing the feature space was a reward-generating arm in
a contextual bandit task. Participants were also informed how
many trials were left in the current round.

Figure 1: Screenshot from the task. The option features correspond
to amounts of ingredients, which can be selected by adjusting the
sliders.

For each context, the reward function was either a non-
compositional linear or periodic function defined over a sin-
gle dimension in the input space, or an additive composition
of such functions (see Figure 2). Which latent function cur-
rently governed the reward distributions was determined by
the contextual cues (i.e. the colored symbols on the alien’s
belly). The non-compositional functions were accompanied
with either a star or triangle symbol, rendered in either red
or blue. The symbol type always matched the type of re-
ward function (linear or periodic), whereas the symbol color
always matched which input dimension this function was de-
fined over (i.e. the first or second ingredient). Allocation
of functions and dimensions to symbol types and colors was
randomized for each participant. For contexts featuring two
symbols, the latent reward function was a composition of the
functions related to each symbol in isolation. In total, partici-
pants were tested on 10 unique reward functions, six of which
were compositional (see Table 1).



Figure 2: A: The linear reward functions used in the four rounds. B: The periodic reward function, reused for all rounds. C: The compositional,
linear-periodic reward function from Round 1.

Round Latent function Trials

1 Lin(X), Per(Y ), Lin(X)+Per(Y ) 40, 40, 20

2 Lin(Y ), Per(X), Lin(Y )+Per(X) 20, 20, 20

3 Lin(X), Per(Y ), Lin(Y ), Per(X),
Lin(X)+Per(X), Lin(Y )+Per(Y )

10, 10, 10,
10, 10, 10

4 Lin(X), Per(Y ), Lin(X) + Lin(Y ),
Per(X)+Per(Y ), Lin(X)+Per(X),
Lin(Y )+Per(Y ), Lin(X)+Per(Y ),
Lin(Y )+Per(X)

10, 10, 10,
10, 10, 10,
10, 10

Table 1: The four rounds, and the latent reward functions they fea-
ture. Lin denotes the linear function, and Per the periodic function.
The X’s and Y ’s point to the dimension over which the function was
defined. The trial column indicates how many trials participants had
to select arms for the respective functions in that round. Reward
functions appeared in the order they are shown in the table, except
for in round 4, where the order was randomized. When a function
only mentions one dimension (e.g. Lin(x)), the other dimension (Y )
is unrelated to reward.

Behavioral Results
In all rounds, participants gained significantly more rewards
than the chance levels of those rounds (round 1, t(146.56) =
36.38, p < .001, round 2 t(146.05) = 27.29, p < .001,
round 3 t(312.14) = 32.58, p < .001, round 4 t(392.91) =
35.32, p< .001), indicating that they were able to learn about
and exploit the latent reward functions.

Transfer learning
To test for transfer learning, we analysed the reward obtained
on the first trial of each context. Compositional generaliza-
tion is indicated by a higher reward for the first encounter
with a compositional context than for the first encounter with
the constituting simple contexts. As numerical rewards var-
ied with reward functions, we first normalized all obtained
rewards as the fraction of the maximum attainable reward for
that context. We then used a linear mixed-effects model pre-
dicting these normalized rewards from reward function type
and round (expressed as orthogonal contrast codes). The
model also included participant-specific random intercepts
and slopes to account for individual differences in learning.

Rewards obtained on the first compositional trials were sig-
nificantly higher than rewards obtained on the first trials of the
simple functions t(846)= 6.35, p< .001. On average, partic-
ipants scored 17.15% higher on the first trial of compositional

contexts than on the first trial of simple contexts. Before hav-
ing been given the chance to learn from it directly, partici-
pants were significantly more likely to select an optimal arm
on the first trial in the compositional contexts than chance
level (computed as the number of optimal arms divided by
the total number of arms), both in the first (t(46) = 4.05, p <
.001) and the second round (t(46) = 5.24, p < .001). In-
terestingly, on the first trial of the compositional context in
round 1, participants had not yet had the opportunity to learn
that compositional contexts had compositional reward func-
tions, indicating that their employment of compositional gen-
eralization reflected an a priori inductive bias, rather than
something they learnt through trial and error.

