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1  |  DE VELOPMENT OF DIREC TED AND 
R ANDOM E XPLOR ATION IN CHILDREN

Children are natural born explorers. While exploration and active 
learning are quintessential features of development and maturation, 
they also pose fundamental challenges to children and adults alike. In 
particular, efficiently searching for information and rewards requires 

balancing the dual goals of exploring unknown options to learn some-
thing new, and exploiting familiar options to obtain known rewards. 
At a restaurant, should you go with your usual favorite or should you 
try the chef's latest creation? As a child, should you play your fa-
vorite game again or try out something new? Exploring novel options 
can potentially reveal new and even better rewards, but could also 
lead to disappointment. Known as the explore– exploit dilemma, this 

Received:	17	April	2020  | Revised:	24	November	2020  | Accepted:	25	January	2021
DOI: 10.1111/desc.13095  

P A P E R

Development of directed and random exploration in children

Björn Meder1  |   Charley M. Wu2  |   Eric Schulz3  |   Azzurra Ruggeri4

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution-	NonCommercial	License,	which	permits	use,	distribution	and	reproduction	
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Developmental Science	published	by	John	Wiley	&	Sons	Ltd.

1Health and Medical University Potsdam 
and Max Planck Institute for Human 
Development, Berlin, Germany
2University of Tübingen and Max Planck 
Institute for Human Development, Berlin, 
Germany
3Max Planck Institute for Biological 
Cybernetics, Tubingen, Germany
4Max Planck Institute for Human 
Development and Technical University 
Munich, Berlin, Germany

Correspondence
Björn Meder, Health and Medical 
University, Potsdam, Olympischer Weg 1, 
14471	Potsdam,	Germany.
Emails: bjoern.meder@health-and-
medical-university.de; meder@mpib-
berlin.mpg.de.

Funding information
Deutsche Forschungsgemeinschaft, 
Grant/Award	Number:	EXC	2064/1	
–		390727645;	Bundesministerium	für	
Bildung und Forschung, Grant/Award 
Number:	FKZ:	01IS18039A

Abstract
Are young children just random explorers who learn serendipitously? Or are even 
young children guided by uncertainty- directed sampling, seeking to explore in a sys-
tematic	fashion?	We	study	how	children	between	the	ages	of	4	and	9	search	 in	an	
explore– exploit task with spatially correlated rewards, where exhaustive exploration 
is infeasible and not all options can be experienced. By combining behavioral data 
with a computational model that decomposes search into similarity- based generaliza-
tion, uncertainty- directed exploration, and random exploration, we map out devel-
opmental trajectories of generalization and exploration. The behavioral data show 
strong developmental differences in children's capability to exploit environmental 
structure, with performance and adaptiveness of sampling decisions increasing with 
age. Through model- based analyses, we disentangle different forms of exploration, 
finding signature of both uncertainty- directed and random exploration. The amount 
of random exploration strongly decreases as children get older, supporting the notion 
of a developmental “cooling off” process that modulates the randomness in sampling. 
However, even at the youngest age range, children do not solely rely on random ex-
ploration. Even as random exploration begins to taper off, children are actively seek-
ing out options with high uncertainty in a goal- directed fashion, and using inductive 
inferences to generalize their experience to novel options. Our findings provide criti-
cal insights into the behavioral and computational principles underlying the develop-
mental trajectory of learning and exploration.

K E Y W O R D S
directed exploration, exploration- exploitation dilemma, generalization, multi- armed bandit 
task, random exploration, search

www.wileyonlinelibrary.com/journal/desc
mailto:
mailto:
https://orcid.org/0000-0002-9326-400X
https://orcid.org/0000-0002-2215-572X
https://orcid.org/0000-0003-3088-0371
https://orcid.org/0000-0002-0839-1929
http://creativecommons.org/licenses/by-nc/4.0/
mailto:bjoern.meder@health-and-medical-university.de
mailto:bjoern.meder@health-and-medical-university.de
mailto:meder@mpib-berlin.mpg.de
mailto:meder@mpib-berlin.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fdesc.13095&domain=pdf&date_stamp=2021-03-08


2 of 20  |     MEDER Et al.

fundamental problem contrasts the goals of gaining knowledge to 
reduce uncertainty with immediately acquiring rewards.

Optimal solutions to explore– exploit dilemmas are unattainable 
in	all	but	limiting	cases	(Bellman,	1952;	Gittins	&	Jones,	1979),	making	
heuristic strategies an active area of research in many fields, includ-
ing cognitive and developmental psychology. Whereas many studies 
have investigated how adults balance exploration and exploitation 
(for reviews, see Cohen et al., 2007; Hills et al., 2015; Mehlhorn et al., 
2015),	less	is	known	about	the	developmental	processes	that	shape	
learning	and	exploration	during	childhood.	Studying	how	children,	
who have fewer cognitive resources and less experience, approach 
such problems can provide critical insights into the computational 
and behavioral principles that drive learning and development more 
generally. Here, we investigate developmental trajectories in learn-
ing	and	exploration	between	the	ages	of	4	and	9,	an	age	range	where	
substantial changes in children's exploration behavior have been 
observed	across	different	tasks	(Betsch	et	al.,	2016;	Ronfard	et	al.,	
2018;	Ruggeri,	Markant,	et	 al.,	2019;	Ruggeri,	Xu,	et	 al.,	2019).	To	
map out developmental trajectories, we combine behavioral data 
from a spatial search task with predictions from a computational 
model that disentangles different forms of exploration. Consistent 
with	previous	theories	 (Gopnik	et	al.,	2017),	our	 results	show	that	
the exploration patterns of young children are characterized by high 
levels of random sampling, which decreases with age. However, even 
at the youngest age range, children do not rely solely on random 
exploration, but they actively seek out options with high uncertainty 
(directed	exploration)	and	use	inductive	inferences	to	predict	unob-
served	rewards	(generalization).

1.1  |  How to explore: Random exploration, 
directed exploration, and generalization

Research on explore– exploit problems typically contrasts two dis-
tinct	 classes	 of	 exploration	 strategies	 (Gershman,	 2018;	 Wilson	
et	al.,	2014).	Random exploration models exploration by adding noise 
to	 the	 decision	 process	 (Luce,	 1959;	 Thompson,	 1933).	 Instead	 of	
only making reward- maximizing decisions, this added randomness 
can lead to the incidental exploration of new options and (better or 
worse)	 rewards.	This	exploration	strategy	 is	often	also	 referred	 to	
as undirected exploration, because it is not goal oriented but merely 
relies on adding more randomness to the search process. Related to 
this strategy, it has been recently suggested that children's explora-
tion	behavior	is	characterized	by	“higher	temperature”	(i.e.,	noisier)	
sampling,	which	“cools	off”	with	age	(Gopnik	et	al.,	2017).	The	idea	
behind the temperature analogy evokes methods such as simulated 
annealing	 (Kirkpatrick	 et	 al.,	 1983),	 which	 is	 an	 optimization	 algo-
rithm that uses a time- dependent reduction of randomness to avoid 
getting stuck in a local optimum. Higher temperatures produce more 
randomness during the search process. Over time, the algorithm 
cools off, implementing a gradual decrease in the amount of random 
exploration of possible solutions. On this view, young children ex-
hibit high amounts of random sampling, which results in exploration 

of a larger set of possibilities compared to adults (Cauffman et al., 
2010;	Mata	et	 al.,	 2013).	As	 children	grow	older,	 temperature	de-
creases, yielding a stronger focus on reward maximization, leading to 
less	diverse	sampling	behavior	(Bonawitz	et	al.,	2014).

Directed exploration	 (Schulz	 &	 Gershman,	 2019;	 Wilson	 et	 al.,	
2014)	 is	an	alternative	strategy,	which	relies	on	representing	one's	
uncertainty about the world and then assigning an intrinsic value to-
ward	actively	reducing	this	uncertainty	(Gottlieb	&	Oudeyer,	2018).	
Instead	of	adding	more	variability	through	random	(noisy)	sampling,	
directed exploration actively seeks out uncertainty. According to 
this view, obtaining information is rewarding in and of itself, and the 
value of an option is inflated through an uncertainty bonus (Auer, 
2002).	 By	 valuing	 uncertainty	 positively,	 directed	 exploration	 en-
courages sampling options with promising but uncertain rewards, 
rather than focusing merely on exploiting known high- reward op-
tions. Computationally, directed exploration is more demanding, 
since it requires a richer representational structure that encodes 
both expected rewards and the underlying uncertainty. However, al-
ready infants have been shown to value the exploration of uncertain 
options	 positively	 (Schulz,	 2015),	 6-		 and	 7-	year-	olds	 can	 integrate	
prior beliefs and obtained evidence in simple learning and explo-
ration	 tasks	 (Bonawitz	 et	 al.,	 2012),	 and	 children	 aged	 7–	11	 have	
been shown to rely more on directed exploration than adults when 
searching	for	rewards	(Schulz	et	al.,	2019).

In addition to random and directed exploration, the ability to gen-
eralize	 (Shepard,	1987)	 is	another	 important	cognitive	capacity	 for	
navigating the exploration- exploitation dilemma. In particular, gen-
eralization provides traction for exploring large problem spaces by 
making predictions about novel options. For instance, when Italian 
immigrants	came	 to	 the	United	States	around	1900,	 they	brought	
with	 them	 knowledge	 and	 love	 of	 the	 classic	Neapolitan	 pizza.	 In	
their search for creating similarly rewarding dishes, they explored 
a variety of novel, but similar options— giving the world Chicago- , 
New	York-	,	and	California-	style	pizza,	as	well	as	several	other	new	

Research Highlights

• We investigate developmental trajectories in random 
and uncertainty- directed exploration in children be-
tween	4	and	9	years,	using	a	complex	explore–	exploit	
dilemma with spatially correlated rewards.

• Children adapt their search to the structure of the en-
vironment but also exhibit a tendency to explore more 
than beneficial for the goal of maximizing rewards.

• We find a reliable decrease of random exploration 
between	 age	 4	 and	 9,	 as	 well	 as	 substantial	 levels	 of	
uncertainty- directed exploration even in the youngest 
age range.

• As random exploration begins to taper off, children are 
already engaging in more sophisticated forms of explo-
ration and generalize their experiences to novel options.
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variations. A child encountering a new toy can predict whether or 
not it will be fun by comparing it to other toys it has encountered. If it 
appears similar to other fun toys, there is a good chance this new toy 
is also fun. Thus, generalization provides critical guidance for which 
options to explore— namely those which are similar to known high- 
reward options. On this view, developmental differences in explora-
tion are tightly connected to the ability to make inductive inferences 
about unexplored options based on prior experience. As cognitive 
functions and memory develop, they enable more complex cognitive 
processes	 and	 representations	 (Blanco	 et	 al.,	 2016),	 thereby	 sup-
porting more effective generalization for guiding exploration. For 
instance, changes in search behavior over the life span may be due 
to the accumulation of knowledge, with adults having stronger in-
ductive biases than children, who seem to weigh new evidence more 
strongly	(Gopnik	et	al.,	2015).

