
Time pressure changes how people explore and
respond to uncertainty
Charley M. Wu1,2*, Eric Schulz3, Timothy J. Pleskac4, and Maarten Speekenbrink5

1Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany
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ABSTRACT

How does time pressure influence exploration and decision-making? We investigated this question with several
four-armed bandit tasks manipulating (within subjects) expected reward, uncertainty, and time pressure (limited
vs. unlimited). With limited time, people have less opportunity to perform costly computations, thus shifting
the cost-benefit balance of different exploration strategies. Through behavioral, reinforcement learning (RL),
reaction time (RT), and evidence accumulation analyses, we show that time pressure changes how people
explore and respond to uncertainty. Specifically, participants reduced their uncertainty-directed exploration
under time pressure, were less value-directed, and repeated choices more often. Since our analyses relate
uncertainty to slower responses and dampened evidence accumulation (i.e., drift rates), this demonstrates a
resource-rational shift towards simpler, lower-cost strategies under time pressure. These results shed light on
how people adapt their exploration and decision-making strategies to externally imposed cognitive constraints.

Introduction
We have all experienced the pressure of making decisions under limited time. For instance, choosing what
to order at a restaurant while the waiter waits impatiently behind your shoulder. Or deciding which analyses
to run as a paper submission deadline looms near. With less time to think, we have less opportunity to
perform costly computations. But does time pressure merely make us more noisy as we deal with the
speed-accuracy trade-off1, 2? Or are we able to adapt our decision-making processes, to make the best use
of our cognitive resources given external constraints on our computational capacity3–6?

Here, we are interested in the cognitive processes involved in navigating the exploration-exploitation
dilemma7–9, which plays a key role when learning through interactions with the environment, such as
in reinforcement learning10 (RL) problems. Should you exploit your usual menu option or should you
explore something new? The usual option may yield a predictably rewarding outcome, but forgoes the
opportunity of learning about other menu items. A new option could lead to either a pleasant or unpleasant
surprise, but will likely be informative for future decisions and could improve future outcomes.

Since optimal solutions to the exploration-exploitation dilemma are generally unobtainable11, 12 except
in limiting cases13–15(e.g., infinite time horizons among other assumptions), there is great interest in
understanding the strategies that humans use16, 17. Empirical evidence from a variety of experiments8, 18–21

and real-world consumer data22 suggests people use a mix of two strategies: random and directed
exploration. Random exploration increases the diversity of choices by adding stochasticity to the agent’s
behavioral policy, instead of only maximizing expected value. If you have only ever tried a handful of
items on the menu, then you might have an imperfect picture of which options are good. Thus, adding
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Figure 1. Experimental design. a) Time bandit task, where each option was randomly mapped to the [Q,W,O,P]
keys on the keyboard, with a different mapping each round. Participants completed 40 rounds (each containing 20
trials), where we manipulated time pressure (panel b) and payoff conditions (panel c) in a crossed, within-subject
design. b) In unlimited time rounds, participants could take as long as they wanted to make each selection and
received positive feedback (happy face) and were shown the value of the acquired payoff for 400ms (feedback
period). In limited time rounds, participants were only given 400 ms to make each selection. If they exceeded the
time limit, they earned no rewards and received negative feedback (sad face) with the value of the payoff they could
have earned crossed out. We used the same feedback period duration of 400ms before the next trial automatically
began and participants were shown the choice screen. Inputs during the feedback period had no effect. c) Each
payoff condition specifies a normal payoff distribution for each option, with the means and variances described
numerically in Table 1. The reward distributions are designed to compare how differences in reward expectations
and differences in uncertainty influence choices, where IGT refers to a payoff distribution inspired by the Iowa
Gambling Task (see Methods). Dots and the Tukey boxplots describe 100 randomly drawn payoffs, while the half
violin plots show the generative distribution, with the diamond indicating the mean.

more variability to your choices may give you a better perspective about which options you should value.
In contrast, directed exploration adds an exploration bonus to each option, proportional to the agent’s
level of uncertainty23. Rather than simply behaving more randomly, directed exploration is more strategic,
prioritizing choices with the highest uncertainty to gain more information24, 25. Perhaps there is an item
on the menu you have never tried before. Directing your exploration to that novel item would be more
effective at achieving an information maximization goal than choosing randomly. But since representations
of uncertainty need to be factored into the decision-making process, this may be computationally more
costly.

Limiting Decision Time
We manipulate decision time as a method for imposing external limitations on cognitive resources, to
better understand the differential cognitive costs associated with random and directed exploration. With
less time “budgeted” for costly computations, resource-rational decision makers4, 5 might be expected to
choose cheaper strategies in order to achieve a better trade-off between the costs of computation and the
benefits in terms of reward. One line of research on human decision-making commonly assumes that time
pressure causes participants to rely more on “intuitive decision making”26, making immediate outcomes
more salient27, and making people more reliant on fast, recognition-based processes as compared to slower,
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more analytical processes28. Research using formal computational models has also related time pressure
to changes in the speed-accuracy trade-off29, yielding faster, less accurate decisions, but nevertheless still
achieving an efficient rate of rewards30, 31. However, there is disagreement in the literature about how time
pressure changes exploration patterns.

On the one hand, taxing cognitive capacities has been shown to increase exploration, producing less
consistent and fewer expected value-maximizing decisions32, 33. Similarly, people and monkeys placed
under time pressure become more eager to select uncertain options, independent of outcome value34, 35.
Time pressure has also been linked to making people become more risk-seeking36–38, although recent
modeling work has challenged the reliability of this shift in risk preferences33. Nevertheless, a common
thread is that limiting cognitive capacity reduces the scope or detail with which people evaluate different
options39–41, producing more impulsive decisions or a switch to simpler, heuristic decision-making
strategies42, both with similar patterns of increased exploration.

On the other hand, time pressure has also been shown to decrease exploration, leading to more repeat
choice behavior and a reduced preference for uncertain options. Participants under time pressure are more
likely to repeat previous actions43, even to the detriment of producing more costly errors. This can also be
related to a trade-off between reward and policy complexity44, where less complex and cheaper-to-encode
policies will lead to higher rates of choice perseveration (i.e., repeat choices). Time pressure has also been
shown to increase participants’ preferences for a known payoff over an uncertain alternative in the domain
of gains45, although the inverse was true in the domain of losses. There are also similar findings from
description-based gambles, where time pressure can increase risk aversion in the domain of gains46.

These divergent results could be interpreted through the lens of early work on coping mechanisms
people use when put to the limits of their cognitive abilities47. One mechanism is acceleration, where
information is processed at a faster rate. Combined with lower evidence thresholds, acceleration can lead
to more frequently choosing options that would otherwise be ignored, consistent with increased random
exploration. Recent work using drift diffusion models has supported this hypothesis by connecting random
exploration to lowered evidence thresholds and increased drift rates48. Conversely, longer response times
have been related to the ability to mentally simulate a greater number of future outcomes49, producing
more directed exploration but decreased random exploration50. Acceleration as a response to time pressure
could thus produce a trade-off between different forms of exploration.

Another potential mechanism is repetition, where previous actions are repeated or recycled44, 51, since
it may not always be cost effective to simulate any future outcomes at all. This can be related to value-free
habits52, where not all decisions justify the cognitive costs of using value expectations (both rewards and
uncertainty) to select new actions. Whereas you might normally enjoy exploring new restaurants in a new
city, limits on decision time, such as an imminent departure at the airport, might motivate you to default to
a previously visited restaurant, instead of weighing the alternatives and selecting a new option.

Goals and Scope
We present a rich experimental setting, where we use a within-subject design manipulating the presence
or absence of time pressure to gain insights into the cognitive processes underlying exploration. We use
multiple four-armed bandit tasks, where across four payoff conditions (within-subject), we independently
manipulate reward expectations and uncertainty across different options (Fig. 1). This allows us to
dissociate value-directed and uncertainty-directed choices, where compared to previous studies with two-
armed bandit tasks19, 24, the richer set of options makes efficient exploration more relevant and observable
over more trials. Given less decision time, participants can be expected to have less access to costly
computations, leading to less value-maximizing choices and more random exploration. Simultaneously,
time pressure may limit the capacity for reasoning about the uncertainty of each option, thus leading to
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less uncertainty directed exploration.
As predicted, time pressure made participants less sensitive to reward values (more random exploration)

and less likely to select options with high relative uncertainty (less directed exploration). We then estimated
three hierarchical Bayesian models to understand how expectations of reward and subjective uncertainty
influenced choices, reaction times (RTs), and evidence accumulation, which reaffirmed our behavioral
analyses, with additional insights into the decision-making and evidence accumulation process. Time
pressure diminished uncertainty-directed exploration through several mechanisms: i) reducing the selection
of uncertain options during early trials, ii) encouraging more aggressive exploitation of known options in
later trials, and iii) heightening the tendency to repeat previous choices.