We also investigated whether participants improved in har-
nessing compositionality to make informed decisions in com-
positional contexts. To assess whether there was such a
learning-to-learn effect (Harlow, 1949) for compositional in-
ference, we tested whether mean rewards for the first compo-
sitional trial in round 1 were significantly different from those
in round 2. Indeed, a t-test revealed that mean rewards for the
first compositional trial in round 2 were significantly higher
than those of round 1, t(46) = 2.51, p = .02. Furthermore,
more participants selected the optimal arm on the first trial of
the compositional context in round 2 than in round 1 (40.4%
percent compared to 29.8% percent), though this difference
was not statistically significant, t(46) = 1.3, p = .2. Though
the number of participants who selected an optimal arm on
the first trial of the compositional context in round 3 was
not significantly different than chance t(93) = 1.06, p = .2, in
round 4 significantly more chose an optimal arm than chance
on the first trial of contexts containing functions composed of
two linear functions t(46) = 4.76, p < .001, or two periodic
functions t(46) = 4.82, p < .001.

Exploration

To assess how participants explored in the task’s different
contexts, we sought to predict exploration with a mixed ef-
fects model, using the same predictors as the transfer learn-
ing model, and random intercepts and slopes for the effect
of round. We operationalized relative exploration through the
Shannon entropy of the distribution over participants’ choices
over the two-dimensional feature space in each context. In-
formally, the entropy of a distribution quantifies its unpre-
dictability. As a distribution approaches uniform, its entropy



increases, and vice versa. Consequently, in contexts where
participants explore a larger portion of the choice set, the cor-
responding choice distribution will be more uniform, and en-
tropy will be high. As such, entropy will be low when partic-
ipants exploit more, or employ more strongly guided explo-
ration.

Participants explored less in compositional contexts com-
pared to simple contexts: There was a significant differ-
ence between the entropy of participants’ choice distribu-
tions in the compositional and simple contexts, t(751.03) =
−8.71, p < .001, indicating that participants explored more
for simple functions, and exploited more for compositional
functions.

Figure 3: A, B: Mean rewards per trial obtained for compositional
and average of non-compositional reward functions in round 1 and
2. C, D: Entropy histograms for compositional and average of non-
compositional reward functions in round 1 and 2. Plotted lines rep-
resent the kernel density estimate of the histograms.

Model-based analysis
The behavioral results indicate participants were able to trans-
fer their knowledge between contexts, composing new re-
ward functions by combining simpler reward functions in a
productive fashion. To account for this, we now propose a
computational-level model which is able to learn and com-
pose such structures through Bayesian inference and knowl-
edge transfer over a grammar of functions.

Earlier work has modelled human function learning as
Gaussian process (GP) regression (Griffiths, Lucas, Williams,
& Kalish, 2009; Schulz et al., 2020). This is a non-parametric
Bayesian method for inferring functions from data, and when
coupled with a decision strategy such as Upper Confidence
Bound (UCB) sampling, also provides a good account of
human behaviour in multi-armed bandit tasks (Stojić et al.,
2020; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018).

Gaussian Processes
A Gaussian process defines a distribution over functions,
such that for any set of input points x1, ...,xn, the outputs

f (x1), ..., f (xn) follow a joint (multivariate) Gaussian distri-
bution, f ∼ GP . In our case, the input points x are the fea-
tures of the arms (ingredient combinations) in the contextual
bandit task, and the outputs f (x) are the rewards.