2  |  GOAL S AND SCOPE

While random and directed exploration are conceptually different, 
they are not mutually exclusive. Research shows that both types 
of exploration strategies contribute to search and decision- making 
in	 adolescent	 and	 adult	 participants	 (Gershman,	 2018;	 Somerville	
et	al.,	2017;	Wilson	et	al.,	2014),	with	dissociable	neural	signatures	
underlying	the	two	forms	of	exploration	(Zajkowski	et	al.,	2017).	In	
addition, both children and adults rely on generalization to learn 
about the environment and make inferences from experienced to 
not-	yet-	explored	options	(Schulz	et	al.,	2018,	2019;	Wu	et	al.,	2018).

The goal of the present paper is to investigate how young chil-
dren,	 aged	 4–	9	 years,	 balance	 random	 and	 directed	 exploration,	
using a spatial search task with correlated rewards. In particular, 
we trace age- related differences in learning and exploration using a 
computational model that combines similarity- based generalization 

with	both	directed	and	 random	exploration	 (Wu	et	al.,	2018).	Our	
data enable a direct test of the “cooling off” hypothesis and offers 
empirical evidence for the trajectory with which random sampling 
decreases over the course of childhood development.

Previous studies have shown reliable signatures of generalization 
and directed exploration in adults, with relatively little random ex-
ploration	(Wu	et	al.,	2018;	Wu,	Schulz,	Gershman,	2020).	In	a	com-
parison	of	children	aged	7–	11	and	adults,	Schulz	et	al.	(2019)	found	
no age- related differences in random exploration. Rather, children 
differed from adults by having higher levels of directed exploration 
and narrower generalization. While the lack of differences in random 
exploration does not support the idea of a “cooling off” process over 
the lifespan, it could also be the case that children aged 7– 11 had 
already transitioned to a lower temperature and had already devel-
oped the capacity for directed exploration. Therefore, our goal is 
to investigate a younger age range to search for the developmental 
stage where random exploration diminishes and directed explora-
tion emerges.

3  |  E XPERIMENT

We used a simplified version of the spatially correlated multi- armed 
bandit	paradigm	(Wu	et	al.,	2018)	to	investigate	how	children	learn	
and search for rewards on a grid world by clicking on different tiles 
(Figure	1).	Each	tile	had	a	different	reward	distribution,	where	the	
goal was to accumulate as many rewards as possible within a limited 
search	horizon	(i.e.,	a	fixed	number	of	clicks).	Rather	than	displaying	
rewards	numerically,	as	in	previous	experiments	(Schulz	et	al.,	2019),	
here the value of rewards was indicated using different shades of 
red	to	be	interpretable	by	children	as	young	as	4	(Figure	1).	In	this	
task, rewards were spatially correlated, such that nearby options had 
a similar mean reward. Thus, participants could use generalization 

F I G U R E  1 Example	environments	and	screenshots	from	experiment.	(a)	Two	rough	environments	with	low	spatial	correlation	and	two	
smooth	environments	with	high	spatial	correlation.	Darker	shades	of	red	correspond	to	higher	rewards.	(b)	Exploration	task,	in	which	
children	had	25	clicks	in	each	round	to	obtain	as	many	stars	as	possible	by	finding	darker	(i.e.,	more	rewarding)	tiles.	(c)	Bonus	round	
judgments,	in	which	children	predicted	the	rewards	for	five	previously	unobserved	tiles	(tile	with	dashed	border)	and	made	a	confidence	
judgment about their prediction

(b) Search task (c) Bonus round(a) Environments
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from a sparse number of observations to guide their exploration to-
ward promising regions of the search space. Importantly, the number 
of	available	clicks	(25)	was	much	smaller	than	the	number	of	avail-
able	options	(64),	requiring	searchers	to	balance	clicking	novel	tiles	
to	discover	new	rewarding	options	(exploration)	with	re-	clicking	tiles	
already	known	to	provide	high	rewards	(exploitation).

3.1  |  Methods

3.1.1  |  Participants

We	recruited	102	children	between	age	4	and	9	years.	There	were	54	
children	whose	age	was	below	or	equal	to	the	median	of	82	months,	
and	48	children	who	were	older	than	the	median	age.	We	refer	to	
the	group	of	younger	children	henceforth	as	6-	year-	olds	 (M = 72.6 
months, SD = 7.6, range 51 − 82	 months,	 24	 female),	 and	 to	 the	
group	 of	 older	 children	 as	 8-	year-	olds	 (M = 93.1 months, SD = 6.5, 
range 84 − 108	months,	23	female)	from	public	museums	in	Berlin,	
Germany. In addition to comparing these age groups, we also con-
ducted analyses that treat age as a continuous variable. Fourteen 
additional children were excluded from analysis because they failed 
the instruction check (n = 9),	did	not	want	 to	play	anymore	 (n = 1),	
were not native speakers (n = 2),	or	because	their	parents	intervened	
during the experiment (n = 2).	The	study	was	approved	by	the	ethical	
review board of the Max Planck Institute for Human Development in 
Berlin. Informed consent was obtained from children's legal guard-
ians prior to participation; average duration was about 12 min.

3.1.2  | Materials,	design,	and	procedure

Children played six rounds of a spatial search game on a tablet, in 
which they were presented with an 8 × 8 grid world with spatially 
correlated	 rewards	 (Figure	 1).	 The	 expected	 reward	 across	 all	 en-
vironments was identical (i.e., average reward over all tiles of a 
grid);	what	 differed	 between	 environments	was	 the	 spatial	 corre-
lation among rewards. The strength of the spatial correlations was 
manipulated between subjects, with smooth environments having 
stronger spatial correlations than rough environments. For each class 
of	environments,	we	generated	40	different	environments	using	a	
radial	basis	function	kernel	(see	Equation	1)	with	either	�smooth = 4 or 
�rough = 1. Each environment defined a bivariate reward function on 
the grid, such that each tile location was mapped to a reward value. 
Intuitively, smooth environments had smoother reward functions 
that varied gradually over the grid, whereas rough environments had 
rougher	reward	functions	that	varied	more	suddenly	(Figure	1).	On	
each round, a new environment was sampled without replacement 
from	the	set	of	40	environments	for	the	respective	class.

At the beginning of each round, one random tile was revealed 
and children could sequentially sample 25 tiles. On each trial, they 
could either click a new tile or re- click a tile they had already se-
lected before (clicking was done by touching the desired tile on the 

tablet).	Clicking	a	tile	for	the	first	time	revealed	its	color,	with	darker	
colors indicating higher rewards along a continuous, linearly scaled 
color	range	(Figure	1).	The	color	(i.e.,	underlying	reward)	of	the	re-
vealed tiles remained visible for the entire duration of the round. Re- 
clicked tiles could show small variations in the observed color due 
to normally distributed noise, � ∼  (0, 1), with the revealed color 
indicating	the	most	recent	observation	(Figure	1b).

To avoid having the global maximum immediately recognizable 
when revealed, we randomly sampled a different maximum value 
in each round from a uniform distribution ∼  (0. 7, 0. 9 ). Color 
values were re- scaled in each round such that the lowest value 
corresponded to 10% of the darkest value and the highest value cor-
responded to the randomly sampled maximum (between 70% and 
90%	of	the	darkest	value).	Note	that	because	of	the	noise	applied	to	
observations, sampled rewards could be below 10% or above 90% 
darkness, hence the additional range in our color scale. Reward val-
ues reported throughout the paper are arbitrarily scaled to the range 
[0,50]	to	be	consistent	with	previous	work	(Schulz	et	al.,	2019).

Children were awarded up to five stars at the end of each round 
(e.g.,	4.6	out	of	5;	see	Figure	1b),	based	on	the	ratio	of	their	average	
reward to the global maximum of the given grid. At the beginning 
of a round, the stars were empty, then they continuously filled up 
in accordance with each obtained reward. The instructed goal was 
to collect as many stars as possible in each round; at the end of the 
game, children received a number of stickers proportional to the av-
erage number of stars earned in each round.

In total, children played six rounds of the spatial search game. 
The first round was a tutorial round, in which children were familiar-
ized with the goal of the game, the spatial correlation of rewards, the 
maximum number of clicks allowed per round, and the possibility of 
re-	clicking	tiles.	Specifically,	children	were	told	that	before	each	click	
they would have to decide whether to reveal a novel tile or re- click 
an already revealed tile. Both actions were explicitly demonstrated 
by the experimenter. After the tutorial, children were required to 
answer three comprehension questions. These questions pertained 
to the instructed task, that stars could be collected both by revealing 
new tiles and re- clicking previously revealed tiles, and the distribu-
tion	of	tiles	in	the	grid	(Appendix	D,	Figure	D1	bottom	right).	If	they	
failed to answer any of the questions correctly, the relevant part of 
the instructions was repeated and the questions were asked again. 
If a child failed again, they continued with the experiment, but were 
later excluded from the analyses. Children were not explicitly told 
that the expected reward of individual tiles was constant in each 
round, or that the expected reward across all options was the same 
in each environment. However, we also never suggested otherwise 
(e.g.,	that	rewards	might	change	or	reverse	over	time).

Rounds two to five comprised the actual exploration task, 
where in each round children had 25 clicks to find rewards on the 
grid. The sixth and last round was a bonus round, in which children 
sampled for 15 trials and then made reward predictions for five 
randomly	chosen	and	previously	unobserved	tiles	 (Figure	1c).	This	
was	explained	to	them	before	the	bonus	round	started.	Judgments	
were made using a continuous slider, asking children to indicate the 
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darkness of the target tile, with the end points labeled as “light” and 
“dark.” When moving the slider, the target tile changed its color ac-
cordingly. The underlying reward scale was continuous, ranging from 
0 to 50. To assess the level of confidence associated with the reward 
predictions, children were asked how certain they were about the 
predicted darkness, using a slider from 0 to 10 in steps of 1, with 
the endpoints labeled as “not certain at all” to “very certain.” After 
judging five tiles, children were asked to select one of them. They 
received the corresponding reward and then continued the round 
until the search horizon was exhausted.

4  |  BEHAVIOR AL RESULTS

We first analyze the behavioral data in terms of performance and 
exploration behavior. These analyses exclude the tutorial and bonus 
rounds,	 leaving	a	 total	of	100	search	decisions	 (4	 rounds	× 25 tri-
als)	for	each	of	the	102	participants.	We	then	report	the	results	of	
the bonus round, where we analyze children's reward predictions 
and confidence judgments. The behavioral data are complemented 
by model- based analyses, where we disentangle generalization, di-
rected exploration, and random exploration. We report both fre-
quentist statistics and Bayes factors (BF)	 to	 quantify	 the	 relative	
evidence of the data in favor of the alternative hypothesis (HA)	over	
the null hypothesis (H0)	(see	Appendix	A	for	details).