Our analysis of the RT data revealed how this shift in exploration is related to the computational costs
of different exploration strategies. High reward expectations corresponded to faster choices, while high
uncertainty (both relative and total) were associated with slower choices. Under time pressure, participants
selected highly rewarding options even faster, but slowed down less when selecting highly uncertain
options—independent of having faster choices in general. These changes in RT can be linked to the
evidence accumulation process. While time pressure did not change how reward expectations influenced
evidence accumulation (faster choices were due to lower decision-thresholds), it reduced the extent that
relative uncertainty dampened the rate of evidence accumulation.

Our findings indicate that time pressure selectively impacts how uncertainty is integrated into decisions.
Put under time pressure, people are less influenced by uncertainty, less value-directed, and more likely to
repeat previous choices. This is a simpler strategy and comes at lower costs, representing a potentially
resource-rational adaptation to time pressure. These results enrich our understanding of human exploration
strategies under changing task demands, providing insights into the cognitive costs of reasoning about and
acting on uncertainty.

Results
We conducted an online experiment on MTurk (n = 99; 36 female; Mage=34.82; SDage=10.1)) to study
how time pressure influences exploration behavior (Fig. 1). Our “Time Bandit” experiment employed
repeated four-armed bandit tasks, where we independently manipulated expected reward and uncertainty
across four payoff conditions (Fig. 1c; Table 1), along with time pressure (limited vs. unlimited time).
This allowed us to disentangle how relative differences in reward expectations and uncertainty influence
choices, and how time pressure modulates this influence, in a single within-subject design (see Methods).

Behavioral Analyses
To analyze the influence of time pressure and payoff conditions on performance and choice behavior,
we constructed a series of Bayesian mixed-effects regression models. Specifically, we estimated how
average rewards (Fig. 2a), the entropy of choices (Fig. 2b), the number of repeat choices (Fig. 2c), and the
probability of making a repeat choice conditioned on payoff (Fig. 2e), were influenced by time pressure
and payoff conditions, whilst also accounting for individual differences in the random effects structure.
This allows us to describe the influence of either time pressure or payoff conditions in terms of the
estimated marginal means (∆EMM), which uses contrast analyses to quantify differences in the dependent
variable marginalized over the other independent variables. For instance, examining how average rewards
were influenced by time pressure, marginalized over the four payoff conditions, or vice versa. The raw
posterior estimates are provided in Table S1 and visualized in Figure S1, while Figure S2 provides the raw
data separated by payoff condition.
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Figure 2. Behavioral results. a) Learning curves depicting average participant performance (lines) ± standard
error of the mean (ribbons) over trials (using unshifted rewards), faceted by payoff condition. The inset figures show
the expected reward ± standard deviation of each payoff condition for reference. IGT refers to payoffs inspired by
the Iowa Gambling Task (see Methods). b) Choice entropy in each round, where higher entropy corresponds to more
diverse choices and dotted lines indicate random chance (i.e., playing each arm with uniform probability). Each
connected dot represents a participant, and overlaid are Tukey boxplots with the diamond indicating the group mean.
c) The proportion of repeat clicks across time conditions, where each connected dot is a single participant, with
overlaid Tukey boxplots and the diamond indicating the group mean. d) Repeat choices as a function of the previous
(unshifted) reward value. Each dot is the aggregate mean, and lines represent a locally smoothed Generalized
Additive Model regression estimate, with the ribbon indicating the 95% confidence interval. e) Aggregate choice
proportions (normalized for chance) for each option, mapped to the canonical ordering shown in panel a (inset).
Error bars indicate the 95% CI. The inset plots show a preference for the ‘P’ option over the ‘O’ option in the IGT
condition, and a preference for the ‘P’ option over all others in the Equal Means condition. See Fig. S1 for a
Bayesian mixed effects regression of the behavioral results, and Figs. S2-S4 for additional behavioral analyses.
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Learning curves
Looking first at average reward (Fig 2a), we find that time pressure played a reliable role in reducing
rewards (∆EMM =−.19 [−0.29,−0.10]; all Bayesian estimates include the 95% Highest Density Interval
in square brackets). There was also substantial variation across payoff conditions. Participants performed
better in the IGT-like condition than in the Low Var condition (∆EMM = 0.12 [0.04,0.20]). We see an even
larger difference when comparing the Low Var and High Var conditions (∆EMM = .24 [0.15,0.33]), where
despite having the same expected rewards for each option, participants performed substantially better
with lower variance. Lastly, participants performed better in High Var than in the Equal Means condition
(∆EMM = 1.02 [0.93,1.11]), which is intuitive since improvement is not possible if all arms have the same
expected reward.

Entropy and Repeat Choices
Next, we assessed the overall diversity of choices by calculating the Shannon entropy53 of choice
distributions in each round (Fig 2b). Participants made less diverse and lower entropy choices under
limited time (∆EMM =−0.12 [−.23−0.01]). This provides initial evidence for reduced exploration under
time pressure. We also find largely overlapping entropy levels among the different payoff conditions, but
with Equal Means having the most diverse choices (compared against High Var: ∆EMM = 0.34 [0.27,0.42]).
This suggests that in the face of indiscernible differences in reward expectations, participants increased
their exploration.

Additionally, we modeled the number of repeat choices in each round as a measure of sequential
dependency between choices (Fig 2c). We used a Binomial regression, modeling the number of repeats
as the result of 19 independent Bernoulli trials, since the first choice cannot be a repeat by definition.
Participants made overwhelmingly more repeat choices under time pressure (Odds Ratio (OR): ∆EMM =
1.40 [1.22,1.58]). While we see relatively small variation across payoff conditions, the Low Var condition
had more repeats than the High Var condition (OR: ∆EMM = 1.34 [1.23,1.47]; see Fig S1c), perhaps
because participants were able to more quickly identify and exploit the highest rewarding arm with less
variance in observed outcomes.

Lastly, we also included a variant of the repeat choice model, which included the (unshifted) value of
the previous reward as an additional predictor (Fig 2d). Here, we modeled the probability of each choice
(after the first trial) being a repeat using logistic regression. We find the same influence of the experimental
manipulations on repeat behavior as above (see Table S1), but also find an interaction between time
pressure and previous reward value. Participants were more likely to repeat a choice with higher rewards
in unlimited time (OR= 1.24 [1.19,1.29]). Put differently, time pressure reduced participants’ sensitivity
to reward value in their repeat behavior, as evidenced by the flatter response curve in Figure 2d.

Choice Patterns
Figure 2e visualizes the aggregate choice proportions to get a better sense of patterns related to reward
expectations and uncertainty. These bars indicate the aggregate choice frequency of each option relative
to chance, where bars above zero indicate the option was chosen more frequently, and bars below zero
indicate the option was chosen less frequently. The difference between the orange and green bars illustrates
the differences in choice behavior as a function of time pressure. We aggregate the data using the canonical
mapping of reward distributions (see inset plots in Fig. 2a for reference) to the [Q,W,O,P] keys, although
the keys were randomly mapped in each round for participants. To provide statistical support for choice
differences, we use Bayesian mixed-effects logistic regression to model how time pressure influenced the
probability of choosing a given option. We focus on two informative cases.

In the IGT condition (named for mimicking the structure of the so-called Iowa Gambling Task54), there
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were two high reward and two low reward options, with each pair having either a low or high variance.
We focused on the two high reward options (indicated as ‘O’ and ‘P’ in Fig. 2e), and modeled whether
time pressure influenced the likelihood of choosing the riskier, high variance option ‘P’ over the safer low
variance option ‘O’, as a simple test of how decision time can influence the role of relative uncertainty
(see Fig. 2e inset for the raw data). We found that overall, participants chose the high variance option (‘P’)
more frequently in unlimited time (Odds Ratio: OR = 1.11 [.80,1.53]; Table S2), although the estimates
overlapped with chance (OR = 1). However, there was also an interaction with round number, where
the difference between time conditions widened over successive rounds. Participants in the unlimited
time condition increased their likelihood of selecting the high variance option over rounds (OR = 1.39
[1.23,1.57]). This effect tended towards the opposite direction for limited time rounds, where participants
selected the high variance option less frequently over rounds (OR = 0.83 [0.68,1.02]).