A GP is defined by a mean function m(x) = E[ f (x)] and
a covariance function k(x,x′)) = E[( f (x)−m(x))( f (x′)−
m(x′))]. The latter is also known as the kernel and defines
how the random outputs of any two input points covary. The
posterior distribution over the outputs, given observations
Dn = {Xn = [x1, ...,xn],yn = [y1, ...yn]}, is also a GP with
mean and kernel function

mpost(x) = kT (K+σ
2)−1yT (2)

kpost(x,x′) = k(x,x′)−kT (K+σ
2)−1k (3)

(Schulz, Speekenbrink, & Krause, 2018) where k(x,x′) is the
kernel function, k is the kernel matrix containing the prior
covariance between testing and observed input points, and K
is the kernel matrix containing the covariance between all ob-
served input points. Consequently, in our task, the rewards
generated at each arm are modelled as normally distributed
random variables in a GP. To make predictions about rewards
in a given context c, we derive the posterior GP using the re-
wards already observed in c, and use its mean function m(x)
to make predictions.

The kernel is central to GP regression: There are several
kinds of kernels, each specifying different structures which
are imposed on the functions modelled by the GP, and each
encoding assumptions about the functions’ structure, such as
linearity and periodicity, smoothness and noise. As such,
how a GP interpolates and extrapolates from observations is
determined by its kernel. Another crucial property of these
positive-definite GP kernels is that they are closed under addi-
tion and multiplication, such that if k is a kernel function and
k′ is a kernel function, then so is k+k′ and k×k′ (Duvenaud,
2014). Consequently, there is an infinite set of kernels avail-
able to model the covariance structure of a function. This
makes GPs able to express a vast range of rich functional
forms. Unfortunately, this also complicates the task of select-
ing an appropriate kernel for a particular regression problem,
as there is an infinite set of arbitrarily complex candidate ker-
nels to select from, each of which will have a different likeli-
hood of generating the data.

Exploiting the compositional properties of kernels, we rely
on a compositional kernel grammar (Duvenaud, 2014; Janz,
Paige, Rainforth, van de Meent, & Wood, 2016) to solve
this problem for the various reward structures participants
encounter. The kernel grammar is a generative model of
covariance functions which probabilistically produces ker-
nels. In our approach, it starts by sampling a kernel from
a base set containing the standard kernels used in the liter-
ature, namely the linear, periodic, and radial basis kernels
(Duvenaud, 2014), B = {kLin,kPer,kRB}, and recursively ex-
pands this kernel through a sequence of steps in which it sam-
ples a new kernel k ∼ B and either adds or multiplies it with
the current kernel. At each step, there is a probability γ that



the grammar stops and returns the current production. As
such, the parameter γ controls the productivity of the gram-
mar, and the complexity of the kernels being produced.

As this grammar implicitly defines a prior over kernel func-
tions, we seek to approximate the posterior over kernels, em-
bodying the hypothesized structure of the reward function be-
ing modelled, given the observations. We do this by first sam-
pling 100 kernels from the grammar and computing the corre-
sponding posterior GPs. We then obtain each GP’s marginal
likelihood, using their respective kernel in our hypothesis set,
and compute the posterior probability of these kernels, given
the reward data observed.

p(k |D) ∝ p(D | k)p(k) (4)

With this posterior distribution we compute a final poste-
rior GP, which is the sum of all posterior GPs (using their re-
spective kernels), weighted by their posterior probability. We
rely on this procedure to capture the structure of the reward
functions we tested participants on in our experiment.

Transfer learning
For the model to be able to compose reward structures from
past contexts and tasks, we equipped it with what has been
referred to as a Neural Dictionary (Pritzel et al., 2017). This
dictionary consists of a set of keys, which are vectors fc
encoding the features of encountered contexts c, and cor-
responding values which are the posterior GPs learnt for c.
Upon computing a posterior GP for a context, as per the last
section, it writes an entry into the dictionary whose key is the
feature vector of the context, and whose value is this posterior
GP. If the context has been visited previously, it overwrites
the old posterior GP with the new one. Crucially, when-
ever the model encounters a context whose reward function
is composed of two previously seen functions, we ask it to
transfer knowledge from previously explored contexts. This
is achieved by computing the similarity between the current
context c and all previously seen contexts c′, κ(c,c′) where
κ(·, ·) is a similarity measure. This assigns a similarity score
0 ≤ κ(c,c′) ≤ 1 to each c′ in the dictionary, which we nor-
malize by the total similarity. We found cosine similarity to
be a suitable measure for our task

κ(c,c′) :=
fc · fc′

‖fc‖ · ‖fc′‖
. (5)

With these similarity scores, we derive a new GP which
is the sum of the posterior GPs stored in the dictionary,
weighted by their similarity to the current context c∗.