4.1  |  Exploration task: Performance

Whereas both smooth and rough environments had the same ex-
pected rewards, the stronger spatial correlations in the smooth 
environment facilitated better performance for both age groups 
(6-	year-	olds:	 Msmooth = 29.9 vs. Mrough = 26, t (52 ) = 3.3, p = 0.002,  
d = 0.9, BF = 22;	 8-	year-	olds:	 Msmooth = 34.3 vs. Mrough = 28, 
t (46 ) = 6.4, p < 0.001, d = 1.8, BF > 100;	Figure	2a).	Thus,	regardless	
of age, children were able to leverage the spatial correlation of rewards 

in the environment, and performed better in more correlated environ-
ments. Performance was more variable in smooth compared to rough 
environments	 (6-	year-	olds:	 F (29, 23 ) = 3.8, p = 0.002;	 8-	year-	olds:	
F (21, 25 ) = 2.7, p = 0.002),	 indicating	 individual	 differences	 in	 the	
ability to learn about and harness the environmental structure when 
searching for rewards.

Eight- year- old children obtained higher rewards than 
6-	year-	olds	in	both	rough	(M = 28 vs. M = 26, t (48 ) = 2.6, p = 0.012,  
d = 0.7, BF = 4.1)	and	smooth	environments	 (M = 34.3 vs. M = 28.9,  
t (50 ) = 3.3, p = 0.002, d = 0.9, BF = 19).	 Age-	related	 performance	
differences were also found when treating age as continuous vari-
able	 (Figure	 2b),	 with	 performance	 increasing	 with	 age	 in	 both	
rough (Pearson's r = . 36, 95% CI = [ . 09, . 58 ], p = 0.011, BF = 6.0)	 
and smooth environments (r = . 39, 95% CI = [ . 14, . 60 ], p = 0.004, 
BF = 14).

Figure 2c shows the learning curves (average reward over trials; 
first	aggregated	within	and	then	across	participants).	Consistent	with	
the overall performance, learning curves increased more strongly in 
smooth compared to rough environments. In rough environments, 
8-	year-	olds	performed	slightly	better	than	6-	year-	olds,	but	generally	
there was only little improvement over trials. In smooth environ-
ments, older children learned more quickly than younger children 
and consistently outperformed them. A notable finding is that in 
smooth environments, toward the end of the search, the average 
obtained rewards tended to decrease again, in both age groups, 
suggesting a tendency to continue exploration even at the cost of 
foregone rewards.

4.2  |  Exploration task: Search trajectories

Rather than only comparing performance, we also looked for behavio-
ral patterns in how children searched for rewards, by analyzing the dis-
tance between consecutive choices and how this was affected by the 
magnitude of rewards and the subsequent search decisions. Figure 3a 
shows the distribution of Manhattan distances between consecutive 

F I G U R E  2 Obtained	rewards	measured	in	arbitrary	units	in	the	range	[0,50].	(a)	Tukey	box	plots	of	the	distribution	of	obtained	mean	
rewards, separately for each age group and environment. Each dot is a participant- wise mean, the horizontal line in the box shows the group 
median	and	the	diamonds	indicate	group	means.	Dotted	line	is	random	performance.	(b)	Average	obtained	rewards	as	a	function	of	age	in	
smooth and rough environments. Each dot represents one participant, the dashed line shows a linear regression (±95%	CI);	dotted	line	is	
random	performance.	(c)	Learning	curves	showing	the	average	rewards	over	trials,	first	averaged	within	participants	and	then	aggregated	
across participants; error bars are 95% CIs
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choices.	For	8-	year-	olds,	the	mean	distance	was	smaller	in	smooth	than	
in rough environments (Msmooth = 2.04 vs. Mrough = 2.69, t (46 ) = −3.1,  
p = 0.003, d = 0.9, BF = 13),	 indicating	 they	searched	more	 locally	 in	
the	presence	of	strong	spatial	correlations.	For	6-	year-	olds,	there	was	
no difference between environments (Msmooth = 2.11 vs. Mrough = 1.93, 
t (52 ) = 1.0, p = 0.31, d = 0.3, BF = . 42),	suggesting	a	more	limited	ca-
pability to adapt to environmental structure.

We	 also	 analyzed	 search	 decisions	 (Figure	 3b)	 by	 computing	
the proportions of repeat choices, corresponding to re- clicking the 
previously revealed tile, near choices, corresponding to searching a 
neighboring	 tile	 (i.e.,	distance	of	1),	 and	 far choices, corresponding 
to clicking tiles with a distance larger than 1. Older children tended 
to search more locally in smooth compared to rough environment, 
while conversely making more far choices in rough compared to 
smooth environments.

This	 pattern	was	 not	 observed	 for	 6-	year-	olds,	 indicating	 that	
younger children did not adapt their search patterns to the correla-
tion	structure	of	rewards	in	the	environment.	Notably,	the	number	
of repeat clicks is overall rather low, regardless of age group and en-
vironment	(see	Section	6).	This	may	also	explain	the	learning	curves	
(Figure	2c),	which	tended	to	decrease	toward	the	end	of	each	round	
in smooth environments. This demonstrates that children generally 
show higher levels of exploration when searching for rewards, and 
thus less exploitation of high- value options that have already been 
observed.

Finally, we analyzed the relation between the value of a reward 
obtained at time t and the search distance on the subsequent trial 
t + 1. If a large reward was obtained, searchers should search more 
locally, while conversely, if a low reward was obtained, searchers 
should be more likely to search farther away. Using hierarchical 
Bayesian regression analyses, we predicted search distance using 
the reward obtained on the previous step, age group, and their in-
teractions	 as	 population-	level	 (“fixed”)	 effects,	while	 treating	 par-
ticipants as random intercepts. Figure 3c shows how the reward 
obtained from the previous choice related to subsequent search 
distance	(see	Table	B1	in	Appendix	B	for	detailed	results).	Both	6-		
and	8-	year-	olds	 tended	 to	 search	more	 locally	when	high	 rewards	
were obtained and searched further away when low rewards were 
obtained. The two age groups were differentially influenced by the 
obtained	 rewards,	 such	 that	 8-	year-	olds	more	markedly	 increased	
the	distance	following	low	rewards	compared	to	6-	year-	olds,	in	both	
smooth and rough environments. Taken together, these findings in-
dicate that the magnitude of rewards influenced search distance, but 
8-	year-	olds	were	more	responsive	in	adapting	their	search	behavior	
than	6-	year-	olds.

4.3  |  Bonus round judgments

The last round was a bonus round in which children made 15 search 
decisions and then predicted the expected rewards for five random, 
unrevealed tiles. Additionally, they were also asked how confident 
they	were	about	the	predicted	reward	(i.e.,	darkness	of	tile).

Figure	 4a	 shows	 the	 mean	 absolute	 error	 between	 children's	
estimates and the true underlying expected reward. Overall, 
8-	year-	olds	had	lower	prediction	error	than	6-	year-	olds	(M = 11.5 vs. 
M = 16.5, t (100) = 3.9, p < 0.001, d = 0.8, BF > 100).	The	difference	
between age groups was found in both environments, albeit less 
pronounced in rough (M = 11.5 vs. M = 15.5; t (48 ) = 2.4, p = 0.019,  
d = 0.7, BF = 2.9)	 compared	 to	 smooth	 environments	 (M = 17.2 vs. 
M = 11.5; t (50 ) = 3.0, p = 0.004, d = 0.8, BF = 9.1).	Aggregating	both	
age groups, we found no effect of environment on prediction error 
(Mrough = 13.4 vs. Msmooth = 14.8; t (100) = −1.0, p = 0.32, d = 0.2,  
BF = . 32).	We	 constructed	 a	 random	 baseline	 by	 sampling	 10,000	
random values from the reward interval [0, 50 ] and 10,000 samples 
(with	replacement)	from	the	true	reward	values	in	the	bonus	round	
environments that children experienced. We then computed the 
absolute error between each random guess and the bootstrapped 
true values, and finally computed the mean absolute error across all 
samples.	Compared	to	this	random	baseline,	6-	year-	olds	performed	
worse than chance level (t (53 ) = 2.7, p = 0.009, d = 0.4, BF = 4.2),	 
whereas	 8-	year-	olds	 were	 better	 than	 chance	 (t (47 ) = −3.1, 
p = 0.003, d = 0.4, BF = 9.6).	Younger	children's	performance	below	
chance level can be traced to a tendency to frequently make extreme 
judgments, a tendency that has also been observed in other studies 
(Chambers,	2002;	Meder	et	al.,	2020).	Out	of	the	270	judgments,	83	
(31%)	times	6-	year-	olds	predicted	a	reward	of	0	or	50,	whereas	this	
was	much	less	frequent	in	8-	year-	olds	(22	out	of	240,	9%).	Since	the	
true rewards in the experienced bonus environments were normally 
distributed	(with	a	mean	around	22),	this	bias	substantially	increased	
prediction error in younger children, resulting in below chance level 
performance.

Looking	 at	 prediction	 error	 as	 a	 function	 of	 age	 in	 months	
(Figure	4),	we	 found	 that	 in	 both	 rough	 and	 smooth	 environments	
children's prediction error declined with age (rough: r = − . 40, 
p = 0.004, BF = 14, smooth: r = − . 46, p < 0.001, BF = 57).	Across	all	
judgments and children, we found no systematic relation between 
confidence and prediction error (Kendall's rank correlation: r� = . 07, 
p = 0.04, BF = . 67).	A	Bayesian	regression	with	confidence,	age	group,	
and their interaction as predictors and subject- wise random intercept 
also	showed	no	reliable	relationship	(see	Table	B2	in	Appendix	B).

We also analyzed whether the distance to previously revealed 
tiles was related to participants’ reward predictions and confidence. 
For	each	participant,	we	computed	the	average	(Manhattan)	distance	
of each of the five target tiles to the 15 previously revealed tiles. We 
then computed subject- wise correlations between distance and ei-
ther	prediction	error	or	confidence,	respectively.	Seventeen	children	
gave the same confidence judgment to all five predictions, such that 
the correlation was undefined and were omitted from these analy-
ses. Generally, more proximal target tiles tended to produce lower 
prediction error (mean correlation: Mr = . 12)	and	higher	confidence	
(Mr = − . 07).	However,	there	were	substantial	variation	between	age	
groups	 and	 environments.	 The	prediction	 error	 of	 8-	year-	olds	 de-
creased	more	strongly	with	spatial	proximity	than	6-	year-	olds	in	both	
environments, although age- related differences were only reliable 
in rough environments (Rough: mean correlation M8−year−olds = . 24 
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vs M6−year−olds = − . 07, two- sample t test t (48 ) = −2.2, p = 0.034,  
d = 0.6, BF = 1.9;	 Smooth:	 M8−year−olds = . 17 vs M6−year−olds = . 12,  
t (50 ) = −0.3, p = 0.754, d = 0.1, BF = . 29).	Similarly,	the	confidence	
ratings	 of	 8-	year-	olds	 were	 higher	 for	 more	 proximate	 targets	
than	 for	6-	year-	olds,	 but	 the	 age-	related	differences	were	not	 re-
liable (Rough: M8−year−olds = − . 21 vs M6−year−olds = . 05, t (38 ) = 1.8,  
p = 0.079, d = 0.6, BF = 1.1;	 Smooth:	 M8−year−olds = − . 12 vs 
M6−year−olds = . 01, t (43 ) = 0.8, p = 0.420, d = 0.2, BF = . 39).	 These	
findings indicate that older children's reward predictions and confi-
dence tended to be more strongly influenced by the spatial distance 
to	known	options	than	6-	year-	olds’	 judgments,	but	the	age-	related	
differences were not consistent.