We find the clearest differences arising from the time-pressure manipulation in the Equal Means
condition (Fig. 2e inset), where compared against all other options, participants were more likely to select
the highest variance option (‘P’) in the unlimited time condition (OR = 1.44 [1.12,1.86]; Table S2). This
illustrates a clear shift in preferences away from uncertain options when time pressure is introduced.
Whereas participants tend to be risk-seeking and choose more uncertain options under unlimited time,
they become more risk-averse and choose them less often under time pressure.

Interim Discussion
Altogether, we find behavioral evidence that time pressure reduced exploration. There were less diverse
and more repeat choices, which ultimately resulted in lower reward outcomes. From these analyses, we
find two important behavioral signatures of the underlying cognitive processes that produced this shift in
exploration. First, time pressure reduced participants’ sensitivity to reward values in repeating previous
choices, making them more likely to repeat a low-reward choice (Fig. 2d). Second, participants were
less likely to select options with higher relative uncertainty under time pressure (Fig. 2e). In the next
section, we employ model-based analyses, which use RL models to explicitly track expected reward and
uncertainty estimates. We then use these estimates to model choice behavior, reaction times, and evidence
accumulation (i.e., drift rate).

Model-Based Analyses
To model learning and decision making in our task, we use a Bayesian mean tracker (BMT) as an RL model
for estimating expected rewards and associated uncertainties, which are then updated based on prediction
errors (see Methods). The BMT is a special case of the Kalman filter, which assumes time-invariant
reward distributions (as was the case in our experiment). The BMT provides a Bayesian analogue55 to the
classic Rescorla-Wagner56 model of associative learning, and has described human behavior in a variety
of multi-armed bandit and decision-making tasks19, 20, 24, 57–59.

We generated predictions from the BMT using participant choices and reward observations at each
trial t to compute posterior distributions of the average reward of the options, and then using these as prior
predictive distributions at trial t +1. These prior predictive distributions are all normally distributed, and
we used the mean and standard deviation as measures of predicted reward and the associated uncertainty,
respectively (see Fig. 4 and Fig. S5), which we use to conduct three model-based analyses predicting
choices, reaction times, and evidence accumulation (Fig. 3).

Choices.
In our first analysis, we assessed how reward expectations and uncertainty estimates influenced the
likelihood of an option being chosen on each trial. We applied hierarchical Bayesian inference to estimate
the parameters of a softmax policy (see Methods), under the assumption that a participant’s choice on each
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Figure 3. Posterior estimates of model-based analyses. a) Hierarchical softmax model. Expected rewards and
uncertainties were regressed onto choice probability (Eqs 1-2). The top row shows the value-directed component
(α), the middle row shows the uncertainty bonus (β ), and the bottom row shows stickiness (γ). b) Hierarchical RT
model. The influence of relative reward (top), relative uncertainty (middle), and total uncertainty (bottom) on RTs.
c) LBA drift regression. Relative reward (top), relative uncertainty (middle), and total uncertainty (bottom) were
used to predict the drift rate of an LBA. In all plots, the vertical dashed line indicates an effect of 0, while the black
dot indicates the mean effect and confidence intervals show the 66% (thick) and 95% (thin) highest density interval.

trial is influenced by both the predicted mean and uncertainty of an option. Each participant’s parameters
are assumed to be jointly normally distributed and assumed to interact with time pressure. The probability
of choosing option j on trial t is a softmax function of its decision value Q j,t :

P(Ct = j) =
exp(Q j,t)

∑
4
k=1 exp(Qk,t)

. (1)

The decision value Q j,t is a function of the prior predictive mean m j,t and uncertainty √v j,t (standard
deviation) of each option according to the BMT, with an additional stickiness bonus for the most recently
chosen option (δ j,t−1 = 1 if option j was chosen on trial t−1; see Methods):

Q j,t = α(m j,t +β
√

v j,t)+ γδ j,t−1. (2)

We computed hierarchical Bayesian estimates for the value-directed component α (factoring in both
rewards and uncertainty), the uncertainty bonus β (governing the trade-off between exploitation and
exploration), and the stickiness bonus γ , including interactions with the time pressure manipulation
(limited vs. unlimited). Larger α estimates indicate more value-directed choices, whereas lower α suggest
more random choices, which are not explainable by reward expectations or uncertainty estimates (i.e.,
random exploration). More positive β estimates indicate a higher level of uncertainty-directed exploration.
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Higher estimates of γ indicate more perseveration in choice behavior, with more frequent repetitions of
previous choices. Figure 3a shows the posterior estimates of the model (see Fig. S7-S8 for comparison to
alternative models).

We find less value-directed choice behavior under time pressure (αUnlimited−αLimited = 1.90 [1.24,2.56]),
with positive estimates in both conditions (αUnlimited = 9.21 [8.31,10.1]; αLimited = 7.31 [6.23,8.44]). This
pattern can be seen in the raw BMT predictions (Fig. 4a), where chosen options had both higher rel-
ative reward expectations and relative uncertainty in unlimited time. By definition, the inverse of the
value-directed component defines the level of random exploration, with the interpretation that participants’
choices were less predictable and more random when given less time to deliberate (limited time). This
may seem at odds with the behavioral results showing reduced entropy under time pressure, but the lack of
correlation between α and choice entropy under time limitations (see Fig. S6b) suggests that participants
consistently chose non-value maximizing options (i.e., repeating low-value choices; Fig. 2e). In contrast,
α estimates were correlated with higher average rewards in both conditions (see Fig. S6a).

Time pressure also reduced uncertainty-directed exploration (βUnlimited−βLimited = 0.09 [0.04,0.15]),
with positive estimates in both conditions (βUnlimited = .26 [.20, .32]; βLimited = .16 [.08, .24]). Figure 4b
provides additional clarity about this result. Participants with unlimited time experienced an early uptick
in selecting relatively uncertain options around trial 3, suggestive of an “exploration phase”. Afterwards,
there was a gradual shift towards exploitation, indicated by the monotonic decay of the relative uncertainty
of chosen options, indicating an increasing preference for relatively less uncertain options. Under time
pressure, there is a similar trend, yet the early exploration phase has almost vanished (the relative
uncertainty of the chosen option on trial 3 is indistinguishable from 0: t(98) = 0.9, p = .387, d = 0.1,
BF = .16) and later trials are associated with more strongly negative relative uncertainty. Thus, a reduced
exploration bonus under time pressure appears to be a combination of less exploration in early trials, and
more aggressive exploitation in later trials, which is also apparent in the higher levels of total uncertainty
during limited time rounds (Fig. 4c). This reduction in directed exploration may also be related to the
lower overall performance under time pressure, since higher β estimates in the limited time condition
were associated with higher rewards (see Fig. S6a).

In addition to these changes in exploration, time pressure increased the stickiness of choices (γUnlimited−
γLimited =−0.32 [−0.46,−0.19]), with positive estimates in both conditions (γUnlimited = 1.58 [1.36,1.80];
γLimited = 1.91 [1.64,2015]). This increase in choice perseveration is consistent with the reduced entropy
and higher repeat choice probabilities found in the behavioral data, but estimates of γ were unrelated to
average reward (see Fig. S6).

Overall, time pressure reduced the value-directedness of choices, reduced uncertainty-directed explo-
ration, and increased the stickiness of choices. We now turn to modeling reaction times (RTs) to better
understand how reward expectations and uncertainty influenced the speed of decisions.

Reaction Time.
Our second analysis looked at how RTs (see Fig S3 for raw RT analysis) were influenced by expectations of
rewards and estimated uncertainties. We first computed the relative reward and relative uncertainties of the
BMT predictions using the difference between the chosen option and the average of the unchosen options
on each trial. Thus, positive values indicate that the expected reward or uncertainty were larger than
the mean of the unchosen options. We also computed total uncertainty, based on the sum of uncertainty
estimates across the four options on any given trial. We then regressed relative mean, relative uncertainty,
total uncertainty, and round number onto log-transformed RTs in a Bayesian mixed effects regression (see
Methods).