GP ∗ =
N

∑
i

GP i

(
κ(c∗,ci)

∑
m
j κ(c∗,c j)

)
(6)

This not only allows the model to use informed priors about
the current context’s reward function based on its similarity to
tasks encountered in the past, but also to compose previously
learnt representations of the reward structure by adding them
together, if the contexts in which these representations were
learnt are similar to the current context.

Choice probabilities
The model derives a GP with a mean vector m(x), describing
the predicted rewards at each arm, and a covariance function
k(x,x′), with σ(x) =

√
k(x,x) reflecting the uncertainty of

its predictions. We use both of these components to devise a
decision strategy for the model. In particular, we evaluate the
quality of each arm Q(x) using the Upper confidence bound
sampling (UCB) algorithm (Sutton & Barto, 2018)

Q(x) = m(x)+βσ(x), (7)

where β is a parameter controlling how reducing uncertainty
should be traded off against exploiting higher-rewarding
arms. As such, this strategy attempts to strike a balance be-
tween pure exploration and pure exploitation strategies, and is
a solution to the exploration-exploitation trade-off. We con-
vert the arms’ Q-values to choice probabilities using a soft-
max function (discarding the temperature parameter τ)

P(x) =
exp(Q(x))

∑
N
i exp(Q(xi))

(8)

Results
We estimated how likely our model, which we will refer to as
the GP-grammar model, was to produce participants’ choices
on the first trials of the compositional contexts. The complex-
ity penalty γ for the kernel grammar was set to 0.8, and the
exploration parameter β for the UCB strategy was set to 1.96
(reflecting the 95% confidence interval of the estimated re-
ward). We compared the GP-grammar model to several alter-
natives: a random model which assigns to all arms a uniform
probability of being selected P(x) = 1/121, three lesioned
versions of the GP-grammar model, employing only a linear,
periodic, or RBF kernel, respectively, but retaining the Neural
dictionary for transfer learning, and lastly a Universal Value
Function Approximator (UVFA) (Schaul, Horgan, Gregor, &
Silver, 2015). The UVFA is a state-of-the-art transfer learn-
ing model which, in our task, learns rewards both across op-
tions and contexts. In our approach, the UVFA took the form
of a GP with an RBF kernel, using both option features and
context features to learn and predict rewards. Since the RBF
kernel is universal (Schölkopf & Smola, 2002), the UVFA
and the lesioned RBF models could recover the compositional
ground truth. The advantage of the GP-grammar model, how-
ever, lies in its ability to elicit the appropriate priors about the
latent structure more strongly and with less data by perform-
ing Bayesian inference. Crucially, the models were tested
on choices made before participants had observed any reward
function values for this context. As such, any computational
model that does not transfer knowledge from prior contexts
on these trials will make identical predictions to the random
model on these trials as well.

To estimate the GP-grammar model’s performance in re-
producing participants’ choices, we sequentially derived the
posterior GP for each context encountered by participants as
described in the last section, conditioning the corresponding



GP on all input-output points that participant had observed
for that context. We endowed each context with a one-hot
encoded vector, encoding whether the context featured a star,
a triangle, or both, and whether the symbol(s) were blue or
red, respectively. In contexts whose latent reward function
was compositional, we computed the contextually informed
GP, based on the cosine similarity between the relevant con-
text vectors, as per equations (5) and (6). Making use of the
mean and covariance function of this GP, we computed the
Q-values for all possible arms and converted them to choice
probabilities, using (7) and (8) respectively. The lesioned
models were trained the same way, and the UVFA was simply
conditioned on all previously seen observations, including the
relevant context vectors as features. For each participant, we
obtained the average probability of generating their choices
for all models, and summed up the models’ log likelihoods
across participants. With these quantities we computed the
posterior probability of the models, assuming a uniform prior,
as well as McFadden’s pseudo-R2 values (McFadden et al.,
1973), R2 = 1− L(M)

L(Mrandom)
, quantifying the degree to which

a model explains the variance over and above chance, where
R2 = 0 correspond to chance levels, and R2 = 1 corresponds
to a model infinitely more accurate than chance.