To analyze selected and nonselected options, we first av-
eraged the predicted reward and confidence of the not- chosen 
tiles within subjects, and then compared chosen and not cho-
sen	 options.	 Selected	 tiles	 tended	 to	 have	 higher	 predicted	 re-
wards (Mchosen = 32 vs Mnonchosen = 28.9, t (101) = 2.4, p = 0.018, 
d = 0.3, BF = 1.7),	and	there	was	also	a	tendency	to	select	options	
where participants were more confident in their reward predic-
tions (Mchosen = 7.59 vs. Mnonchosen = 7.04, t (101) = 2.2, p = 0.028, 
d = 0.2, BF = 1.2).	Selected	tiles	also	tended	to	have	a	higher	true	
reward than nonselected tiles, but the difference was not reli-
able (Mchosen = 23.75 vs. Mnotchosen = 21.95, t (101) = 2.0, p = 0.048,  
d = 0.3, BF = . 74).	 Thus,	 children	 tended	 to	 choose	 options	 they	

F I G U R E  3 Search	trajectories.	(a)	Histogram	of	distances	between	consecutive	search	choices.	A	distance	of	zero	indicates	a	repeat	click;	
a distance of 1 corresponds to clicks on neighboring tiles; distances >1 correspond to other clicks on the grid. The vertical dashed line marks 
the	difference	between	a	repeat	click	and	selecting	any	other	tile.	(b)	Average	proportion	of	search	decisions	by	age	group	and	environment.	
Repeat clicks correspond to re- clicking a previously revealed tile, near clicks correspond to directly neighboring tiles, and far clicks are 
sampling	decisions	with	a	distance	>1.	(c)	Search	distance	as	function	of	reward	obtained	on	the	previous	trial.	The	lines	visualize	the	relation	
between search distance and previous reward for each age group and environment, obtained from a Bayesian regression (±95%	CI).	The	dots	
show the observed mean distances given previous rewards, aggregated across all decisions and children. One outlier has been removed from 
the lower plot, but is included in all statistical analyses.

F I G U R E  4 Bonus	round	judgments.	(a)	Mean	absolute	prediction	error	for	6-		and	8-	year-	olds.	(b)	Mean	absolute	prediction	error	as	
function of age. Each dot is one participant, the dashed line shows a linear regression (±95%	CI).	Dotted	line	is	random	performance
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expected to have high rewards and for which they were confident 
in their predictions.

In	 summary,	 8-	year-	olds	 obtained	 higher	 rewards	 than	
6-	year-	olds,	 with	 both	 groups	 performing	 better	 in	 smooth	 com-
pared to rough environments, facilitated by stronger spatial correla-
tions. Participants adapted their search patterns in response to the 
magnitude of obtained rewards, searching locally upon finding rich 
rewards, and searching farther away upon finding poor rewards. The 
responsiveness of this adaptive search pattern was mediated by age, 
where	8-	year-	olds	exhibited	a	stronger	relationship	between	reward	
value	and	search	distance	than	6-	year-	olds.	Lastly,	prediction	accu-
racy increased reliably with age, but there was no relation between 
children's subjective confidence in their reward judgments and their 
prediction error.

5  |  A COMPUTATIONAL ANALYSIS OF 
DIREC TED AND R ANDOM E XPLOR ATION IN 
CHILDREN

The behavioral data presented above show strong and systematic 
differences	between	the	exploration	behavior	of	6-		and	8-	year-	old	
children. We next present a computational model that captures key 
aspects of generalization and sampling strategies in order to map the 
developmental trajectory of learning and exploration. In particular, 
the model provides a clear computational framework for estimating 
to what extent children generalize about the spatial correlation of 
rewards, and how their sampling behavior can be decomposed into 
directed and random exploration.

5.1  |  The Gaussian process upper confidence 
bound (GP- UCB) model

Our model consists of three building blocks: a learning model that 
makes predictions about the distribution of rewards in the environ-
ment, a sampling strategy, which maps these predictions onto valu-
ation of options, and a choice rule, which converts value into choice 
probabilities. We now briefly describe these components, with fur-
ther	details	provided	in	Supplement	S1.

5.1.1  |  Learning	model

To model learning about rewards in the environment we use 
Gaussian Process	 (GP)	 regression	 as	 a	 form	 of	 Bayesian	 function	
learning	(Rasmussen	&	Williams,	2006).	The	GP	uses	the	principles	
of Bayesian inference to adaptively learn a value function, mapping 
the location of each option onto rewards. Generalization about novel 
options is thus accomplished through interpolation or extrapolation 
from	previous	observations	 (rewards	and	 their	 locations).	This	 ap-
proach has been shown to account for how adults explicitly learn 
functions	(Lucas	et	al.,	2015),	and	has	been	successfully	applied	to	

model the behavior of children and adults in a wide range of learn-
ing	and	search	tasks	(Schulz	et	al.,	2017,	2019;	Wu,	Schulz,	Garvert,	
et	al.,	2020;	Wu,	Schulz,	&	Gershman,	2020;	Wu	et	al.,	2018).

Formally, a GP defines a distribution over functions 
f ∼ 

(
m (x) , k

(
x, x �

))
, where each function can be interpreted 

as a candidate hypothesis about the relationship between spatial 
location and expected rewards. The GP prior is determined by a 
mean function m(x)	 and	a	kernel	 function	k

(
x, x ′

)
. We follow the 

convention of setting the mean function to zero, while using the 
kernel function to encode the covariance structure. Put simply, 
the kernel provides an inductive bias about how points in the input 
space are related to each other as a function of distance (i.e., spatial 
similarity).	A	common	choice	for	the	kernel	is	the	radial basis func-
tion	(RBF):	

where x and x ′ denote two inputs (e.g., coordinates of tiles on the 
grid)	and	� is the length- scale parameter governing the extent of gen-
eralization. Put simply, the RBF kernel models generalization as an 
exponentially decaying function of the distance between inputs x 
and x ′.	This	kernel	is	closely	related	to	Shepard’s	(1987)	universal	law	
of generalization, which models generalization as an exponentially 
decaying function of similarity, where similarity is the inverse of 
distance. In the present study, the � parameter specifically pertains 
to generalization about the extent of spatial correlation of rewards 
in the environment, where higher � values correspond to stronger 
spatial correlations. For instance, � = 1 indicates that the rewards 
of two neighboring tiles are assumed to be correlated by r = . 61; if 
options are further than three tiles away, the correlation decays to 
effectively	zero.	Smaller	values	of	� indicate that the assumed cor-
relation decays more rapidly as a function of distance, while larger 
values of � indicate stronger spatial correlations. Thus, this param-
eter represents how strongly participants generalize across options 
(tiles)	based	on	their	spatial	proximity.

In the present task, GP regression generates normally distributed 
beliefs about the rewards for any tile x, summarized as expectation 
� (x) and uncertainty � (x). These predictions are modulated by the 
length- scale parameter �, which defines the extent to which rewards 
are assumed to be correlated as a function of distance. For instance, 
� = 1 corresponds to the assumption that the rewards of two neigh-
boring tiles are correlated by r = 0.6, and that due to the exponential 
decay this correlation effectively decreases to zero for options fur-
ther than three tiles apart. We treat � as a free parameter, which we 
estimate for each individual participant. This enables us to assess 
each child's tendency to generalize.

5.1.2  |  Sampling	strategies

Given a learner's belief about expected reward � (x) and esti-
mated uncertainty � (x), we use a sampling strategy to map these 

(1)k
(
x, x �

)
= exp

(
−
| |x − x � | | 2

2�2

)
,
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beliefs	onto	a	valuation	for	each	option.	Specifically,	we	use	Upper 
Confidence Bound	(UCB)	sampling	(Auer,	2002)	to	model	directed	ex-
ploration as a simple weighted sum: 

where � is the mean expected reward and � represents the extent to 
which uncertainty � (measured in terms of the standard deviation of x)	is	
valued positively. The parameter � is an “uncertainty bonus,” since it opti-
mistically inflates expected rewards by their degree of uncertainty. UCB 
provides an effective sampling strategy for balancing the exploration- 
exploitation dilemma, by mediating between exploring novel options 
to reduce uncertainty while also prioritizing the exploitation of high- 
value options.

To	 illustrate	 this	 sampling	 strategy,	 consider	 two	 options	 (tiles)	
x1 and x2. Option x1 has expected reward of �

(
x1

)
= 50 and uncer-

tainty �
(
x1

)
= 5. Option x2 has expected reward of �

(
x2

)
= 45 and 

uncertainty �
(
x2

)
= 15. Thus, option x1 has higher expected re-

ward than x2, but x2 is more uncertain. UCB sampling takes into ac-
count both reward and uncertainty to balance the explore– exploit 
trade- off. For instance, if � = 1, UCB (x1 |� = 1) = 50 + 5 = 55 
and UCB (x2 |� = 1) = 45 + 15 = 60, meaning that option x2 
is more attractive than option x1. By contrast, if � = 0.2, then 
UCB (x1 |� = 0.2 ) = 50 + 1 = 51 and UCB (x2 |� = 0.2 ) = 45 + 3 = 48. 
In this case, option x1 is valued higher than x2, making it more likely 
to click this tile. Thus, the higher �, the stronger a searcher values 
uncertainty positively, nudging them toward sampling uncertain op-
tions. Conversely, when � → 0 the value of an option is dominated by 
its expected reward, regardless of the attached uncertainty. In our 
model, we estimate � for each learner based on their individual search 
behavior, to assess their level of uncertainty- directed exploration.

5.1.3  |  Choice	rule

The final component of the model is the choice rule, which 
translates UCB values into choice probabilities with a softmax 
function: 

Importantly, the softmax choice contains a temperature pa-
rameter � that governs the amount of randomness in the choice 
probabilities. This enables us to quantify the amount of random 
exploration for each learner. Higher temperature sampling corre-
sponds to noisier predictions, where as � → ∞, all options have an 
equal probability of being chosen. Conversely, lower temperatures 
produce choice probabilities that are more concentrated on high- 
value options, where as � → 0, it becomes an argmax choice rule (i.e., 
always	choosing	the	option	with	the	highest	value).	In	our	model,	� 
is estimated from the data, to assess the amount of random explo-
ration for each child.