The resulting posterior parameter estimates (Fig. 3b) indicate that higher relative reward expectations
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reward shows the difference between the posterior mean of the chosen option and the average posterior mean of the
unchosen options. Relative reward is always valued positively (dashed line indicates 0). b) Relative uncertainty
shows the difference between the posterior uncertainty (stdev) of the chosen option and the average posterior
uncertainty of the unchosen options. The early upticks indicates uncertainty-directed exploration (substantially less
in limited time), followed by exploitation as this value decays below zero (dashed line). c) Total uncertainty (average
stdev) decays monotonically, with a faster decline in unlimited time due to more uncertainty directed exploration.

produced faster choices under limited time (bLimited =−.08 [−.11,−.05]), but with a weaker effect under
unlimited time (bUnlimited = −.02 [−.04, .01]) that overlapped with zero. In contrast, both relative and
total uncertainty slowed down choices (relative uncertainty: bUnlimited = .15 [.10, .19]; total uncertainty:
bUnlimited = .22 [.19, .26]), with the latter having a larger effect. In both cases, this uncertainty-related
slowdown was reliably less pronounced when placed under time pressure (relative uncertainty: bunlimited−
blimited = −.10 [−.14,−.06]; total uncertainty: bunlimited− blimited = −.11 [−.14,−.08]). Thus, higher
reward expectations made people faster, whereas uncertainty (both relative and total) slowed them down.
Both effects were less pronounced under time pressure.

There was also a notable interaction between predictors (see Fig. S9 for the full model and Figs. S10-
S11 for interaction plots). While high relative reward expectations generally sped up choices, this pattern
was inverted when high rewards were also accompanied by high relative uncertainty, with participants
slowing down instead of speeding up (b = .04 [.001, .08]; no difference between time conditions). Thus,
certainty about high rewards produced rapid decisions, whereas uncertainty about high rewards produced
slower choices.

Overall, more exploitative choices (with higher relative reward expectations) were faster, while more
explorative choices (with both higher relative uncertainty or higher total uncertainty) were slower. This
differs from previous findings using two-armed bandits19, in which higher relative uncertainty was related
to faster decisions. Here, we find that uncertainty is not just a bonus that adds to the decision signal,
making choices easier and faster. Rather, grappling with uncertainty takes time.

Evidence Accumulation.
In our third analysis, we used a Linear Ballistic Accumulator60, 61 (LBA) to model choices and RTs
simultaneously (see Methods). This model assumes that choices are the result of an evidence accumulation
process, where evidence for each option accumulates as a function of drift rate, which is independently
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estimated for each option. Whichever option first exceeds the decision threshold is chosen. The interplay
between the drift rate and evidence threshold captures how participants trade response speed for accuracy,
with higher thresholds requiring more evidence and producing more value maximizing choices, yet slower
responses. Thus, we can use the LBA to separate out how time pressure impacts evidence accumulation in
terms of the rate of evidence accumulation and the amount of evidence collected.

Consistent with the need to arrive at decisions more quickly, we observed both lower relative evidence
thresholds k (t(98) =−5.2, p < .001, d = 0.5, BF > 100; Fig. S12) and higher mean drift rates (t(98) =
7.1, p < .001, d = 0.7, BF > 100) under time pressure. This suggests an accelerated processing of
information (faster drift rates), which is also more prone to errors (lower threshold). The maximum
pairwise difference between drift rates was also larger under limited time (t(98) = 6.0, p < .001, d = 0.6,
BF > 100), suggesting larger separation between different options, which is also related to lower choice
entropy and more frequent repeat choices (see Fig. S13). Additionally, participants had shorter non-
decision times τ (t(98) = −4.6, p < .001, d = 0.5, BF > 100) and less maximum starting evidence A
(t(98) =−7.8, p < .001, d = 0.8, BF > 100), when placed under time pressure. All parameters where
strongly correlated across time conditions (Kendall rank correlations; all rτ > .40; BF > 100; Fig. S12),
are recoverable (Fig. S14), and can be used to simulate realistic choice and RT patterns (Fig. S15). Thus,
our LBA results confirm the intuition that participants reached faster decisions at lower evidence thresholds
when time limitations were imposed, but they also accumulated evidence faster and with larger separation
between options.

In a final step, we sought to better understand how expectations of reward and uncertainty influence the
evidence accumulation process and how time pressure may impact this relationship. Thus, we regressed
the BMT predictions of relative expected reward, relative uncertainty, and total uncertainty for each option
onto its estimated drift rate using a Bayesian mixed effects regression. Note that the LBA parameters
are estimated on each round, thus the BMT predictions are averaged over trials, but nevertheless capture
differences in the trajectory of learning and the independent manipulations of expected rewards and
uncertainty in the four payoff conditions.

The result of this analysis (Fig. 3c) revealed that higher relative reward expectations amplified evidence
accumulation equally for limited and unlimited time (b = .36 [.31, .41]; no interaction with time pressure:
bUnlimited - Limited = −.005 [−.061, .051]). Thus, options with higher relative reward expectations were
more likely to be chosen and with faster decision times. Conversely, relative uncertainty (specific to
each option) had a negative effect on drift rate, thus dampening evidence accumulation (bUnlimited =
−.39 [−.44,−.34]), with a reliably smaller effect under time pressure (bLimited = −.31 [−.36,−.27];
bUnlimited - Limited = −.08 [−.14,−.01]). Lastly, total uncertainty (computed across all options) also
dampened evidence accumulation in limited time rounds (bLimited = −.06 [−.09,−.03]), but did not
produce a reliable effect in unlimited time (bUnlimited = −.03 [−.07, .01]). Thus, rewards increased
evidence accumulation, while uncertainty (in general) slowed down evidence accumulation.

The main interaction between predictors (see Fig. S16 for the full model and Figs. S17-S18 for
interaction plots), was that the effect of total uncertainty could be inverted depending on relative reward
(no interaction with time pressure: b =−.08 [−.14,−.02]; Fig. S17g) and relative uncertainty (bLimited =
−.15 [−.18,−.12]; bUnlimited = −.09 [−.13,−.06]; Fig. S17h). Total uncertainty amplified evidence
accumulation when the stakes were low (low relative rewards or low relative uncertainty), but dampened
evidence accumulation instead when the stakes were high (high relative rewards or relative uncertainty).
Since total uncertainty is the same across all options, amplified evidence accumulation under low stakes
corresponds to faster, more random choices, consistent with little benefit from increased deliberation in
these settings. Conversely, dampened evidence accumulation under high stakes corresponds to slower, and
more reward- or uncertainty-directed choices.

11/43



Overall, we find that reward-modulated increases in evidence accumulation were unaffected by time
pressure. However, uncertainty-driven decreases in evidence accumulation were less pronounced under
time pressure, with drift rates less influenced by uncertain options. We also found an influence of high
total uncertainty, which was modulated by expectations of rewards and relative uncertainty. When more
was at stake, total uncertainty dampened drift rates and produced slower decisions. But when relative
differences in reward expectations were minor, higher total uncertainty amplified drift and produced faster
decisions.

Discussion
How is exploration and decision-making constrained by cognitive limitations imposed through time
pressure? We investigated this question using several variants of a four-armed bandit task, designed to
independently manipulate differences in reward expectations and uncertainty. We then used a time pressure
manipulation to either give participants unlimited decision time or to limit decision time to less than
400 ms for each choice. Both payoff and time pressure manipulations were conducted within-subjects,
allowing us to use hierarchical modeling to achieve a high level of detail into the interplay between
learning strategies and cognitive limitations imposed by time pressure.

Our behavioral results show that time pressure induced participants to earn fewer rewards, made them
less sensitive to reward values in their repeat choice behavior, and less likely to select options associated
with higher uncertainty. We then used RL models to analyze how reward expectations and uncertainty
affected choices, RTs, and the rate of evidence accumulation.

High reward expectations made participants more likely to select options, producing faster RTs for such
exploitative choices, and amplifying the rate of evidence accumulation. Adding time pressure reduced the
value-directedness of choices, but increased their tendency to speed up when choosing options with high
relative reward expectations (i.e., exploitation), and made them more likely to repeat previous choices.

In contrast, while uncertainty also made participants more likely to select options, choices with higher
relative (and to some extent total uncertainty) were associated with slower choices and reduced evidence
accumulation rates. Adding time pressure reduced uncertainty-directed exploration in choice behavior
and also reduced the influence of uncertainty on RTs. This is consistent with the notion that uncertainty
takes time to process and deploy strategically. Without the necessary time to grapple with uncertainty,
participants shifted to exploiting known options and repeating previous choices, rather than integrating the
value of exploring uncertain options.

Similar reductions in directed exploration have also been observed when participants were placed under
working memory load62. The resulting behavior may thus be seen as a resource-rational4, 5 adaptation to
externally imposed limitations on cognitive resources, consistent with other findings showing that people
are sensitive to the cost-benefit tradeoffs of different learning strategies63, 64. Indeed, the interactions of
our LBA model (Fig. S17g-h) suggest that people are sensitive to the cost-benefit trade-off of increased
deliberation, producing faster more random decisions when the stakes are low, but slowing down and
deliberating longer when the stakes are high. Future research should examine the underlying mechanisms
of the arbitration between strategies and the neural locus of cognitive control.