We found the GP-grammar model was substantially more
likely to reproduce participants’ choices than the other mod-
els, obtaining a posterior probability of P(M | y)> 0.999, and
an R2 score of 0.29, also higher than all alternative mod-
els (UVFA: R2 = 0.04, linear kernel: R2 = 0.23, periodic
kernel: R2 = 0.05, RBF kernel: R2 = 0.05). That the GP-
grammar model outperformed both the lesioned and UVFA
models suggests that human compositional generalization in
contextual bandit tasks not only relies on the ability to dis-
cover sophisticated reward structures, but also on the the abil-
ity to compose such structures.

Figure 4: A: Participant performance in the compositional context
of the first round compared to the performance of our full model
(”Grammar”) and that of a GP using an RBF kernel. B: McFadden’s
R2 for all models. Our full model is denoted by ”Grammar”.

Moreover, our results suggest that this propensity relies
both on the ability to discover richly structured representa-
tions of how rewards are distributed in a choice space and
on being able to compose and combine such representations
when contextual features call for it. As such, our Bayesian
grammar-based approach for discovering viable covariance
functions for GPs combined with a compositional transfer

learning mechanism, presents itself as a suitable, Bayesian
model of generalization in compositional bandit tasks.

Discussion

We assessed the extent to which humans harness composi-
tionality to support reward learning and decision-making in
RL settings. Our results indicate that participants were able
to learn representations of the abstract structures governing
how rewards were generated, and more importantly, make
informed, compositional generalizations from these simpler
representations. This is indicated by first rewards being sig-
nificantly higher for contexts containing compositional latent
functions: Since the compositional functions were always
preceded by the simple functions from which they were com-
posed, participants could make informed predictions about
rewards in compositional contexts before having observed
any input-output pairs. That participants explored less in
compositional contexts offers further compelling evidence for
this transfer of knowledge: By harnessing compositionality in
novel contexts, participants could sidestep the need for explo-
ration, and compose representations of past reward functions
to select higher-rewarding options earlier. Ultimately, these
results suggest that compositionality, a principle commonly
invoked in linguistics and cognitive science to account for the
productivity and systematicity of human cognition (Fodor,
1987; Lake, Salakhutdinov, & Tenenbaum, 2015), should be
central in theories of human RL and decision-making as well.

We also developed a novel computational model able to
reproduce core aspects of the compositional generalization
observed in the behavioural data. This model conceptual-
izes reward-structure learning as GP regression, where the
kernel embodying the latent structure is discovered through
Bayesian inference over a set of compositional kernels pro-
duced by a generative grammar. The ability to compose such
representations is conceptualized as similarity-based knowl-
edge transfer, in which a novel representation is constructed
as an additive composition of prior learnt representations,
weighted by the similarity between the prior and present con-
texts. This model was substantially more likely to generate
participant choices on the first trial of the compositional con-
texts than lesioned counterparts and another transfer learning
model. In the end, our modelling results suggest that structure
learning in humans may be supported by symbolic, grammar-
like computations, and that contextual similarity judgements
underpin how humans compose latent structures.

One current caveat is that we only tested participants’
propensity for compositional knowledge transfer in settings
where the latent function was an additive composition of
two simpler functions. To gain further evidence for our hy-
potheses, in future work, we aim to test whether these be-
havioural effects persist in tasks with more complex com-
positional structures, such as multiplicative or change-point
functions (Duvenaud, 2014), and extend our model to be able
to generalize about such compositions as well.
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