5.1.4  | Model	summary

In	sum,	the	GP-	UCB	model	combines	(i)	a	learning	component	that	
generalizes	 from	 limited	observations	 to	unobserved	options,	 (ii)	a	
UCB sampling strategy that inflates expectations of reward by the 
associated	 uncertainties	 to	 perform	 directed	 exploration,	 and	 (iii)	
a softmax choice rule that converts UCB values into choice prob-
abilities and adds decision noise as a form of random exploration. 
Each model component has a single free parameter that we esti-
mate through cross- validation from children's search decisions: the 
length- scale parameter � indicates the extent of generalization, the 
uncertainty bonus � defines the level of directed exploration, and 
the temperature parameter � captures the amount of random explo-
ration Careful analyses of these parameters provides a window into 
the computational principles of learning and exploration, enabling us 
to identify age- related changes.

5.2  |  Model comparison

We contrast the predictive accuracy of the GP- UCB model with a 
Bayesian reinforcement learning model (Mean Tracker;	 MT).	 Both	
models share the same uncertainty bonus � and temperature pa-
rameter �, but in place of the GP � parameter, the MT uses an error 
variance parameter �2

�
, which can be interpreted as inverse learning 

sensitivity. Thus, both models have three free parameters, where the 
MT model uses the same UCB and softmax components, but does 
not generalize. Instead, it learns independent reward distributions 
about each option using the principles of associative learning (see 
Supplement	S1	and	S2	for	details	and	extended	model	results	includ-
ing	additional	sampling	strategies).

We used cross validation to assess how well the models predict 
each searcher's sampling decisions, where— as before— we omit the 
tutorial	round	and	bonus	round.	Specifically,	we	iteratively	split	each	
child's data into a training set consisting of three of the four rounds, 
and holding out the remaining round as a test set. We computed the 
maximum- likelihood estimates for each model's parameters (range 
[
exp (−5) , exp (4)

]
)	using	differential	evolution	 (Mullen	et	al.,	2011)	

and then evaluated each model's predictive accuracy on the held- 
out test set. This procedure was repeated for each participant for 
all rounds.

We can describe the objective performance of our models using 
predictive accuracy as a pseudo- R2, comparing the summed out- of- 
sample log loss for each model k against a random model (i.e., choos-
ing	all	options	with	equal	probability):

where log  represents log loss. Intuitively, R2 = 0 indicates chance- 
level predictions and R2 = 1 indicates theoretically perfect predictions.

Figure 5a shows the predictive accuracy of the two models for 
both age groups. The GP- UCB model had higher predictive accuracy 

(2)UCB (x) = � (x) + �� (x)

(3)p (x) =
exp (UCB (x) ∕�)

∑
N
j= 1

exp
�
UCB

�
xj

�
∕�

� .

(4)R2 = 1 −
log

(
Mk

)

log
(
Mrand

) ,
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than the MT- UCB model overall (t (101) = 6.6, p < 0.001, d = 0.7,  
BF > 100),	 and	 also	 for	 each	 age	 group	 (6-	year-	olds:	 t (53) = 3.4, 
p = 0.001, d = 0.5, BF = 22;	8-	year-	olds:	t (47) = 6.1, p < 0.001, d = 1.0,  
BF > 100).	In	total,	73	out	of	102	participants	were	best	described	by	
the	GP-	UCB	model:	34	out	of	54	six-	year-	olds	(63%)	and	39	out	of	
48	eight-	year-	olds	(81%).	These	results	demonstrate	the	importance	
of generalization, since this component was not present in the MT 
learning model.

5.3  |  Developmental differences in 
parameter estimates

To map the developmental trajectories of learning and search, we 
analyzed	the	parameter	estimates	of	the	GP-	UCB	model	(Figure	5b).	
There was no difference in the level of generalization (� parame-
ter)	between	6-		and	8-	year-	olds	 (Mann–	Whitney	U- test: U = 1093,  
p = 0.18, r� = − . 11, BF = . 42).	We	 also	 analyzed	whether	 the	 esti-
mate for the generalization parameter differed between smooth and 
rough environments. The mean � estimates were higher in smooth 
than in rough environments (Msmooth = 2.8 vs. Mrough = 0.56),	 in	 line	
with the difference in ground truth (�smooth = 4 vs. �rough = 1).	This	
difference	was	observed	for	both	age	groups	 (6-	year-	olds:	M = 3.3 
vs. M = 0.4	and	8-	year-	olds:	M = 2.1 vs. M = 0.53).	However,	no	reli-
able difference between environments was found when performing 
a comparison of median parameter values (Mann– Whitney U- test: 

Mdsmooth = 0.42 vs. Mdrough = 0.41, U = 1425, p = 0.405, r� = . 07,  
BF = . 33).	 Generally,	 there	 was	 a	 tendency	 to	 undergeneralize;	 a	
	finding	that	echoes	related	research	with	adults	(Wu	et	al.,	2018)	and	
older	children	(Schulz	et	al.,	2019).	While	this	may	indicate	a	poten-
tial limitation in the ability to harness the amount of spatial correla-
tion in the environment, simulations show that undergeneralization 
tends to produce better performance than overgeneralization, and 
can in fact sometimes lead to better performance than precisely 
matching the true amount of spatial correlation in the environment 
(Wu	et	al.,	2018).

While there was little difference between age groups regarding 
their extent of generalization, we found systematic developmental 
differences	 in	 directed	 and	 random	 exploration.	 Younger	 children	
had higher estimates than older children for both the exploration 
bonus � (U = 1602, p = 0.041, r� = . 17, BF = 1.6)	 and	 temperature	� 
(U = 1688, p = . 009, r� = . 21, BF = 2.2),	 with	 a	 stronger	 age-	related	
decrease	for	the	latter.	These	results	indicate	that	6-	year-	olds	exhib-
ited a stronger tendency toward both directed and random explora-
tion	than	8-	year-	olds.

Figure 5c– f provide a more detailed analysis of these findings 
by treating age as a continuous variable. First, Figure 5a shows that 
the predictive accuracy of the GP- UCB model increased with age 
(Kendall's r� = . 27, p < 0.001, BF > 100).	Second,	consistent	with	the	
group- based analyses, there were little changes in the generalization 
parameter � as a function of age (r� = . 10, p = 0.14, BF = . 39).	In	con-
trast, both the uncertainty bonus parameter � and in particular the 

F I G U R E  5 Model	comparison	and	parameter	estimates	of	the	GP-	UCB	model.	(a)	Predictive	accuracy	(pseudo-	R2)	of	mean	tracker	(MT)	
and	Gaussian	process	(GP)	learning	model	combined	with	upper-	confidence	bound	(UCB)	sampling.	Each	dot	represents	one	participant	
with	the	mean	out-	of-	sample	accuracy	across	rounds	(excluding	practice	and	bonus	round).	Box	shows	IQR,	the	line	is	the	median	and	the	
diamond	is	the	mean.	(b)	Individual	parameter	estimates	of	the	GP-	UCB	model	by	age	group.	(c)	Predictive	accuracy	of	the	GP-	UCB	model	as	
function	of	age.	(d–	f)	Parameter	estimates	of	the	GP-	UCB	model	as	function	of	age.	Each	dot	represents	one	child	with	their	cross-	validated	
median parameter estimates. Dashed line indicates a linear regression (±95%	CI)

6−year−olds 8−year−olds 6−year−olds 8−year−olds

−0.2

0

0.2

0.4

0.6

P
re

di
ct

iv
e 

ac
cu

ra
cy

(a) Model comparison

6−year−olds 8−year−olds 6−year−olds 8−year−olds 6−year−olds 8−year−olds

0.01

0.1

1

10

100

(b) Parameter estimates

−0.2

0

0.2

0.4

0.6

4 5 6 7 8 9
Age (years)

P
re

di
ct

iv
e 

ac
cu

ra
cy

(c) Predictive accuracy

0.01

0.1

1

10

100

4 5 6 7 8 9
Age (years)

(d) Generalization λ

0.01

0.1

1

10

100

4 5 6 7 8 9
Age (years)

(e) Uncertainty bonus β

0.01

0.1

1

10

100

MT−UCB GP−UCB Generalization λ Uncertainty bonus β Temperature τ

4 5 6 7 8 9
Age (years)

(f) Temperature τ

Model comparison and parameter estimates



    |  11 of 20MEDER Et al.

temperature parameter � of the softmax function decreased with 
age.	Younger	children	tended	to	have	higher	values	of	� (r� = − . 14,  
p = 0.043, BF = 1.0),	 indicating	 a	 somewhat	 larger	 value	 placed	 on	
reducing uncertainty, and thus more directed exploration. Whereas 
the age- related change in directed exploration were rather weak, 
there was a marked decrease in the temperature parameter � 
(r� = − . 23, p < 0.001, BF = 46).	 Thus,	 the	 amount	 of	 random	 sam-
pling decreased with age. These same changes in parameters as a 
function of age also hold when controlling for the predictive accu-
racy of the GP- UCB model (see Figure B2 and Table B2 in Appendix 
B),	although	these	analyses	find	a	slightly	stronger	increase	in	� as a 
function of age, indicating broader generalizations as children grow 
older. We additionally analyzed parameter estimates for � and � sep-
arately for children best accounted for by the GP- UCB and MT- UCB 
model,	respectively	(Appendix	C).	The	same	qualitative	trends	for	� 
and � were obtained within both subgroups as in the overall analysis, 
with a strong decrease for the random exploration parameter � and 
weaker age- related differences for the directed exploration param-
eter �. This was the case regardless of whether children's behavior 
was overall better described by the GP- UCB model or the MT- UCB 
model. Thus, the overall trends do not result from aggregating across 
subgroups with qualitatively different exploration strategies.

Taken together, these analyses provide a window into the de-
velopmental trajectories of exploration behavior, showing how both 
directed and, in particular, random exploration decrease as children 
get older.

5.4  |  Parameter estimates and performance

The extent of generalization � was positively correlated with perfor-
mance	in	both	age	groups	(6-	year-	olds:	r� = . 19, p = 0.041, BF = 1.4;  
8-	year-	olds:	 r� = . 25, p = 0.011, BF = 4.4).	 The	 stronger	 correlation	
for	8-	year-	olds	 suggests	 that,	 compared	 to	6-	year-	olds,	 they	were	
better able to use generalization about the spatial correlation of re-
wards to achieve higher performance.