Limitations and extensions
One limitation is that we only account for how time pressure influences exploration strategies, but not
for changes in learning. Time pressure might not only change which computations we engage in when
deciding how to explore or exploit, but it might also influence the richness of the representations we form
during learning or the extent to which these representations are updated in response to new information.
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Indeed, previous work in economics has shown a reduced efficacy of training65. However, our use of
Bayesian RL in modeling choices and RTs may not be able to differentiate between these hypotheses,
although similar models in related tasks have been used to predict directly elicited participant judgments
about reward expectations and confidence66–70. Future studies may consider modeling not only choices
and RTs, but also participant judgments about future outcomes in a similar time pressure manipulation.

Our current results also only examined uncertainty about reward expectations. However, there exist
several alternative measures of uncertainty such as confidence71, 72, perceptual uncertainty73, 74, and
computational uncertainty induced by cognitive load75, all of which could influence exploration behavior
in different ways. Thus, we expect future studies to increasingly focus on disentangling different sources
of uncertainty and their effects on the exploration-exploitation dilemma.

Additionally, while our four-armed bandit task was designed to provide a richer choice set beyond two
options, magnifying the difference between directed and random exploration, it still pales in comparison to
the complexity of many real world problems. Since participants may be more likely to engage in directed
exploration in highly complex or highly structured domains21, 22, 70, an important future direction will
be to understand how environmental structure modulates changes in learning as a function of cognitive
limitations.

Lastly, we have also only looked at multi-armed bandits in which participants only gain positive
rewards or earn nothing when exceeding the time limit. We did not, however, probe how exploration
behavior changes in the domain of losses76, 77 or risky outcomes33, 78. Since the distribution of rewards can
affect participants’ learning79 and losses have been shown to produce risk-seeking under time pressure45, 46,
studying this domain will be a crucial next step.

Conclusions
We studied the interplay of human exploration strategies and cognitive limitations imposed by time
pressure, showing that participants are sensitive to the costs and benefits of different computations. Put
under time pressure, people were less influenced by uncertainty, less value-directed, and repeated past
choices more often. These behavioral changes are linked to the cognitive costs of reasoning about
rewards and uncertainty. Exploitative choices (i.e., high reward expectations) were generally faster, while
exploratory choices (i.e, high relative or total uncertainty) were slower. Taken together, our results suggest
that people display a resource-rational sensitivity to the cost-benefits of different exploration strategies
under externally imposed limitations on cognitive resources.

Methods
Participants and Design.
We recruited 99 participants (36 female, aged between 21 and 69 years; M=34.82; SD=10.1) on Amazon
Mechanical Turk (requiring 95% approval rate and 100 previously approved HITs). Participants were paid
$3.00 for taking part in the experiment and a performance contingent bonus of up to $4.00 (calculated
based on the performance of one randomly selected round). Participants spent 13.0 ± 5.6 minutes on the
task and earned $5.87 ± $0.91 in total. The study was approved by the Ethics Committee of the Max
Planck Institute for Human Development and all methods were carried out in accordance with relevant
guidelines and regulations.. Informed consent was obtained from all subjects.

We used a 2×4 within-subject design to examine how the presence or absence of time pressure and
the payoff structure of the task (see Fig. 1c and Tab. 1) influenced choices and reaction times. In total, the
experiment consisted of 40 rounds with 20 trials each. In each round, a condition was sampled (without
replacement) from a pre-randomized list, such that each combination of time pressure and payoff structure
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Table 1. Payoff Conditions. Means shown are unshifted. In the experiment, a random value between 30
and 60 was added to all rewards of all options, and actual rewards were always positive. IGT refers to
payoffs inspired by the Iowa Gambling Task54, 80.

Payoff Conds Means (µ) Variances (σ2)

IGT [−10,−10,10,10] [10,100,10,100]
Low Var [−10,−1

3 ,
1
3 ,10] [10,10,10,10]

High Var [−10,−1
3 ,

1
3 ,10] [100,100,100,100]

Equal Means [0,0,0,0] [10,40,70,100]

was repeated five times, with a total of 100 trials in each.

Materials and Procedure.
Participants were required to complete three comprehension questions and two practice rounds (one with
unlimited time and one with limited time) consisting of 5 trials each before starting the experiment. Each
of the 40 rounds was presented as a four-armed bandit task, where the four options were randomly mapped
to the [Q,W,O,P] keys on the keyboard (Fig. 1a). Selecting an option by pressing the corresponding key
yielded a reward sampled from a normal distribution, where the mean and variance was defined by the
round’s payoff structure (Fig. 1c and Tab. 1). Participants completed 20 trials in each round and were told
to acquire as many points as possible.

Before starting a round, participants were informed whether it was an unlimited or a limited time
round. In unlimited time rounds, participants could spend as much time as they needed to reach a decision,
upon which they were given feedback about the obtained reward (displayed for 400 ms) before continuing
to the next trial (Fig. 1b). In limited time rounds, participants were instructed to decide as fast as possible.
If a decision took longer than 400 ms, they forfeited the reward they would have earned (presented to them
as a crossed-out number with an additional sad smiley; Fig. 1b). We used the same feedback period of 400
ms to display feedback about obtained rewards in both limited and unlimited time rounds.

We applied a random shifting of rewards across rounds (i.e., different minimum and maximum reward)
to prevent participants from immediately recognizing when they had chosen the optimal option. For each
round, we sampled a value from a uniform distribution U(30,60), which was then added to the rewards.
Together with random shifting, we also truncated rewards such that they were always larger than zero.
In order to convey intuitions about the random shift of rewards, payoffs were presented using a different
fictional currency in each round (e.g., ß, Þ, ϑ ), such that the absolute value was unknown, but higher were
always better.

At the end of each round, participants were given feedback about their performance in terms of the
bonus they would gain (in USD) if this was the round selected for determining the bonus. The bonus
was calculated as a percentage of the total possible performance, raised to the power of 4 to accentuate

differences in the upper range of performance: Bonus =
(

total reward gained
mean reward of best option×20 trials

)4
×$4.00

Payoff conditions
We used four different payoff conditions as a within-participant manipulation (Table 1 and Fig. 1c). Each
payoff condition specified the mean µ j and variance σ2

j of the reward distribution R j ∼N (µ j,σ
2
j ) for each

option j. Each distribution was randomly mapped to one of the four [Q,W,O,P] keys of the keyboard in
each round. The Iowa Gambling Task (IGT) is a classic design that has been related to a variety of clinical
and neurological factors affecting decision-making54, 80. We implemented a reward condition inspired by
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the IGT such that there are two high and two low reward options, with a low and high variance version
of each. We also constructed two conditions with equally spaced means, but with either uniformly low
variance or uniformly high variance. Lastly, the equal means condition had identical means and gradually
increasing variance, such that we can observe the influence of uncertainty independent of mean reward.

Model-based analyses
Bayesian mean tracker
The Bayesian mean tracker (BMT) learns a posterior distribution over the mean reward µ j for each option
j. Rewards are assumed to be normally distributed with a known variance but unknown mean. The prior
distribution of the mean is also a normal distribution. This implies that the posterior distribution for each
mean is also a normal distribution:

pt(µ j|Dt−1) =N (m j,t ,v j,t) (3)

where pt is the posterior distribution at trial t and Dt−1 denotes the observed rewards and choices up to
and including trial t (for all options). For a given option j, the posterior mean m j,t and variance v j,t at trial
t are only updated when it has been selected at trial t:

m j,t = m j,t−1 +δ j,tG j,t
[
yt−m j,t−1

]
(4)

v j,t =
[
1−δ j,tG j,t

]
v j,t−1 (5)

where δ j,t = 1 if option j is chosen on trial t, and 0 otherwise. Additionally, yt is the observed reward at
trial t, and G j,t is defined as:

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(6)

where θ 2
ε , referred to as the error variance, is the variance of the rewards around the mean.

Intuitively, the estimated mean of the chosen option m j,t is updated based on prediction error, which is
the difference between the observed reward yt and the prior expectation m j,t−1, multiplied by learning
rate G j,t ∈ [0,1]. At the same time, the estimated variance v j,t of the chosen option is reduced by a factor
1−G j,t . The error variance (θ 2

ε ) can be interpreted as an inverse sensitivity, where smaller values result in
more substantial updates to the mean m j,t , and larger reductions of uncertainty v j,t . We set the prior mean
to m j,0 = 0 based on the (unshifted) expectation across payoff conditions, and the prior variance is set to
v j,0 = 55∗20, which is also the expectation across payoff conditions, scaled by a constant multiple of 20.
We use unshifted reward values (i.e., before adding the shift ∼ U(30,60) were observed by participants),
with the means in each condition centered on 0. For our model-based analysis, the error variance θ 2

ε was
set to the true underlying variance of the chosen option.

Hierarchical Bayesian Regression models
Mixed effects regressions
All Bayesian mixed effects regression models used Hamiltonian Markov chain Monte Carlo (MCMC)
with a No-U-Turn sampler81 and were implemented using brms82. All models used generic, weakly
informative priors ∼N (0,1) with the proposal acceptance probability set to .99. In all cases, participants
were assigned a random intercept and all fixed effects also had corresponding random effects following
recommendations to apply a maximal random-effects structure83. All models were estimated over four
chains of 4000 iterations, with a burn-in period of 1000 samples.
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Softmax choice model
The softmax choice model was estimated hierarchically using custom code written in STAN. Formally, we
assume that the α- and β -coefficients (see Equation 2) for each participant are drawn independently from
a normal distribution:

α
limited
i ,αunlimited

i ,β limited
i ,β unlimited

i ,γ limited
i ,γunlimited

i ∼N (µ0,σ
2
0 ). (7)

For simplicity, we use αi, βi, and γi in Equation 2 to refer to θi = θ limited
i +1θ unlimited

i , where θ ∈ [α,β ,γ]
and 1= 1 for unlimited time rounds, and 0 otherwise. We used Hamiltonian MCMC with a No-U-Turn
sampler81 to estimate the group-level mean µ0 and variance over participants σ2

0 for α , β , and γ , and their
interaction with time pressure. We used the following priors on the group-level parameters:

µ0 ∼N (0,1) (8)

σ
2
0 ∼N (0,1) ∈ (0,∞) (9)

The posterior mean and uncertainty estimates of the BMT were standardized between [0,1] before
being entered into the regression. The model was estimated over four chains of 4000 iterations, with a
burn-in period of 1000 samples, and with the proposal acceptance probability set to .99.

RTs
The RT regression used the same Bayesian mixed effects framework as above, with log-transformed RTs
as the dependent variable. 1 ms was added to each RT to avoid log(0), with the raw RTs truncated at a
maximum of 5000 ms. Both dependent and independent variables were standardized to a mean of 0 and
unit variance.

LBA
Formally, the LBA assumes that, after an initial period of non-decision time τ , evidence for option j accu-
mulates linearly at a rate of v j, starting from an initial evidence level p j ∼ U(0,A). Evidence accumulates
for each option j until a threshold b = A+ k is reached. We follow the Bayesian implementation proposed
by Ref61 and assume that the priors for the drift rates stem from truncated normal distributions

v j ∼N (2,1) ∈ (0,∞). (10)

Additionally, we assume a uniform prior on non-decision time

τ ∼ U(0,1), (11)

and a truncated normal prior on the maximum starting evidence

A∼N (0.5,1) ∈ (0,∞). (12)

Finally, we reparameterized the model by shifting b by k units away from A, and put a truncated normal
distribution as the prior on the resulting relative threshold k:

k ∼N (0.5,1) ∈ (0,∞). (13)

We estimated the LBA parameters (see Fig. S12) for each participant in every round separately using
No-U-Turn Hamiltonian MCMC81, with reaction times truncated at 5000 ms. The drift rate regression
used the same Bayesian mixed effects framework as above, with both DVs and IVs standardized to a mean
of 0 and unit variance.
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Data and Code Availability
Code and data are publicly available at https://osf.io/v4dua/.
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Supporting information
Statistics
Comparisons.
Both frequentist and Bayesian statistics are reported throughout this paper. Frequentist tests are reported
as Student’s t-tests (specified as either paired or independent). Each of these tests are accompanied by a
Bayes factors (BF) to quantify the relative evidence the data provide in favor of the alternative hypothesis
(HA) over the null (H0). This is done using the default two-sided Bayesian t-test for either independent or
dependent samples, where both use a Jeffreys-Zellner-Siow prior with its scale set to

√
2/2, as suggested

by Ref85. All statistical tests are non-directional as defined by a symmetric prior.

Correlations.
For testing linear correlations with Pearson’s r, the Bayesian test is based on Jeffreys86 test for linear
correlation and assumes a shifted, scaled beta prior distribution B(1

k ,
1
k ) for r, where the scale parameter is

set to k = 1
3

87. Note that when performing group comparisons of correlations computed at the individual
level, we report the mean correlation and the statistics of a single-sample t-test comparing the distribution
of z-transformed correlation coefficients to µ = 0.

For testing rank correlations with Kendall’s tau, the Bayesian test is based on parametric yoking to
define a prior over the test statistic88, and performing Bayesian inference to arrive at a posterior distribution
for rτ . The Savage-Dickey density ratio test is used to produce an interpretable Bayes Factor.

ANOVA.
We use a two-way analysis of variance (ANOVA) to compare the means of p≥ 2 samples based on the F
distribution. In general terms, we can define ANOVA as a linear model:

y = µ1+σXθθθ + εεε (14)

where y is a vector of N observations, µ is the aggregate mean, 1 is a column vector of length N, σ is the
scale factor, X is the N× p design matrix, θθθ is a column vector of the standardized effect sizes, and εεε is a
column vector containing the i.i.d. errors where εi

i.i.d∼ N (0,σ2).
We assume independent g-priors89 for each effect size θ1 ∼N (0,g1σ2), · · · ,θp ∼N (0,gpσ2), where

each g-value is drawn from an inverse chi-square prior with a single degree of freedom gi
i.i.d∼ inverse-χ2(1).

For µ and σ2 we assume a Jeffreys90 prior. Following Ref91, we compute the Bayes factor by integrating
the likelihoods with respect to the prior on parameters, where Monte Carlo sampling was used to approxi-
mate the g-priors. The Bayes factor reported in the text can be interpreted as the log-odds of the model
relative to an intercept-only null model.

Supplementary Behavioral results
Raw RTs.
Figure S3a shows the distribution of participant reaction times (RTs) split by time pressure and payoff
conditions. Using a two-way within subject ANOVA, we found that participants (unsurprisingly) responded
faster in limited time (F(1,98) = 13.8, p < .001, η2 = .016, BF > 100), but with no differences across
payoff conditions (F(3,98) = 0.684, p = .562, η2 = .002, BF = 0.005). Additionally, we find that
participants sped up over trials (average correlation: r̄ = −.54; one-sample t-test against zero using
z-transformed correlation coefficients: t(98) = −17.6, p < .001, d = 1.8, BF > 100; Fig. S3b), with
a strong speed up in unlimited time (paired t-test comparing z-transformed correlation coefficients:
t(98) = 4.5, p < .001, d = 0.5, BF > 100). We see a similar speed-up over rounds (average correlation:
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Figure S1. Regression coefficients. Visualization of regression coefficients, corresponding to the models in
Table S1. The vertical grey line represents chance, and estimates above are in blue, while estimates below are in red
(irrespective of significance). The inner horizontal line indicates the 50% HDI and the outer line indicates 89% HDI.

t(98) =−9.4, p < .001, d = 0.9, BF > 100; Fig. S3c), which was also more pronounced under unlimited
time (t(98) = 4.4, p < .001, d = 0.5, BF > 100).

Too slow analyses
We also analysed the pattern of “too slow” responses that exceeded 400ms during the limited time
condition, where participants received no reward. Using a one-way within subject ANOVA, we found no
differences in the number of “too slow” responses across payoff conditions (F(3,98) = 0.088, p = .966,
η2 = .001, BF = 0.012; Fig. S4a). Too slow responses tended to follow lower-valued reward observations
(paired t-test: t(93) =−6.2, p < .001, d = 0.8, BF > 100; omitting 5 participants who never had slow
responses; Fig. S4b). However, this effect is mediated by trial number, since the vast majority of “too slow”
responses occurred on the second trial (Fig. S4c). Since the learning curves in Fig. 2a indicate gradual
increases in reward over trials (except for the Equal Means condition), a tendency for “too slow” responses
to take place during early trials will generally correspond to lower reward observations.