Both the uncertainty bonus �	(6-	year-	olds:	r� = − . 26, p = 0.005, 
BF = 8.7;	8-	year-	olds:	r� = − . 29, p = 0.003, BF = 13)	and	the	random	
exploration parameter �	(6-	year-	olds:	r� = − . 38, p < 0.001, BF > 100;  
8-	year-	olds:	 r� = − . 28, p = 0.005, BF = 8.8)	 were	 negatively	 cor-
related with performance, showing how too much exploration can 
hurt performance within the demands of the experiment. For di-
rected exploration, high values of � can lead to excessive exploration 
at the cost of forgoing options with high expected rewards, and is 
a direct outcome of the explore– exploit trade- off defined by UCB 
sampling	(Eq.	2).	For	random	exploration,	the	higher	the	temperature	
�, the more behavior tends toward random choice and random per-
formance,	regardless	of	the	learning	mechanisms	(GP	vs.	MT)	or	the	
UCB trade- off between exploitation and exploration that enter the 
softmax	choice	rule	(Equation	3).

Thus, one key mechanism underlying the age- related perfor-
mance differences is that younger children where characterized by 
higher levels of both directed and random exploration compared to 

8-	year-	olds,	who	therefore	were	better	able	to	harness	the	spatial	
correlation	of	rewards	in	the	environment.	Yet	the	optimal	level	of	
exploration ultimately depends on the demands of the environment, 
particularly the available time horizon. Over long horizons, high ini-
tial exploration can pay dividends when there are ample opportuni-
ties for exploration down the road. Our participants may have been 
better calibrated to the long- horizon of their lifespan, than the short- 
horizon of our task.

Differences in exploration also allow us to explain some age- 
related differences in performance. The observed performance dif-
ferences	 in	 6-	year-	olds	 between	 smooth	 and	 rough	 environments	
can be at least partially attributed to differences in the amount of 
random exploration in the two types of environment, since too 
much random exploration typically hurts performance in struc-
tured	environments	(Schulz	et	al.,	2019;	Wu,	Schulz,	Garvert,	et	al.,	
2020).	 Although	 they	 did	 not	 adapt	 their	 search	 trajectory	 to	 the	
same	extent	as	8-	year-	olds	did	(Figure	3b),	6-	year-	olds	still	achieved	
better performance in smooth compared to rough environments 
(Figure	2a).	Indeed,	6-	year-	olds	showed	a	higher	amount	of	random	
exploration (i.e., higher temperature parameter � in rough compared 
to smooth environments (Md� = 2.02 vs Md� = 0.11),	 although	 the	
difference was not statistically reliable (U = 268, p = 0.112, r� = . 18,  
BF = . 67).	Eight-	year-	olds	also	showed	slightly	higher	 levels	of	 ran-
dom exploration in rough environments, but the difference was less 
pronounced	than	for	6-	year-	olds	(Md� = 0.05 vs Md� = 0.02; U = 229,  
p = 0.245, r� = − . 14, BF = . 59).	However,	the	analysis	of	the	search	
trajectories	 shows	 that	 8-	year-	olds	 were	 generally	 better	 able	 to	
adapt their search trajectories to the structure of the environment 
(e.g.,	 by	 searching	 more	 locally	 in	 smooth	 environments),	 helping	
them to better exploit the correlation between rewards.

6  |  GENER AL DISCUSSION

We	investigated	how	6-		and	8-	year-	old	children	search	for	rewards	
in a spatial version of the explore– exploit dilemma, focusing on dis-
entangling how generalization, random exploration, and directed 
exploration contribute to age- related changes. Although general 
performance increased with age, we found that even younger chil-
dren could successfully generalize the observed spatial correlations 
and use this knowledge to guide their search for rewards. Children 
adapted their exploration behavior depending on the rewards they 
obtained,	with	8-	year-	olds	showing	a	stronger	relationship	between	
obtained rewards and search distance. Finally, while prediction ac-
curacy in the bonus round increased with age, there was no relation 
between children's confidence and their prediction error.

The model- based analyses showed that the GP- UCB model 
provided a better account of children's behavior than the MT- UCB 
model, highlighting the importance of similarity- based generaliza-
tion. A key finding is a strong age- related decrease of random explo-
ration, represented by the τ parameter of the softmax choice rule, 
consistent with the hypothesis that children's temperature “cools 
off”	as	they	get	older	(Gopnik	et	al.,	2017).
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However, children's exploration behavior was not solely driven 
by random exploration, but also by a high amount of uncertainty- 
directed sampling, as indicated by high levels of the uncertainty- 
bonus parameter �. The valuation of uncertainty also tended to 
decrease with age, but this trend was much weaker compared to the 
tapering off of random exploration.

Our findings extend the developmental investigation of chil-
dren's exploration behavior, complementing previous research with 
older	children	(Schulz	et	al.,	2019),	as	well	as	adolescent	and	adult	
participants, who also show signatures of both types of exploration 
strategies	(Wilson	et	al.,	2014;	Wu	et	al.,	2018).	Table	1	provides	an	
overview of children and adults’ model parameters across different 
studies using similar versions of the multi- armed spatially correlated 
bandit paradigm. The comparison shows that children up to around 
age 11 show higher levels of directed exploration than adult sub-
jects, whereas adults tend to generalize more strongly. High levels 
of	random	exploration	were	only	observed	in	6-	year-	olds,	indicating	
that this form of exploration diminishes earlier in development than 
uncertainty- guided exploration. Future studies should systemat-
ically investigate an even broader age range (e.g., from childhood 
through	adolescence	to	adulthood,	ideally	in	a	longitudinal	design)	to	
identify changes in exploration and generalization over the lifespan.

Children are keen explorers— but are they good exploiters? One 
peculiar finding we obtained was the low number of exploitation deci-
sions	(i.e.,	repeat	clicks;	Figure	3b).	Across	all	children	and	rounds	(ex-
cluding	tutorial	and	bonus	round),	the	proportion	of	repeat	clicks	was	
about	7%	(6-	year-	olds:	6.8%,	8-	year-	olds:	7.5%).	While	this	proportion	
was comparable to participants in a similar age range as reported in 
other	studies	(e.g.,	Schulz	et	al.,	2019,	reported	5.6%	repeat	clicks	for	7-		
to	8-	year-	olds	and	6.4%	for	9-		to	11-	year-	olds),	this	contrasts	with	the	
behavior of adults, who typically show a higher proportions of repeat 
clicks;	12%	in	Wu	et	al.	(2018,	averaged	across	three	experiments)	and	
32.1%	in	the	study	by	Schulz	et	al.	(2019).	Lower	exploitation	rates	for	
children have also been observed in simpler bandit tasks with fewer op-
tions	and	independent	reward	distributions	(Blanco	&	Sloutsky,	2019).

The tendency to over- explore might be responsible for the de-
crease of children's average rewards toward the end of the search 
horizon	(Figure	2c).	 Indeed,	given	a	fixed	search	horizon,	 it	 is	typi-
cally better at some point to start exploiting the found high- reward 
options, rather than keeping on searching for even better options. 
It is likely that this behavior was driven by the high amount of both 
random and directed exploration, as captured by a high temperature 
parameter �, leading to increased random sampling, and a high un-
certainty bonus �, leading children to optimistically inflate expected 
rewards of unobserved tiles. While this tendency to over- explore 
impaired performance in our task, it may nevertheless be adaptive in 
some	settings	(Sumner	et	al.,	2019),	by	allowing	children	to	discover	
changes that are not obvious and are overlooked by adults (Gopnik 
et	 al.,	 2015;	 Lucas	 et	 al.,	 2014).	 It	 could	 be	 especially	 adaptive	 in	
dynamic environments where reward structures change over time 
(Behrens	et	al.,	2007;	Speekenbrink	&	Konstantinidis,	2015).	In	such	
nonstationary environments, previously rewarding options may no 
longer be valuable at a later point in time, thereby benefiting contin-
uous exploration.

Another factor contributing to the drop- off in performance to-
ward the end of rounds might be genuine curiosity about discover-
ing the rewards associated with unrevealed tiles. Indeed, anecdotal 
evidence suggests that some children were prone to an additional 
“novelty bonus” based on expressions of excitement when re-
vealing new tiles. One interpretation of this is that the objectively 
same reward from a known tile might be valued less compared to 
the very same reward obtained from revealing a novel tile. This is 
in	 line	with	 various	 theories	 of	 curiosity	 (Berlyne,	 1950;	Dubey	&	
Griffiths,	 2019;	 Gottlieb	 &	 Oudeyer,	 2018;	 Gottlieb	 et	 al.,	 2013;	
Kidd	&	Hayden,	2015)	that	posit	intrinsic	rewards	from	novel	stim-
uli, which have been linked to the lifespan goal of self- development 
(Lopes	 &	Oudeyer,	 2012).	 In	 the	 present	 study,	 curiosity	 and	 the	
intrinsic reward signals associated with revealing new tiles might 
have contributed to the declining performance toward the end of 
the search round. Despite the instructed aim of the experiment, 

TA B L E  1 Comparison	of	predictive	accuracy	and	GP-	UCB	parameter	estimates	across	different	studies	with	children	and	adults,	using	
the spatially correlated multi- armed bandit paradigm

Age group Accuracy R2 Generalization λ Uncertainty bonus �
Randomness 
τ

Current study

6-	year-	olds	(N	=	54) 0.09 0.41 0.57 0.18

6-	year-	olds	(N	=	54) 0.18 0.42 0.54 0.04

Schulz	et	al.	(2019)

6-	year-	olds	(N	=	54) 0.17 0.44 0.51 0.01

6-	year-	olds	(N	=	54) 0.26 0.53 0.50 0.02

6-	year-	olds	(N	=	54) 0.39 0.83 0.24 0.03

Wu	et	al.	(2018)

6-	year-	olds	(N	=	54) 0.26 0.74 0.40 0.03

Note: R2 is the mean predictive accuracy of the GP- UCB model. Model parameters �, �, and � are the median values of the cross- validated estimates. 
We	report	the	mean	across	three	experiments	from	Wu	et	al.	(2018),	which	used	both	1D	(Exp.	1)	and	2D	spatially	correlated	bandits	(Exps.	2	and	3),	
with	similar	smooth	and	rough	environments	(Exp.	1	and	2)	or	natural	environments	defined	by	agricultural	data	(Exp.	3).
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children may find it more rewarding to try out novel options, even 
to the detriment of accumulating higher rewards through exploiting 
known options. Therefore, an important avenue for future research 
is to integrate theories and models of curiosity with generalization, 
directed	exploration,	and	random	exploration	(Brändle	et	al.,	2020).