In order to simultaneously model the influence of payoff conditions, trials, and reward observations on
the tendency to produce a “too slow” response, we fit a Bayesian logistic mixed-effects model (Fig. S4d).
We again found no influence of payoff condition (all estimates overlapping with an odds ratio of 1).
However, we find a strong effect of trial (OR: 0.88 [.86, .91]) and a reliable but small effect of previous
reward (OR: 0.99 [.98, .99]), such that both later trials and larger rewards observations were less likely to
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produce “too slow” responses.
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coefficients of the Bayesian logistic mixed effects model, depicted as odds ratios with the vertical grey line
indicating chance. The inner horizontal line indicates the 50% HDI and the outer line indicates the 89% HDI.
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Table S1. Bayesian Mixed Effects Regression: Experimental Manipulations

Avg. Reward Choice Entropy Repeats P(Repeat)
Estimate Estimate Odds Ratio Odds Ratio

Intercept -1.04 0.36 1.94 2.73
[-1.13, -0.95] [0.19, 0.52] [1.55, 2.45] [2.13, 3.47]

UnlimitedTime 0.06 0.18 0.64 0.67
[-0.06, 0.19] [0.04, 0.32] [0.55, 0.74] [0.57, 0.78]

Payoff.IGT 1.32 -0.41 1.44 1.01
[1.19, 1.46] [-0.52, -0.30] [1.29, 1.61] [0.90, 1.13]

Payoff.LowVar 1.17 -0.42 1.46 1.00
[1.04, 1.29] [-0.52, -0.32] [1.31, 1.61] [0.91, 1.11]

Payoff.HighVar 0.97 -0.34 1.38 1.12
[0.86, 1.08] [-0.44, -0.25] [1.25, 1.52] [1.01, 1.25]

Round 0.01 -0.01 1.00 1.00
[0.00, 0.01] [-0.01, -0.00] [1.00, 1.01] [1.00, 1.01]

UnlimitedTime:Payoff.IGT 0.11 -0.06 0.97 0.81
[-0.2, 0.25] [-0.19, 0.07] [0.88, 1.07] [0.73, 0.90]

UnlimitedTime:Payoff.LowVar 0.18 -0.08 1.05 0.89
[0.05, 0.32] [-0.21, 0.05] [0.95, 1.15] [0.81, 0.98]

UnlimitedTime:Payoff.HighVar 0.09 0.01 0.95 0.84
[-0.04, 0.22] [-0.12, 0.14] [0.87, 1.04] [0.76, 0.93]

UnlimitedTime:Round -0.00 0.00 1.01 1.01
[-0.01, 0.00] [-0.00, 0.00] [1.00, 1.01] [1.01, 1.01]

PrevReward 1.89
[1.77, 2.02]

UnlimitedTime:PrevReward 1.24
[1.19, 1.29]

Random Effects
σ2 0.13 0.41 12.69 0.01
τ00 0.88 0.59 4.47 0.21
ICC 0.13 0.41 0.72 0.04
NParticipant 99 99 99 99

Observations 3960 3960 3960 76240
Bayesian R2 0.43 0.46 0.65 0.26

Note: Each model was defined as DV ∼ TimePressure * PayoffConditions * Round + (1
+ TimePressure + PayoffConditions + Round | Participant), where DV is the dependent
variable (columns), and PayoffConditions were defined using dummy coding, with the baseline
being the Equal Means condition. We report the posterior mean and 95% highest posterior density
(HPD) interval below in brackets. The ‘Repeats’ model is a Binomial regression based on 19
successive Bernoulli trials (since the first trial cannot be a repeat). The ’P(Repeat)’ model is a logistic
regression, with the previous reward value added as an additional predictor. Both the ‘Repeats’
and ’P(Repeat)’ models are reported as Odds Ratios. σ2 indicates the individual-level variance,
τ00 indicates the variation between individual intercepts and the average intercept, and ICC is the
intraclass correlation coefficient. Model coefficients are visualized in Figure S1.
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Table S2. Bayesian Mixed Effects Logistic Regression: Choice Probability for Highest Variance Option

IGT Equal Means
Odds Ratio Odds Ratio

Intercept 0.91 0.24
[0.69, 1.20] [0.18, 0.33]

UnlimitedTime 1.11 1.45
[0.80, 1.53] [1.11, 1.87]

Round 0.83 1.00
[0.68, 1.02] [0.99, 1.02]

UnlimitedTime:Round 1.39 0.99
[1.23, 1.57] [0.98, 0.99]

Random Effects
σ2 0.00 0.02
τ00 0.25 0.17
ICC 0.00 0.00
NParticipant 99 99

Observations 10230 19800
Bayesian R2 0.194 0.134

Note: Each model was defined as DV ∼ TimePressure * Round + (1 + TimePressure
+ Round|Participant), where DV is the dependent dependent binary variable representing
whether the highest variance option was chosen. In the IGT regression, we only consider
choices where the two highest mean reward options were chosen (’O’ and ’P’), where DV = 1
when ’P’ was chosen, and zero otherwise. For the Equal Means condition, we include all
choices. We report the posterior odds ratio and 95% highest posterior density (HPD) interval
below in brackets. σ2 indicates the individual-level variance, τ00 indicates the variation between
individual intercepts and the average intercept, and ICC is the intraclass correlation coefficient.
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Supplementary Model Results
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Figure S5. BMT predictions about the chosen option simulated for all participants. Lines indicate group
means, with ribbons showing the 95% CI. a) Expected rewards (posterior mean) increase over successive trials,
showing how the model tracks learning. The uptick in the Equal Means condition, followed by a decay back to zero
indicates participants persevered after high reward observations stemming from the underlying variance, which then
regressed back to the mean of 0. b) Posterior uncertainty (stdev) decays as participants exploit options with
diminishing uncertainty. c) Relative reward shows the difference between the posterior mean of the chosen option
and the average posterior mean of the unchosen options. Relative reward is always valued positively (dashed line
indicates 0). d) Relative uncertainty shows the difference between the posterior uncertainty (stdev) of the chosen
option and the average posterior uncertainty of the unchoen options. The early upticks indicates uncertainty directed
exploration (substantially less in limited time), followed by exploitation as this value decays below zero (dashed
line). e) Total uncertainty (stdev) decays monotonically, with a faster decline in unlimited time due to more
uncertainty directed exploration.
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Figure S6. Comparison of Softmax parameters and behavior. Each dot shows the mean posterior for each
participant in each time condition, while the lines and ribbons are a linear regression and 95% CI. a) Higher α

estimates correspond to higher rewards in both conditions (unlimited time: rτ = .55, p < .001, BF > 100; limited
time: rτ = .55, p < .001, BF > 100). However, we only find a reliable effect of β under time pressure (rτ = .25,
p < .001, BF > 100), but not with unlimited time (rτ = .13, p = .055, BF = .81). This suggests that the lower
overall performance under time pressure, may have a result of the reduction in uncertainty directed exploration
(Fig. 3a). We find no relationship between stickiness and rewards (unlimited time: rτ = .13, p = .052, BF = .85;
limited time: rτ = .08, p = .265, BF = .24). b) We find no correlation between α and choice entropy (unlimited
time: rτ =−.13, p = .053, BF = .84; limited time: rτ =−.01, p = .835, BF = .13). However, higher β estimates
generated higher entropy choices in both conditions (unlimited time: rτ = .26, p < .001, BF > 100; limited time:
rτ = .36, p < .001, BF > 100), while higher γ were related to lower entropy (unlimited time: rτ =−.53, p < .001,
BF > 100; limited time: rτ =−.41, p < .001, BF > 100). c) Similar to choice entropy, we find no relationship
between α and the frequency of repeat choices (unlimited time: rτ = .06, p = .384, BF = .19; limited time:
rτ =−.04, p = .545, BF = .16). However, higher β estimates were correlated with less repeat choices in limited
time (rτ =−.30, p < .001, BF > 100), and more weakly correlated in unlimited time (rτ =−.19, p = .006,
BF = 5.4). Stickiness γ was unsurprisingly correlated with more repeat choices in both conditions (unlimited time:
rτ = .73, p < .001, BF > 100; limited time: rτ = .65, p < .001, BF > 100). In all plots, Tukey’s fence has been
applied to omit outliers for clearer visualizations, but all data are included in the statistical tests.
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Figure S7. Alternative Softmax Model Posteriors. Posterior estimates for alternative formulations of the
softmax model. a) Variant without stickiness, which yields negative uncertainty bonus β estimates for limited time.
b) Variant, also without stickiness, but where the value-directed component was scaled by the total uncertainty
(across options) as a method to regulate higher random exploration when the total uncertainty is high (following
Ref24; see Fig. S8 for details). Here, we get negative uncertainty bonus β estimates for both conditions. Both
models provide worse fits to the data (Fig. S8) compared to the sticky softmax model reported in Figure 3a .
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Figure S8. Model comparison. Comparing three variants of the hierarchical softmax choice model using
Deviance Information Criterion92 DIC =−2logEθ p(y|θ)+2pD, where the effective number of parameters is
defined as pD = Vθ (−2log p(y|θ)). The sticky model is reported in the main text, while the non-sticky model
omits the γ term. Lastly, the total uncertainty scaled model (TUscaled) also omits the stickiness parameter, but
rescales the value estimates going into the softmax function by the total uncertainty across all four options to
account for changes in random exploration as a function of total uncertainty24: Q j,t =