Another critical question for future research concerns the rep-
resentation of uncertainty in learning and exploration. In our task, 
the spatial correlation of rewards favors a more complex represen-
tation of uncertainty structured around generalization, but in other 
tasks simpler representations of uncertainty may provide a better 
account. For instance, count- based exploration strategies operate 
on simpler representations of uncertainty solely based on the num-
ber of experiences with a certain stimulus (e.g., the number of times 
a	tile	has	been	visited;	Bellemare	et	al.,	2016;	Cogliati	Dezza	et	al.,	
2019).	This	representation	of	uncertainty	can	be	used	to	implement	
a variant of the GP- UCB model, where the posterior uncertainty 
� (x) is replaced with a count- based representation of uncertainty 
(Supplement	S1).	Exploratory	analyses	with	a	GP	count-	based	model	
with	 our	 data	 suggest	 promising	 results	 (Supplement	 S2),	 yet	 also	
present	 a	 crucial	 limitation.	 Specifically,	 the	uncertainty	 estimates	
of the count- based model are decoupled from the generalization 
component, producing identical uncertainty estimates for all unob-
served options. This holds for both near and distant options, disre-
garding the level of spatial proximity to previous observations. This 
is also the case for time- based representations, where uncertainty 
is assumed to increase the longer an option has not been chosen 
(Blanco	&	 Sloutsky,	 2019).	 In	 this	 sense,	 the	 count-	based	 account	
is similar to the MT model, where both the estimates of reward and 
uncertainty are updated only when a tile is observed. When using a 
count- based representation of uncertainty, reward estimates are in-
fluenced by generalization, but not the uncertainty of rewards which 
is solely a function of previous visits. By contrast, the GP- UCB model 
generalizes both reward expectations and attached uncertainty by 
exploiting the correlation structure of rewards in the environment. 
In fact, research with adults has shown that confidence judgments 
are systematically related to the uncertainty estimates predicted by 
the	GP	(Wu,	Schulz,	Garvert,	et	al.,	2020;	Wu,	Schulz,	&	Gershman,	
2020),	as	opposed	to	being	uniform	across	all	unobserved	options.	
(We	observed	a	similar	relation	for	8-	year-	olds	in	our	study,	but	the	
data were rather noisy, so a cautious interpretation is warranted; see 
Appendix	B).	Future	research	should	contrast	different	representa-
tions of uncertainty in their ability to predict children's and adults’ 
confidence judgments about expected rewards of novel options, to 
gain a better understanding of possible developmental trends in the 
representation of uncertainty across the lifespan.

7  |  CONCLUSIONS

Our study provides important new insights into the developmental 
origins and trajectory of learning and exploration, revealing some of 
its underlying computational principles. Being able to disentangle 
the role of generalization, and directed versus random exploration 

enriches our understanding of how children learn about the world 
they	live	in	(Buchsbaum	et	al.,	2011;	Gopnik	et	al.,	2001)	and	the	peo-
ple	they	interact	with	(Bridgers	et	al.,	2019;	Jara-	Ettinger	et	al.,	2016).	
It is also important to extend this computational approach to inves-
tigate the exploration behavior of even younger preschoolers, tod-
dlers, and infants, to identify a more comprehensive developmental 
trajectory and potentially account for individual differences. Finally, 
connecting this line of work with the growing body of research and 
theories on curiosity promises to bring us one step closer to identify-
ing the key to children's impressively successful early learning.
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APPENDIX A

S TATIS TIC AL ANALYSE S
We report both frequentist statistics and Bayes factors (BF)	 to	
quantify the relative evidence of the data in favor of the alternative 

hypothesis (HA)	over	 the	null	hypothesis	 (H0).	All	model	 specifica-
tions and R- code are available online at https://osf.io/eq2bk/

Group comparisons
Frequentist tests are reported as t tests for parametric compari-
sons, and Mann– Whitney U- test or Wilcoxon signed- rank test for 
nonparametric comparisons. Bayes factors are based on the de-
fault two- sided Bayesian t test for either independent or depend-
ent	samples,	using	a	Jeffreys–	Zellner–	Siow	prior	with	its	scale	set	
to 

√
2∕2	(Rouder	et	al.,	2009).	All	statistical	tests	are	nondirectional	

as defined by a symmetric prior. Bayes factors for the Mann– 
Whitney U- test are based on performing posterior inference over 
the test statistic (Kendall's r�),	 assigning	 a	 prior	 using	 parametric	
yoking	 (van	Doorn	et	al.,	2020).	Bayes	 factors	 for	nonparametric	
comparisons are based on performing posterior inference over 
the test statistics (Kendall's r� for the Mann– Whitney U- test and 
standardized effect size r = Z√

N
	for	the	Wilcoxon	signed-	rank	test),	

assigning	a	prior	using	parametric	yoking	(van	Doorn	et	al.,	2020).	
The posterior distribution for Kendall's r� or the standardized ef-
fect size r 	yields	a	Bayes	factor	via	the	Savage–	Dickey	density	ratio	
test, where the null hypothesis posits that parameters do not differ 
between groups and the alternative hypothesis posits an effect and 
assigns an effect size using a Cauchy distribution with the scale 
parameter set to 1∕

√
2.

Correlations
Linear	correlations	are	tested	with	Pearson's	r , the  corresponding 
Bayesian	 test	 is	 based	 on	 Jeffrey's	 test	 for	 linear	 correlation	
 assuming a shifted, scaled beta prior distribution B

(
1

k
,
1

k

)
 for r ,  

where the scale parameter is set to k = 1

3
	(Ly	et	al.,	2016).	For		testing	

rank correlations with Kendall's tau, the Bayesian test is based 
on parametric yoking to define a prior over the test statistic (van 
Doorn	et	al.,	2018).	Bayesian	inference	is	performed	to		compute	a	
posterior distribution for r�,	 and	 the	Savage–	Dickey	density	 ratio	
test is used to produce an interpretable Bayes Factor.

Bayesian multilevel regressions
Regression analyses were performed in a Bayesian framework with 
Stan	(Carpenter	et	al.,	2017),	accessed	via	R- package brms (Bürkner, 
2017).	 In	all	models,	participants	were	 treated	as	a	 random	 inter-
cept, the remaining predictors were implemented as population- 
level	 (“fixed”)	 effects.	 For	 population-	level	 effects,	 we	 used	 a	
normal prior with a mean of 0 and standard deviation of 10; for 
group-	level	(“random”)	effects,	we	used	a	half	student-	t prior with 
3 degrees of freedom, a mean of 0, and a scale parameter of 10; for 
the intercept a student- t prior with 3 degrees of freedom, a mean of 
1, and a scale parameter of 10. All models were estimated over four 
chains	of	4000	iterations,	with	a	burn-	in	period	of	1000	samples.
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APPENDIX B

BAYE SIAN REG RE SSION ANALYSE S

Search distance as function of reward on previous step
We ran separate regression analyses for each environment to assess 
the influence of reward obtained at trial t on search distance at t + 1, 
with	population-	level	(“fixed”)	effects	for	previous	reward,	age	group,	
and their interaction, and by- participant random intercepts. Figure 3c 
illustrates the population- level effects; Table B1 provides a summary 

of the results. For both environments, these analyses showed an ef-
fect of previously obtained reward on search distance (i.e., lower re-
wards	lead	to	higher	subsequent	search	distances),	an	effect	of	age	
group	(i.e.,	8-	year-	olds	showed	higher	search	distances	overall),	and	
an	 interaction	 (i.e.,	 the	search	distance	of	8-	year-	olds	was	stronger	
influenced	by	obtained	rewards	than	that	of	6-	year-	olds).

Judgments
In the bonus round, children made reward predictions for five pre-
viously unseen tiles and rated their confidence in their predictions. 
To assess the relation between prediction error (mean absolute 
deviation	between	judged	and	true	reward	value)	and	confidence	
we ran a Bayesian linear regression with prediction error as de-
pendent variable, and confidence, age group and their interaction 
as	 population-	level	 (“fixed”)	 effects,	 and	 a	 random	 intercept	 for	
participants. Children's confidence judgments were elicited using 
an	11-	point	(0–	10)	slider	with	the	endpoints	labeled	as	“not	at	all”	
and “very sure.”

Table B2 provides a summary of the results; Figure B1 show the 
population-	level	 (fixed)	effects	of	 the	model,	excluding	 the	group-	
level	effects	(random	intercepts	over	participants).	These	data	show	
no systematic relation between children's subjective confidence in 
their predictions.

Regression analyses for age- related trends in parameter estimates
To control for the effect of predictive accuracy R2 on the age- 
related changes in the GP- UCB parameter estimates, we ran 

TA B L E  B 1 Bayesian	regression	results:	search	distance	as	
function of reward on previous step

Predictor

Rough environment Smooth environment

Estimate 95% HDI Estimate [95% HDI]

Intercept 2.26 [1.90–	2.63] 2.89 [2.6.–	3.19]

Previous reward −0.01 [−0.02–	−0.01] −0.03 [−0.03–	−0.02]

Age group 1.85 [1.31–	2.34] 1.19 [0.73–	1.64]

Previous reward 
× age group

−0.04 [−0.05–	−0.03] −0.03 [−0.04.–	−0.02]

Random effects

�2 0.48 0.29

�00 4.84 4.14

N 50 52

Observations 5000 5200

Bayesian R2 0.16 0.13

Note: Both models were implemented in brms	(Bürkner,	2017).	We	
report the posterior mean estimates for the coefficients, followed by 
an 95% uncertainty interval in brackets (“highest density interval”, HDI).	
�2 indicates the individual- level variance and �00 indicates the variation 
between individual intercepts and the average intercept. For categorical 
variable	age	group,	6-	year-	olds	are	the	reference	level.

TA B L E  B 2 Bayesian	regression	results:	prediction	error	and	
confidence

Predictor Estimate 95% HDI

Intercept 13.72 [10.04–	17.51]

Confidence 0.35 [−0.09–	0.77]

Age group −2.12 [−7.57–	3.29]

Confidence × age group −0.38 [−1.07–	0.30]

Random effects

�2 25.09

�00 81.36

N 102

Observations 510

Bayesian R2 0.3

Note: The	model	was	implemented	in	brms	(Bürkner,	2017).	We	report	
the posterior mean estimates for the coefficients, followed by a 95% 
uncertainty interval in brackets (“highest density interval”, HDI).	�2 
indicates the individual- level variance and �00 indicates the variation 
between individual intercepts and the average intercept. For variable 
age	group,	6-	year-	olds	are	the	reference	level.

F I G U R E  B 1 Confidence	and	prediction	error	in	the	bonus	
round. The lines visualize the expected values of the posterior 
predictive distribution of a Bayesian regression (±95%	CI);	the	dots	
show the raw data
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regression	analyses	 for	each	parameter	with	age	 (in	months),	 in-
dividual R2, and their interaction as predictors for the individual 
median	 parameter	 estimates.	 Since	 �, �, and � are defined as 
non- negative, we log- transformed them for the regressions; for 
plotting the influence of age on parameters we converted the re-
gression models’ predictions back to the original scale by expo-
nentiating them, such that all parameters are non- negative. Table 
B3 shows the results of the regression analyses; Figure B2 visual-
izes the effects of age on the GP- UCB parameter estimates while 
taking into account R2.