α(m j,t+β
√v j,t)

∑k
√vk,t

. Each dot is a
single participant (connected by lines across models),with overlaid Tukey boxplots and the diamond indicating the
group mean. The significance tests are Bayes Factors (BF) corresponding to paired Bayesian t-tests. The sticky
model beats the non-sticky model (t(98) =−13.2, p < .001, d = 0.7, BF > 100), the sticky model beats the
TUscaled model (t(98) =−15.6, p < .001, d = 0.7, BF > 100), and there are no reliable differences between the
non-sticky and TUscaled models (t(98) =−2.1, p = .040, d = 0.0, BF = .87).
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Figure S9. Coefficient plot of RT mixed effects regression. Posterior estimates of the Bayesian mixed effects
regression predicting (log) RT. The mean posterior estimate is displayed numerically and indicated by the black dot,
while the 95% HPD is illustrated by the length of the horizontal line. Coefficients are sorted by largest to smallest,
with blue and red colors corresponding to estimates that are above or below 0, respectively, but do not indicate
whether the difference is meaningful. See Figs. S10-S11 for interaction plots. RelMu: relative reward; RelSig:
relative uncertainty; TotalSig: total uncertainty.
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Figure S10. Marginal interaction plots for RT mixed effects regression. Marginal interactions of the RT
Bayesian mixed effects regression illustrated in Fig. S9. Interactions are grouped in terms of relative means (a-c),
relative uncertainty (d-f), and total uncertainty (g-i). Continuous variables are split into discrete [low,med,high]
levels, based on [mean− sd, mean, mean+ sd]. RelMu: relative reward; RelSig: relative uncertainty; TotalSig: total
uncertainty.
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Figure S11. Four-way interactions for RT mixed effects regression. Four-way interactions of the RT Bayesian
mixed effects regression illustrated in Fig. S9. Interactions are grouped in terms of relative means (a) and relative
uncertainty (b). Continuous variables are split into discrete [low,med,high] levels, based on [mean− sd, mean,
mean+ sd], with relative uncertainty (relSig) increasing top to bottom (rows) and total uncertainty (totalSig)
increasing from left ro right (columns). RelMu: relative reward; RelSig: relative uncertainty; TotalSig: total
uncertainty.
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Figure S12. LBA parameters. Mean posterior parameter estimates of the LBA model, where each pair of
connected dots is a single participant. Tukey boxplots show the group statistics, with the diamond indicating group
means. τ is the non-decision time, A is the maximum starting evidence, k is the relative threshold, mean_drift is the
average drift rate across all four options 1

4 ∑ j v j, and max_drift_diff is the largest pairwise difference in drift rates
maxi 6= j |vi− v j|.
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Figure S13. Comparison of LBA parameters and behavior. Each dot shows the mean posterior for each
participant in each time condition, while the lines and ribbons are a linear regression and 95% CI. τ is the
non-decision time, A is the maximum starting evidence, k is the relative threshold, mean_drift is the average drift
rate across all four options 1

4 ∑ j v j, and max_drift_diff is the largest pairwise difference in drift rates maxi 6= j |vi−v j|.
a) The only meaningful correlation between rewards and LBA parameters was found for maximum starting evidence
A under time pressure (rτ =−.25, p < .001, BF = 89), where participants who were closer to making a decision
prior to the start of a trial, earned lower payoffs. b) We find the strongest relationships between both drift rate
variables and choice entropy, which were similar across time conditions. Participants with higher mean drift had
more entropic choices (unlimited: rτ = .37, p < .001, BF > 100; limited: rτ = .32, p < .001, BF > 100), whereas
participants with larger differences in drift rate were less entropic (unlimited: rτ =−.49, p < .001, BF > 100;
limited: rτ =−.57, p < .001, BF > 100). We also find a weak correlation where higher maximum starting evidence
was correlated with higher entropy for limited time rounds (rτ = .15, p = .024, BF = 1.6), and a moderate
correlation where longer non-decision time corresponded to more entropic choices in unlimited time rounds
(rτ = .22, p = .002, BF = 18). c) Similar to choice entropy, we again find the strongest relationship between the
drift rate variables and the frequency of repeat choices, where higher mean drift produced less repeats (unlimited:
rτ =−.41, p < .001, BF > 100; limited: rτ =−.28, p < .001, BF > 100), and larger differences in drift rate
produced more repeat choices (unlimited: rτ = .49, p < .001, BF > 100; limited: rτ = .58, p < .001, BF > 100).
We also find that higher starting evidence was correlated with more repeat choices in limited time rounds (rτ = .58,
p < .001, BF > 100). In all plots, Tukey’s fence has been applied to omit outliers for clearer visualizations, but all
data are included in the statistical tests.
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Figure S14. LBA recovery. Parameter recovery analysis, where the generating parameters on the x-axis were
used to simulate participant choices and reaction times, upon which we used the same LBA estimation procedure
and recovered the parameter estimates shown on the y-axis. Each dot is the posterior mean of a single participant
(separated by time condition, but averaged across payoff conditions), with the line and ribbon showing a linear
regression ± 95% CI. All parameters were recoverable in each time condition (all rτ > .33; BF > 100). τ is the
non-decision time, A is the maximum starting evidence, k is the relative threshold, mean_drift is the average drift
rate across all four options 1

4 ∑ j v j, and max_drift_diff is the largest pairwise difference in drift rates maxi6= j |vi−v j|.
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Figure S15. LBA simulations. a) Observed vs. simulated choice probabilities. For each set of participant
parameter estimates, we generated 10k simulated choices that we used to define choice probabilities for each option
(y-axis), which we compared against participants’ observed choice probabilities (x-axis). Each dot represents the
choice probabilities for each option for each set of parameter estimates. The colored line is a linear regression, with
the ribbon showing the 95% CI. b) Observed vs. simulated RTs Using the same set of simulated data as above, we
created a matched dataset where we sampled a simulated RT value yoked to each participant set of observed choices
(i.e., an RT corresponding to the chosen option rather than any of the four options). We then aggregated the data by
payoff condition and time pressure, and computed 20-quantiles along the participant RTs (x-axis), plotting the
median (dot) and 95% CI (error bar) for the corresponding simulated RTs. The dashed line represents y = x.
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Figure S16. Coefficient plot of Drift Rate mixed effects regression. Posterior estimates of the Bayesian mixed
effects regression predicting LBA drift rates. The mean posterior estimate is displayed numerically and indicated by
the black dot, while the 95% HPD is illustrated by the length of the horizontal line. Coefficients are sorted by largest
to smallest, with blue and red colors corresponding to estimates that are above or below 0, respectively, but do not
indicate whether the difference is meaningful. See Figs. S17 for interaction plots. RelMu: relative reward; RelSig:
relative uncertainty; TotalSig: total uncertainty.
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Figure S17. Marginal interaction plots for LBA mixed effects regression model. Marginal interactions of the
LBA Bayesian mixed effects regression illustrated in Fig. S9. Interactions are grouped in terms of relative means
(a-c), relative uncertainty (d-f), and total uncertainty (g-i). Continuous variables are split into discrete
[low,med,high] levels, based on [mean− sd, mean, mean+ sd]. RelMu: relative reward; RelSig: relative
uncertainty; TotalSig: total uncertainty.
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Figure S18. Four-way interactions for LBA mixed effects regression. Four-way interactions of the LBA
Bayesian mixed effects regression illustrated in Fig. S16. Interactions are grouped in terms of relative means (a),
relative uncertainty (b), and total uncertainty (c). Continuous variables are split into discrete [low,med,high] levels,
based on [mean− sd, mean, mean+ sd]. RelMu: relative reward; RelSig: relative uncertainty; TotalSig: total
uncertainty.
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