GP model predictions and judgments of reward and confidence
We assessed the relation between GP model predictions and partici-
pant judgments about expected reward and confidence in the bonus 
round. In the bonus round, participants selected 15 tiles and then 
made reward predictions for five unseen tiles and judged their confi-
dence in their predictions. The MT model, which learns independent 
reward distributions, makes identical predictions for all unseen tiles, 
as it does not generalize. By contrast, the GP model makes specific 
predictions for novel options, taking into account the data obtained 
so far and the spatial correlation of the search ecology.

TA B L E  B 3 Bayesian	regression	results:	parameter	estimates	with	age	and	R2 as predictors

Predictor

Generalization λ (log) Uncertainty bonus � (log) Temperature τ (log)

Estimate 95% HDI Estimate 95% HDI Estimate 95% HDI

Intercept −2.83 [−4.55–	−1.12] 2.98 [−0.77–	6.70] 3.76 [0.21–	7.56]

Age	(in	months) 0.03 [0.01– 0.05] −0.03 [−0.08–	0.02] −0.05 [−0.10–	−0.01]

R
2 5.49 [−3.05–	13.95] −7.75 [−22.98–	7.55] −5.94 [−20.91–	8.96]

R
2 ×	Age	(in	months) −0.08 [−0.18–	0.03] 0.04 [−0.14–	0.22] −0.06 [−0.24–	0.13]

Observations 102 102 102

Bayesian R2 0.08 0.13 0.69

Note: All	models	were	implemented	in	brms	(Bürkner,	2017).	We	report	the	posterior	mean	estimates	for	the	coefficients,	followed	by	an	95%	
uncertainty	interval	in	brackets	(“highest	density	interval”,	HDI).

F I G U R E  B 2 Effect	of	age	on	GP-	UCB	parameters,	derived	from	a	Bayesian	regression	with	age	(in	months),	individual	model	R2, and 
their	interactions,	as	predictor	for	the	(log-	transformed)	median	parameter	estimates.	For	plotting	we	converted	the	regression	models’	
predictions back to the original scale by exponentiating the parameter estimates, such that all parameters are non- negative

F I G U R E  B 3 GP	model	predictions	for	
judgments. The lines visualize the means 
of the posterior predictive distribution 
of the Bayesian regression (±95%CI);	the	
dots	show	the	raw	data	points.	(a)	Relation	
between GP model predictions of reward 
and	children's	reward	judgments.	(b)	
Relation between GP model uncertainty 
about expected rewards and children's 
confidence about their reward judgments
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For each participant, we used parameters estimated from 
rounds 2 to 5 in order to generate individual GP model predic-
tions	(estimated	mean	reward	and	variance)	for	the	five	randomly	
selected tiles in the bonus round. These predictions were con-
ditioned on the 15 individual choices and observations made by 
each child and were generated using each individuals’ median � 
estimates. This represents a type of out- of- task prediction, where 
we used parameters estimated from search decisions to predic-
tion out- of- sample judgments. We use the mean reward predic-
tions of the GP model (posterior � (x)	of	 tile)	 as	a	prediction	 for	
each each child's judgment about expected reward and the GP's 
uncertainty estimates (posterior �)	as	a	prediction	of	each	child's	
confidence judgments, where we treat uncertainty as the inverse 
of confidence.

GP predictions were somewhat correlated with participant pre-
dictions (r� = . 08, p = 0.013, BF = 1.5),	 although	 this	 disappeared	
when	separating	participants	into	age	groups	(6-	year-	olds:	r� = . 06,  
p = 0.182, BF = . 22;	8-	year-	olds:	r� = . 08, p = 0.054, BF = . 57).	GP	un-
certainty estimates were negatively correlated with confidence for 
8-	year-	olds	 (r = − . 18, p = 0.005, BF = 7.5),	 but	 not	 for	 6-	year-	olds	
(r = . 06, p = 0.330, BF = . 23).	 This	 suggests	 that	 the	 confidence	
judgments	of	8-	year-	olds	were	somewhat	accounted	for	by	the	GP	
model,	but	not	those	of	6-	year-	olds.

To analyze these findings in more detail, we conducted Bayesian 
regression analyses to predict children's reward and confidence judg-
ments	based	on	the	outputs	of	the	GP	model.	Specifically,	we	used	
GP model predictions, age group, and their interaction as population- 
level	(“fixed”)	effects,	and	by-	participant	random	intercept	(Table	B4).	
In the first model (Reward judgments),	participant	reward	 judgments	
in the range [0,50] for novel options x	(tiles)	were	predicted	from	the	
GP posterior means of rewards, � (x). The second model (Confidence 
judgments)	 used	 the	GP	 posterior	 uncertainty,	� (x) to predict chil-
dren's confidence judgments in the range [0,10]. All GP predictions 
were computed based on individual participant �- values and the 15 

search decisions they made prior to providing their judgments for five 
random novel options.

Table B2 provides a summary of the results; Figure B3 visual-
izes	 the	 population-	level	 (fixed)	 effects	 of	 the	 model,	 excluding	
the	 group-	level	 effects	 (random	 intercepts	 over	 participants).	 The	
results show a positive but rather weak relation between the GP 
model's reward predictions and children's reward judgments about 
unobserved	tiles	(Figure	B3a).	The	trends	for	the	relation	between	
model uncertainty and children's confidence judgments mirror the 
overall	correlations.	For	6-	year-	olds,	 there's	a	weak	relation	 in	 the	
wrong direction (i.e., they tend to be more confident when the GP 
model	is	more	uncertain).	By	contrast,	for	8-	year-	olds	there	is	a	fairly	
strong trend in that children's confidence declined with increasing 
model uncertainty. However, the raw data are very noisy and un-
evenly distributed, so a cautious interpretation of these results is 
warranted.

APPENDIX C

SUBG ROUP ANALYSE S
The	majority	of	participants	(73	out	of	102	children),	were	best	pre-
dicted by the GP- UCB model. The proportion of children best de-
scribed	by	the	GP-	UCB	model	was	somewhat	lower	for	6-	year-	olds	
(63%)	 than	 for	 8-	year-	olds	 (81%),	 raising	 the	 possibility	 that	 the	
observed developmental trends in the parameters representing 
directed and random exploration are due to aggregating across 
subgroups exhibiting qualitatively different patterns of parameter 
estimates.

Figure C1 shows the � parameter representing uncertainty- 
directed exploration and the � parameter representing random ex-
ploration separately for children best predicted by the GP- UCB and 
MT- UCB model, respectively. These are the two components shared 
by the two models, therefore one should expect similar trends as for 
the overall analyses.

TA B L E  B 4 Bayesian	regression	results:	GP	model	predictions	and	bonus	round	judgments

Predictor

Reward judgments Confidence judgments

Estimate 95% HDI Estimate 95% HDI

Intercept 24.08 [12.43–	35.46] 6.59 [4.23–	8.99]

GP predictions 0.29 [−0.15–	0.75] 1.14 [−1.32–	3.55]

Age group −2.09 [−16.13–	12.33] 2.08 [−1.19–	5.42]

GP predictions × age group −0.07 [−0.65–	0.51] −3.3 [−6.73–	0.03]

Random effects

�2 32.69 3.49

�00 168.25 4.53

N 102 102

Observations 510 510

Bayesian R2 .19 .49

Note: Both	models	were	implemented	in	brms	(Bürkner,	2017).	We	report	the	posterior	mean	estimates	for	the	coefficients,	followed	by	an	95%	
uncertainty	interval	in	brackets	(“highest	density	interval”,	HDI).	�2 indicates the individual- level variance and �00 indicates the variation between 
individual	intercepts	and	the	average	intercept.	For	categorical	variable	age	group,	6-	year-	olds	are	the	reference	level.
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In fact, the qualitative pattern for the two parameters mirror the 
overall analyses, with weak age- related differences for � and stronger 
difference for �. This pattern hold regardless of whether children's 
behavior was overall better described by the GP- UCB model or the 
MT- UCB model. Importantly, for children best predicted by GP- UCB 
model, the amount of random exploration decreased as a function of 
age, r� = − . 18, p = 0.03, BF = 1.6. However, while the other trends 
show the same age- related pattern as the overall analyses, the other 
comparisons within these subgroups were not statistically reliable. 
Nevertheless,	 the	persistence	of	 the	observed	developmental	 tra-
jectories on the subgroup level refutes the possibility that the overall 
trends are due to aggregating across subpopulations with qualita-
tively different parameter estimates.

APPENDIX D

INS TRUC TIONS
The experiment was implemented on a tablet, where children could 
touch the screen to select tiles. Below are screenshots from the tu-
torial	(translated	from	German);	example	screenshots	from	the	task	

are shown in Figure 1b,c. To account for individual and developmen-
tal differences in reading ability, the experimenter always read out 
loud the instructions displayed on screen. Additional information 
was given verbally during the tutorial. For instance, after explain-
ing the game and the goal (i.e., selecting tiles to collects stars; top 
left)	 and	before	practicing	 the	 search	 for	 rewards	 (top	 right),	 chil-
dren were told that before each choice they would have to decide 
whether they would like to reveal a novel tile or re- click a previously 
revealed tile. The experimenter demonstrated both actions before 
the child completed the tutorial round. After the tutorial round and 
prior	 to	 the	 instruction	 test	 (bottom	 right)	 participants	 could	 also	
ask	questions	to	clarify	the	given	task	and	instructions	(Figure	D1).

F I G U R E  C 1 Model	parameters	separately	for	children	best	accounted	for	by	the	GP-	UCB	model	and	MT-	UCB-	model
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F I G U R E  D 1 Screenshots	and	instruction	test	from	tutorial

In this game I will show you 6 such grids. 
At the beginning, there is always one tile
that has already been revealed.

The goal of the game is to collect as
many stars as possible, by finding as
many dark tiles as possible. The darker a 
tile is, the more stars you get. The more
stars you get, the more stickers you will 
receive at the end of the game.

If you want to reveal another tile, you can
click on it and the color of that tile will be
shown. Below you see the colors you
can observe.

In each round, you have 25 clicks, to find 
as many dark tiles as possible!

Continue

Before we start, a hint: On the
grids, dark tiles are frequently located
close to other dark tiles, and light tiles
tend to be close to other light tiles. 
Thus, the color of a tile depends on 
where it is located on the grid. 

Continue

Great!
You did a great job!
In the next rounds you can collect up
to 5 stars on each grid. The more
dark tiles you find, the more stars you
will get. The more stars you get, the
more stickers you will receive at the
end of the game?

Do you have any questions?

Continue

Learn colors

Find as many dark tiles as possible

Find the darkest tile

No idea

Only by reavling new, white tiles

Only by re-clicking revealed, colored tiles

By clicking new, white tiles or by re-clicking revealed, colored tiles

Randomly

Dark tiles are never close to each other

Dark tiles are always in close to each other

Dark tiles are frequently close to each other

Check answers

What is your task?

How can you collect stars?   

How are the dark tiles distributed?

Please answer a few questions before we start with the game.

Only when you correctly answer all questions we can start with the game.


